Displaying publications 41 - 60 of 185 in total

Abstract:
Sort:
  1. Shazleen SS, Yasim-Anuar TAT, Ibrahim NA, Hassan MA, Ariffin H
    Polymers (Basel), 2021 Jan 27;13(3).
    PMID: 33513688 DOI: 10.3390/polym13030389
    Polylactic acid (PLA), a potential alternative material for single use plastics, generally portrays a slow crystallization rate during melt-processing. The use of a nanomaterial such as cellulose nanofibers (CNF) may affect the crystallization rate by acting as a nucleating agent. CNF at a certain wt.% has been evidenced as a good reinforcement material for PLA; nevertheless, there is a lack of information on the correlation between the amount of CNF in PLA that promotes its functionality as reinforcement material, and its effect on PLA nucleation for improving the crystallization rate. This work investigated the nucleation effect of PLA incorporated with CNF at different fiber loading (1-6 wt.%) through an isothermal and non-isothermal crystallization kinetics study using differential scanning calorimetry (DSC) analysis. Mechanical properties of the PLA/CNF nanocomposites were also investigated. PLA/CNF3 exhibited the highest crystallization onset temperature and enthalpy among all the PLA/CNF nanocomposites. PLA/CNF3 also had the highest crystallinity of 44.2% with an almost 95% increment compared to neat PLA. The highest crystallization rate of 0.716 min-1 was achieved when PLA/CNF3 was isothermally melt crystallized at 100 °C. The crystallization rate was 65-fold higher as compared to the neat PLA (0.011 min-1). At CNF content higher than 3 wt.%, the crystallization rate decreased, suggesting the occurrence of agglomeration at higher CNF loading as evidenced by the FESEM micrographs. In contrast to the tensile properties, the highest tensile strength and Young's modulus were recorded by PLA/CNF4 at 76.1 MPa and 3.3 GPa, respectively. These values were, however, not much different compared to PLA/CNF3 (74.1 MPa and 3.3 GPa), suggesting that CNF at 3 wt.% can be used to improve both the crystallization rate and the mechanical properties. Results obtained from this study revealed the dual function of CNF in PLA nanocomposite, namely as nucleating agent and reinforcement material. Being an organic and biodegradable material, CNF has an increased advantage for use in PLA as compared to non-biodegradable material and is foreseen to enhance the potential use of PLA in single use plastics applications.
    Matched MeSH terms: Crystallization
  2. Shariff FM, Rahman RN, Ali MS, Chor AL, Basri M, Salleh AB
    PMID: 20516608 DOI: 10.1107/S174430911001482X
    Purified thermostable recombinant L2 lipase from Bacillus sp. L2 was crystallized by the counter-diffusion method using 20% PEG 6000, 50 mM MES pH 6.5 and 50 mM NaCl as precipitant. X-ray diffraction data were collected to 2.7 A resolution using an in-house Bruker X8 PROTEUM single-crystal diffractometer system. The crystal belonged to the primitive orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 87.44, b = 94.90, c = 126.46 A. The asymmetric unit contained one single molecule of protein, with a Matthews coefficient (V(M)) of 2.85 A(3) Da(-1) and a solvent content of 57%.
    Matched MeSH terms: Crystallization
  3. Shaibullah S, Mohd-Sharif N, Ho KL, Firdaus-Raih M, Nathan S, Mohamed R, et al.
    Acta Crystallogr F Struct Biol Commun, 2014 Dec 01;70(Pt 12):1697-700.
    PMID: 25484229 DOI: 10.1107/S2053230X14025278
    Melioidosis is an infectious disease caused by the pathogenic bacterium Burkholderia pseudomallei. Whole-genome sequencing revealed that the B. pseudomallei genome includes 5855 coding DNA sequences (CDSs), of which ∼25% encode hypothetical proteins. A pathogen-associated hypothetical protein, BPSL1038, was overexpressed in Escherichia coli, purified and crystallized using vapour-diffusion methods. A BPSL1038 protein crystal that grew using sodium formate as precipitant diffracted to 1.55 Å resolution. It belonged to space group C2221, with unit-cell parameters a = 85.36, b = 115.63, c = 46.73 Å. The calculated Matthews coefficient (VM) suggests that there are two molecules per asymmetric unit, with a solvent content of 48.8%.
    Matched MeSH terms: Crystallization
  4. Shah SH, Kar RK, Asmawi AA, Rahman MB, Murad AM, Mahadi NM, et al.
    PLoS One, 2012;7(11):e49788.
    PMID: 23209600 DOI: 10.1371/journal.pone.0049788
    Exotic functions of antifreeze proteins (AFP) and antifreeze glycopeptides (AFGP) have recently been attracted with much interest to develop them as commercial products. AFPs and AFGPs inhibit ice crystal growth by lowering the water freezing point without changing the water melting point. Our group isolated the Antarctic yeast Glaciozyma antarctica that expresses antifreeze protein to assist it in its survival mechanism at sub-zero temperatures. The protein is unique and novel, indicated by its low sequence homology compared to those of other AFPs. We explore the structure-function relationship of G. antarctica AFP using various approaches ranging from protein structure prediction, peptide design and antifreeze activity assays, nuclear magnetic resonance (NMR) studies and molecular dynamics simulation. The predicted secondary structure of G. antarctica AFP shows several α-helices, assumed to be responsible for its antifreeze activity. We designed several peptide fragments derived from the amino acid sequences of α-helical regions of the parent AFP and they also showed substantial antifreeze activities, below that of the original AFP. The relationship between peptide structure and activity was explored by NMR spectroscopy and molecular dynamics simulation. NMR results show that the antifreeze activity of the peptides correlates with their helicity and geometrical straightforwardness. Furthermore, molecular dynamics simulation also suggests that the activity of the designed peptides can be explained in terms of the structural rigidity/flexibility, i.e., the most active peptide demonstrates higher structural stability, lower flexibility than that of the other peptides with lower activities, and of lower rigidity. This report represents the first detailed report of downsizing a yeast AFP into its peptide fragments with measurable antifreeze activities.
    Matched MeSH terms: Crystallization
  5. Sergeev A, Shilkina N, Motyakin M, Barashkova I, Zaborova V, Kanina K, et al.
    Ultrason Sonochem, 2021 Oct;78:105751.
    PMID: 34534797 DOI: 10.1016/j.ultsonch.2021.105751
    Methods of NMR relaxation and differential scanning calorimetry (DSC) were used to study the crystallization of anhydrous milk fat (AMF) obtained from milk and subjected to ultrasonic (US) processing. Amongst the changes in the crystallization nature under the influence of ultrasound are the decrease in the crystallization temperature and the increase in the melting enthalpy of the anhydrous milk fat samples. The increase is ∼30% at 20 min of isothermal crystallization and is presumably explained by the additional formation of β'-form crystals from the melt. The parameters of the Avrami equation applied to the description of experimental data show an increase in the crystallization rate in samples with ultrasonic treatment and a change in the dimension of crystallization with a change in melting temperature.
    Matched MeSH terms: Crystallization
  6. Saw KG, Tneh SS, Tan GL, Yam FK, Ng SS, Hassan Z
    PLoS One, 2014;9(1):e86544.
    PMID: 24466144 DOI: 10.1371/journal.pone.0086544
    The current-voltage characteristics of Ni contacts with the surfaces of ZnO thin films as well as single crystal (0001) ZnO substrate are investigated. The ZnO thin film shows a conversion from Ohmic to rectifying behavior when annealed at 800°C. Similar findings are also found on the Zn-polar surface of (0001) ZnO. The O-polar surface, however, only shows Ohmic behavior before and after annealing. The rectifying behavior observed on the Zn-polar and ZnO thin film surfaces is associated with the formation of nickel zinc oxide (Ni1-xZnxO, where x = 0.1, 0.2). The current-voltage characteristics suggest that a p-n junction is formed by Ni1-xZnxO (which is believed to be p-type) and ZnO (which is intrinsically n-type). The rectifying behavior for the ZnO thin film as a result of annealing suggests that its surface is Zn-terminated. Current-voltage measurements could possibly be used to determine the surface polarity of ZnO thin films.
    Matched MeSH terms: Crystallization
  7. Saw KG, Aznan NM, Yam FK, Ng SS, Pung SY
    PLoS One, 2015;10(10):e0141180.
    PMID: 26517364 DOI: 10.1371/journal.pone.0141180
    The Burstein-Moss shift and band gap narrowing of sputtered indium-doped zinc oxide (IZO) thin films are investigated as a function of carrier concentrations. The optical band gap shifts below the carrier concentration of 5.61 × 1019 cm-3 are well-described by the Burstein-Moss model. For carrier concentrations higher than 8.71 × 1019 cm-3 the shift decreases, indicating that band gap narrowing mechanisms are increasingly significant and are competing with the Burstein-Moss effect. The incorporation of In causes the resistivity to decrease three orders of magnitude. As the mean-free path of carriers is less than the crystallite size, the resistivity is probably affected by ionized impurities as well as defect scattering mechanisms, but not grain boundary scattering. The c lattice constant as well as film stress is observed to increase in stages with increasing carrier concentration. The asymmetric XPS Zn 2p3/2 peak in the film with the highest carrier concentration of 7.02 × 1020 cm-3 suggests the presence of stacking defects in the ZnO lattice. The Raman peak at 274 cm-1 is attributed to lattice defects introduced by In dopants.
    Matched MeSH terms: Crystallization
  8. Saengnipanthkul S, Waikakul S, Rojanasthien S, Totemchokchyakarn K, Srinkapaibulaya A, Cheh Chin T, et al.
    Int J Rheum Dis, 2019 Mar;22(3):376-385.
    PMID: 28332780 DOI: 10.1111/1756-185X.13068
    Symptomatic slow-acting drugs for osteoarthritis (SYSADOAs) are recommended for the medium- to long-term management of knee osteoarthritis (OA) due to their abilities to control pain, improve function and delay joint structural changes. Among SYSADOAs, evidence is greatest for the patented crystalline glucosamine sulfate (pCGS) formulation (Mylan). Glucosamine is widely available as glucosamine sulfate (GS) and glucosamine hydrochloride (GH) preparations that vary substantially in molecular form, pharmaceutical formulation and dose regimen. Only pCGS is given as a highly bioavailable once-daily dose (1500 mg), which consistently delivers the plasma levels of around 10 μmol/L required to inhibit interleukin-1-induced expression of genes involved in the pathophysiology of joint inflammation and tissue destruction. Careful consideration of the evidence base reveals that only pCGS reliably provides a moderate effect size on pain that is higher than paracetamol and equivalent to non-steroidal anti-inflammatory drugs (NSAIDs), while non-crystalline GS and GH fail to reach statistical significance for pain reduction. Chronic administration of pCGS has disease-modifying effects, with a reduction in need for total joint replacement lasting for 5 years after treatment cessation. Pharmacoeconomic studies of pCGS demonstrate long-term reduction in additional pain analgesia and NSAIDs, with a 50% reduction in costs of other OA medication and healthcare consultations. Consequently, pCGS is the logical choice, with demonstrated medium-term control of pain and lasting impact on disease progression. Physician and patient education on the differentiation of pCGS from other glucosamine formulations will help to improve treatment selection, increase treatment adherence, and optimize clinical benefit in OA.
    Matched MeSH terms: Crystallization
  9. Saadi S, Ariffin AA, Ghazali HM, Miskandar MS, Boo HC, Abdulkarim SM
    Food Chem, 2012 May 1;132(1):603-12.
    PMID: 26434338 DOI: 10.1016/j.foodchem.2011.10.095
    The main goal of the present work was to assess the mechanism of crystallisation, more precisely the dominant component responsible for primary crystal formations and fat agglomerations. Therefore, DSC results exhibited significant effect on temperature transition; peak sharpness and enthalpy at palm stearin (PS) levels more than 40wt.%. HPLC data demonstrated slight reduction in the content of POO/OPO at PS levels less than 40wt.%, while the excessive addition of PS more than 40wt.% increased significantly PPO/POP content. The pNMR results showed significant drop in SFC for blends containing PS less than 40wt.%, resulting in low SFC less than 15% at body temperature (37°C). Moreover, the values of viscosity (η) and shear stress (τ) at PS levels over 40wt.% expressed excellent internal friction of the admixtures. All the data reported indicate that PPO/POP was the major component of primary nucleus developed. In part, the levels of PS should be less than 40wt.%, if these blends are designed to be used for margarine production.
    Matched MeSH terms: Crystallization/methods*
  10. Saadi S, Ghazali HM, Saari N, Abdulkarim SM
    Biophys Chem, 2021 06;273:106565.
    PMID: 33780688 DOI: 10.1016/j.bpc.2021.106565
    Therapeutic peptides derived proteins with alpha-reconformation states like antibody shape have shown potential effects in combating terrible diseases linked with earlier signs of angiogensis, mutagenesis and transgenesis. Alpha reconformation in material design refers to the folding of the peptide chains and their transitions under reversible chemical bonds of disulfide chemical bridges and further non-covalence lesions. Thus, the rational design of signal peptides into alpha-helix is intended in increasing the defending effects of peptides into cores like adjuvant antibiotic and/or vaccines. Thereby, the signal peptides are able in displaying multiple eradicating regions by changing crystal-depositions and deviation angles. These types of molecular structures could have multiple advantages in tracing disease syndromes and impurities by increasing the host defense against the fates of pathogens and viruses, eventually leading to the loss in signaling by increasing peptide susceptibility levels to folding and unfolding and therefore, formation of transgenic peptide models. Alpha reconformation peptides is aimed in triggering as well as other regulatory functions such as remodulating metabolic chain disorders of lipolysis and glucolysis by increasing the insulin and leptin resistance for best lipid storages and lipoprotein density distributions.
    Matched MeSH terms: Crystallization
  11. Saadi S, Saari N, Abdulkarim MS, Ghazali HM, Anwar F
    J Control Release, 2018 03 28;274:93-101.
    PMID: 29031897 DOI: 10.1016/j.jconrel.2017.10.011
    Cell impurities are an emerging nucleating molecular barriers having the capability in disordering the metabolic chain reactions of proteolysis, glycolysis and lipolysis. Their massive effects induced by copolymer crystal growth in compaction with metal and mineral transients are extended as well as in damaging DNA and mRNA structure motif and other molecular assembly e.g. histones structure unites. Their polycrystalline packing modes, polydispersity and their tendency to surface and interface adhesion prompted us in structuring scaffold biomaterials enriched with biopeptides, layered by phospho-glycerides ester-forms. The interface tension of the formed map is flexible and dependent to the surface exposure and its collapse modes to the surrounding molecular ligands. Thus, the attempts in increasing surface exposure e.g. the viscoelastic of structured lipopeptides and types of formed network structures interplays an extra- conjugating biomolecules having a least cytotoxicity effects to cells constituents. Disulfides molecules are selected to be the key regulatory element in rejoining both lipidic and proteic moieties by disordering atoms status via chemical ionization using organic catalyst. The insertion of methionine based peptidic chain at the lateral surfaces of scaffold biomaterials enhances the electron-meta-static motions by raising a molecular disordering status at distinct regions of the map e.g. epimerization into a nonpolar side that helps the chemical conjunction of disulfide groups with the esterified phosphoglycerides mono-layers. These effects in turn are accomplished by the formation of meso-sphere nonpolar- vesicles. The oxidation of disulfide group would alter the ordering of initial molecules by raising a newly molecular disorders to the map with high polarity to surface regions. In the same time indicates a continuation in the crystallization growth factor via a low chemical lesions between the impurities and a supersaturation in the intra-atomic distances with maximum cross linking to the deformed ligand with scaffold biomaterials.
    Matched MeSH terms: Crystallization
  12. Saadah LM, Deiab GIA, Al-Balas Q, Basheti IA
    Molecules, 2020 Nov 28;25(23).
    PMID: 33260592 DOI: 10.3390/molecules25235605
    AIMS: Angiotensin-converting enzyme 2 (ACE2) plays an important role in the entry of coronaviruses into host cells. The current paper described how carnosine, a naturally occurring supplement, can be an effective drug candidate for coronavirus disease (COVID-19) on the basis of molecular docking and modeling to host ACE2 cocrystallized with nCoV spike protein.

    METHODS: First, the starting point was ACE2 inhibitors and their structure-activity relationship (SAR). Next, chemical similarity (or diversity) and PubMed searches made it possible to repurpose and assess approved or experimental drugs for COVID-19. Parallel, at all stages, the authors performed bioactivity scoring to assess potential repurposed inhibitors at ACE2. Finally, investigators performed molecular docking and modeling of the identified drug candidate to host ACE2 with nCoV spike protein.

    RESULTS: Carnosine emerged as the best-known drug candidate to match ACE2 inhibitor structure. Preliminary docking was more optimal to ACE2 than the known typical angiotensin-converting enzyme 1 (ACE1) inhibitor (enalapril) and quite comparable to known or presumed ACE2 inhibitors. Viral spike protein elements binding to ACE2 were retained in the best carnosine pose in SwissDock at 1.75 Angstroms. Out of the three main areas of attachment expected to the protein-protein structure, carnosine bound with higher affinity to two compared to the known ACE2 active site. LibDock score was 92.40 for site 3, 90.88 for site 1, and inside the active site 85.49.

    CONCLUSION: Carnosine has promising inhibitory interactions with host ACE2 and nCoV spike protein and hence could offer a potential mitigating effect against the current COVID-19 pandemic.

    Matched MeSH terms: Crystallization
  13. Rosmi MS, Yusop MZ, Kalita G, Yaakob Y, Takahashi C, Tanemura M
    Sci Rep, 2014;4:7563.
    PMID: 25523645 DOI: 10.1038/srep07563
    Control synthesis of high quality large-area graphene on transition metals (TMs) by chemical vapor deposition (CVD) is the most fascinating approach for practical device applications. Interaction of carbon atoms and TMs is quite critical to obtain graphene with precise layer number, crystal size and structure. Here, we reveal a solid phase reaction process to achieve Cu assisted graphene growth in nanoscale by in-situ transmission electron microscope (TEM). Significant structural transformation of amorphous carbon nanofiber (CNF) coated with Cu is observed with an applied potential in a two probe system. The coated Cu particle recrystallize and agglomerate toward the cathode with applied potential due to joule heating and large thermal gradient. Consequently, the amorphous carbon start crystallizing and forming sp(2) hybridized carbon to form graphene sheet from the tip of Cu surface. We observed structural deformation and breaking of the graphene nanoribbon with a higher applied potential, attributing to saturated current flow and induced Joule heating. The observed graphene formation in nanoscale by the in-situ TEM process can be significant to understand carbon atoms and Cu interaction.
    Matched MeSH terms: Crystallization
  14. Rebecca OP, Boyce AN, Somasundram C
    Molecules, 2012 Apr 17;17(4):4583-94.
    PMID: 22510607 DOI: 10.3390/molecules17044583
    Crystals isolated from Hylocereus polyrhizus were analyzed using four different approaches--X-ray Crystallography, High Performance Liquid Chromatography (HPLC), Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) and Nuclear Magnetic Resonance (NMR) and identified as myo-inositol. The X-ray crystallography analysis showed that the unit-cell parameters were: a = 6.6226 (3) Å, b = 12.0462 (5) Å, c = 18.8942 (8) Å, α = 90.00, β = 93.98, δ = 90.00. The purity of the crystals were checked using HPLC, whereupon a clean single peak was obtained at 4.8 min with a peak area of 41232 μV*s. The LC-MS/MS technique, which is highly sensitive and selective, was used to provide a comparison of the isolated crystals with a myo-inositol standard where the results gave an identical match for both precursor and product ions. NMR was employed to confirm the molecular structure and conformation of the crystals, and the results were in agreement with the earlier results in this study. The discovery of myo-inositol crystals in substantial amount in H. polyrhizus has thus far not been reported and this is an important finding which will increase the marketability and importance of H. polyrhizus as a crop with a wide array of health properties.
    Matched MeSH terms: Crystallization
  15. Razak RA, Abdullah MM, Hussin K, Ismail KN, Hardjito D, Yahya Z
    Int J Mol Sci, 2015;16(5):11629-47.
    PMID: 26006238 DOI: 10.3390/ijms160511629
    This paper presents the mechanical function and characterization of an artificial lightweight geopolymer aggregate (ALGA) using LUSI (Sidoarjo mud) and alkaline activator as source materials. LUSI stands for LU-Lumpur and SI-Sidoarjo, meaning mud from Sidoarjo which erupted near the Banjarpanji-1 exploration well in Sidoarjo, East Java, Indonesia on 27 May 2006. The effect of NaOH molarity, LUSI mud/Alkaline activator (LM/AA) ratio, and Na2SiO3/NaOH ratio to the ALGA are investigated at a sintering temperature of 950 °C. The results show that the optimum NaOH molarity found in this study is 12 M due to the highest strength (lowest AIV value) of 15.79% with lower water absorption and specific gravity. The optimum LUSI mud/Alkaline activator (LM/AA) ratio of 1.7 and the Na2SiO3/NaOH ratio of 0.4 gives the highest strength with AIV value of 15.42% with specific gravity of 1.10 g/cm3 and water absorption of 4.7%. The major synthesized crystalline phases were identified as sodalite, quartz and albite. Scanning Electron Microscope (SEM) image showed more complete geopolymer matrix which contributes to highest strength of ALGA produced.
    Matched MeSH terms: Crystallization
  16. Razak Mohd Ali Lee, Khairul Anwar Mohamad, Katsuyoshi, Hamasaki
    MyJurnal
    We put attention on Intrinsic Josephson Junction (IJJ) to study the fundamental physic for device applications. Convenient self-flux method was used to grow BSCCO single crystals. We investigated the lid effect to examine the single crystal growth of high TC (Critical Temperature). We found that for the crystal growth with no lid, two stage transitions of TC ≅ 61 K and 77 K were observed. While for the crystal growth with lid, the BSCCO has TC ≅ 80K, ΔTC = 10K and approximately average size5x2mm 2 . When we increased weight of lid, the single crystal have increased to TC =80K, ΔTC = 4K and the typical size was ≅7x3mm 2 . TC and the crystal growth show a tendency to increase by the effect of the lid. From observed quasi-particle characteristics, c-axis direction changed from semiconductor to intrinsic Josephson characteristic with decreasing temperature.
    Matched MeSH terms: Crystallization
  17. Ramli MR, Siew WL, Cheah KY
    J Food Sci, 2008 Apr;73(3):C140-5.
    PMID: 18387090 DOI: 10.1111/j.1750-3841.2007.00657.x
    High-oleic palm oil (HOPO) with an oleic acid content of 59.0% and an iodine value (IV) of 78.2 was crystallized in a 200-kg De Smet crystallizer with a predetermined cooling program and appropriate agitation. The slurry was then fractionated by means of dry fractionation at 4, 8, 10, 12, and 15 degrees C. The oil and the fractionated products were subjected to physical and chemical analyses, including fatty acid composition, triacylglycerol and diacylglycerol composition, solid fat content, cloud point, slip melting point, and cold stability test. Fractionation at 15 degrees C resulted in the highest olein yield but with minimal oleic acid content. Due to the enhanced unsaturation of the oil, fractionation at relatively lower crystallization temperature showed a considerable effect on fatty acid composition as well as triacylglycerol and diacylglycerol composition of liquid fractions compared to higher crystallization temperature. The olein and stearin fractionated at 4 degrees C had the best cold stability at 0 degrees C and sharper melting profile, respectively.
    Matched MeSH terms: Crystallization
  18. Ramesh S, Yaghoubi A, Lee KY, Chin KM, Purbolaksono J, Hamdi M, et al.
    J Mech Behav Biomed Mater, 2013 Sep;25:63-9.
    PMID: 23726923 DOI: 10.1016/j.jmbbm.2013.05.008
    Forsterite (Mg2SiO4) because of its exceptionally high fracture toughness which is close to that of cortical bones has been nominated as a possible successor to calcium phosphate bioceramics. Recent in vitro studies also suggest that forsterite possesses good bioactivity and promotes osteoblast proliferation as well as adhesion. However studies on preparation and sinterability of nanocrystalline forsterite remain scarce. In this work, we use a solid-state reaction with magnesium oxide (MgO) and talc (Mg3Si4(OH)2) as the starting precursors to synthesize forsterite. A systematic investigation was carried out to elucidate the effect of preparatory procedures including heat treatment, mixing methods and sintering temperature on development of microstructures as well as the mechanical properties of the sintered forsterite body.
    Matched MeSH terms: Crystallization/methods
  19. Ramesh S, Tan CY, Aw KL, Yeo WH, Hamdi M, Sopyan I, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:89-90.
    PMID: 19024998
    The sintering behaviour of a commercial HA and synthesized HA was investigated over the temperature range of 700 degrees C to 1400 degrees C in terms of phase stability, bulk density, Young's modulus and Vickers hardness. In the present research, a wet chemical precipitation reaction was successfully employed to synthesize a submicron, highly crystalline, high purity and single phase stoichiometric HA powder that is highly sinteractive particularly at low temperature regimes below 1100 degrees C. It has been revealed that the sinterability of the synthesized HA was significantly greater than that of the commercial HA. The temperature for the onset of sintering and the temperature required to achieve densities above 98% of theoretical value were approximately 150 degrees C lower for the synthesized HA than the equivalent commercial HA. Nevertheless, decomposition of HA phase upon sintering was not observed in the present work for both powders.
    Matched MeSH terms: Crystallization
  20. Ramesh M, Narasimhan M, Krishnan R, Aruna RM, Kuruvilla S
    J Oral Maxillofac Pathol, 2017 Sep-Dec;21(3):345-350.
    PMID: 29391706 DOI: 10.4103/jomfp.JOMFP_247_16
    Background: Fluoride is needed for the normal development of bone and teeth; in high levels, it affects developing teeth and bone. Dental fluorosis (DF) is caused by ingestion of excess fluoride mainly through drinking water.

    Aim: The present study aims to observe and understand the histological changes of fluorosed teeth under light microscope (LM).

    Materials and Methods: Teeth which were indicated for extractions for orthodontic or periodontal problems were selected. Thirty extracted teeth were selected with varying degrees of DF based on modified Dean's fluorosis index. Ground sections of these teeth were prepared and the sections were studied under binocular LM. Photomicrographs were taken under high power objective using 15 megapixels Nikon camera.

    Results and Conclusion: Qualitative histologic changes in different grades of fluorosed teeth were evaluated in enamel, dentin, cementum and between their junctions. Fluoride interacts with enamel in both mineral phases and organic macromolecules by strong ionic and hydrogen bonds resulting in incomplete crystal growth at prism peripheries. This presents as hypomineralization of enamel and dentin, increased interglobular dentin, increased secondary curvatures and changes in cementum such as diffuse cementodentinal junction and increased thickness of Tomes' granular layer. Changes in the structure of the teeth with Dean's index below 2 and teeth with Dean's index of 2 and above were compared using Chi-square test. P value was found to be highly significant being 0.00047. Many of the features of dental fluorosis seen in the present study under light microscope are comparable to those results studied under specialized microscopes.
    Matched MeSH terms: Crystallization
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links