Displaying publications 41 - 60 of 135 in total

Abstract:
Sort:
  1. Xu A, Lin Y, Sheng H, Cheng J, Mei H, Ting TH, et al.
    Pediatr Diabetes, 2020 05;21(3):431-440.
    PMID: 31957151 DOI: 10.1111/pedi.12985
    OBJECTIVE: The purpose of this study was to investigate the molecular basis of maturity-onset diabetes of the young (MODY) by whole-exome sequencing (WES) and estimate the frequency and describe the clinical characteristics of MODY in southern China.

    METHODS: Genetic analysis was performed in 42 patients with MODY aged 1 month to 18 years among a cohort of 759 patients with diabetes, identified with the following four clinical criteria: age of diagnosis ≤18 years; negative pancreatic autoantibodies; family history of diabetes; or persistently detectable C-peptide; or diabetes associated with extrapancreatic features. GCK gene mutations were first screened by Sanger sequencing. GCK mutation-negative patients were further analyzed by WES.

    RESULTS: Mutations were identified in 24 patients: 20 mutations in GCK, 1 in HNF4A, 1 in INS, 1 in ABCC8, and a 17q12 microdeletion. Four previously unpublished novel GCK mutations: c.1108G>C in exon 9, and c.1339C>T, c.1288_1290delCTG, and c.1340_1343delGGGGinsCTGGTCT in exon 10 were detected. WES identified a novel missense mutation c.311A>G in exon 3 in the INS gene, and copy number variation analysis detected a 1.4 Mb microdeletion in the long arm of the chromosome 17q12 region. Compared with mutation-negative subjects, the mutation-positive subjects had lower hemoglobin A1c and initial blood glucose levels.

    CONCLUSIONS: Most MODY cases in this study were due to GCK mutations, which is in contrast to previous reports in Chinese patients. Diabetes associated with extrapancreatic features should be a clinical criterion for MODY genetic analysis. Mutational analysis by WES provided a precise diagnosis of MODY subtypes. Moreover, WES can be useful for detecting large deletions in coding regions in addition to point mutations.

    Matched MeSH terms: DNA Mutational Analysis
  2. Li X, Xu A, Sheng H, Ting TH, Mao X, Huang X, et al.
    Pediatr Diabetes, 2018 03;19(2):251-258.
    PMID: 28791793 DOI: 10.1111/pedi.12560
    BACKGROUND: Sulfonylurea therapy can improve glycemic control and ameliorate neurodevelopmental outcomes in patients suffering from neonatal diabetes mellitus (NDM) with KCNJ11 or ABCC8 mutations. As genetic testing results are often delayed, it remains controversial whether sulfonylurea treatment should be attempted immediately at diagnosis or doctors should await genetic confirmation.

    OBJECTIVE: This study aimed to investigate the effectiveness and safety of sulfonylurea therapy in Chinese NDM patients during infancy before genetic testing results were available.

    METHODS: The medical records of NDM patients with their follow-up details were reviewed and molecular genetic analysis was performed. Sulfonylurea transfer regimens were applied in patients diagnosed after May 2010, and glycemic status and side effects were evaluated in each patient.

    RESULTS: There were 23 NDM patients from 22 unrelated families, 10 had KCNJ11 mutations, 3 harbored ABCC8 mutations, 1 had INS mutations, 4 had chromosome 6q24 abnormalities, 1 had a deletion at chromosome 1p36.23p36.12, and 4 had no genetic abnormality identified. Sixteen NDM infants were treated with glyburide at an average age of 49 days (range 14-120 days) before genetic confirmation. A total of 11 of 16 (69%) were able to successfully switch to glyburide with a more stable glucose profile. The responsive glyburide dose was 0.51 ± 0.16 mg/kg/d (0.3-0.8 mg/kg/d), while the maintenance dose was 0.30 ± 0.07 mg/kg/d (0.2-0.4 mg/kg/d). No serious adverse events were reported.

    CONCLUSIONS: Molecular genetic diagnosis is recommended in all patients with NDM. However, if genetic testing results are delayed, sulfonylurea therapy should be considered before such results are received, even in infants with newly diagnosed NDM.

    Matched MeSH terms: DNA Mutational Analysis
  3. Tai YC, Tan JA, Peh SC
    Pathol. Int., 2004 Nov;54(11):811-8.
    PMID: 15533223
    p53 gene mutation is not a frequent event in the tumorigenesis of lymphomas and the expression of p53 protein is independent of p53 gene mutations. The present study aimed to investigate mutations in the p53 gene in a series of extranodal B-cell lymphomas, and its association with p53 protein expression. A total of 52 cases were graded histologically into Grade 1, Grade 2 and Grade 3 tumors and p53 protein expression was detected using immunohistochemistry. Mutations in the p53 gene were analyzed using polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) and mobility shifts were confirmed by direct sequencing. The tumors comprised 26 (50%) Grade 1, 9 (17%) Grade 2 and 15 (29%) Grade 3. A high proportion of Grade 2 (25%) tumors expressed p53 protein (P = 0.051) and carried p53 gene mutation (33%) (P = 0.218). However, p53 protein expression was not associated with p53 gene mutations (P = 0.057). Transversion mutations (88%) were more frequently detected than transition mutations (12%). The present study revealed that p53 gene mutations and p53 protein expression occurred in higher frequencies in Grade 2 tumors, which may be of pathogenetic importance. The high frequency of transversion mutations may reflect the influence of an etiological agent in the tumorigenesis of mucosa-associated lymphoid tissue (MALT lymphoma).
    Matched MeSH terms: DNA Mutational Analysis
  4. Tan LP, Ng BK, Balraj P, Lim PK, Peh SC
    Pathology, 2007 Apr;39(2):228-34.
    PMID: 17454753
    BACKGROUND AND AIMS: Colorectal cancers of different subtypes involve different pathogenic pathways like the Wnt and the mutator pathways. In this study, we screened 73 colorectal cancer cases from a multi-racial group for genetic and expression profile defects with the aim of correlating these with patients' clinicopathological characteristics.
    METHODS: Mutation screening of the entire coding region of APC and exon 3 of CTNNB1, loss of heterozygosity (LOH) of APC, and microsatellite instability (MSI) status were assessed for 44 patients with available paired frozen normal and tumour tissues. In addition, 29 cases with available paraffin embedded tumour blocks were screened for mutation in exon 3 of CTNNB1, the APC mutation cluster region (codon 1286-1513), and hMLH1, hMSH2, hMSH6 protein expressions by immunohistochemistry method.
    RESULTS: In our study, 15/73 cases showed APC mutations (20.5%), 1/73 cases had CTNNB1 mutation (1.4%), 5/32 cases had APC LOH (15.6%), and 16/70 (22.9%) cases revealed at least some form of mismatch repair (MMR) defect. Tumour grade (poor differentiation) was found to correlate significantly with right-sided tumour and mucinous histology (p = 0.01879 and 0.00320, respectively). Patients of younger age (below 45 years) more often had tumours of mucinous histology (p = 0.00014), while patients of older age (above 75 years) more often had tumours on the right side of the colon (p = 0.02448). Tumours of the mucinous histology subtype often had MMR defects (p = 0.02686). There was no difference in the occurrence of APC and CTNNB1 mutations and MMR defects found within our multi-racial colorectal cancer patient cohort.
    CONCLUSION: Our findings support the notion that racial factor may not be related to the occurrence of MMR defects and APC and CTNNB1 mutations in our multi-racial patient cohort.
    Matched MeSH terms: DNA Mutational Analysis
  5. Tan JA, Chin PS, Wong YC, Tan KL, Chan LL, George E
    Pathology, 2006 Oct;38(5):437-41.
    PMID: 17008283
    In Malaysia, about 4.5% of the Malay and Chinese populations are heterozygous carriers of beta-thalassaemia. The initial identification of rare beta-globin gene mutations by genomic sequencing will allow the development of simpler and cost-effective PCR-based techniques to complement the existing amplification refractory mutation system (ARMS) and gap-PCR used for the identification of beta-thalassaemia mutations.
    Matched MeSH terms: DNA Mutational Analysis
  6. Hoe SL, Lee ES, Khoo AS, Peh SC
    Pathology, 2009;41(6):561-5.
    PMID: 19900105
    AIMS: Nasopharyngeal carcinoma (NPC) is a common malignancy among men in Malaysia. To determine the role of p53 in NPC, we screened for p53 mutations and evaluated the protein expression levels in samples from local patients with NPC.

    METHODS: Fifty-three formalin-fixed, paraffin-embedded nasopharyngeal carcinoma tissue blocks were chosen for this study. The presence of Epstein-Barr virus (EBV) was determined by in situ hybridisation using an EBER probe. p53 protein expression was detected using immunohistochemistry. Simultaneously, amplifications by PCR were performed for p53 exons 5 to 8, followed by mutation screening via single strand conformation polymorphism (SSCP). Sequencing of all the four exons was performed in five samples with mobility shift. To rule out false negative results by SSCP, 13 samples with p53 overexpression and five samples with low p53 expression were randomly selected and sequenced.

    RESULTS: There was no mutation found in exons 5 to 8 in all the samples despite 46 (87%) of them having high p53 levels. EBV was detected in 51 (96%) out of 53 samples. There was no statistically significant association between p53 expression level and EBV presence.

    CONCLUSIONS: High-intensity staining for p53 by immunohistochemistry was common in our series of NPC tissue samples but was not associated with 'hot spot' mutations of exons 5-8 of the gene. We did not find a significant relationship between the expression level of p53 and presence of EBV. Our study confirms that mutation of the DNA-binding domain of p53 is rare in NPC.

    Matched MeSH terms: DNA Mutational Analysis
  7. Chua KH, Puah SM, Chew CH, Wong CH, Goh KL
    Pancreatology, 2011;11(4):441-4.
    PMID: 21952138 DOI: 10.1159/000330943
    Hereditary pancreatitis (HP) is a very rare form of early-onset chronic pancreatitis, which usually begins in childhood with a variable spectrum of severity of disease. HP is commonly caused by variants/mutations in the PRSS1 gene as reported in many studies. Therefore, in this study, we aimed to investigate the possible association of PRSS1 gene variants/mutations in a Malaysian Chinese family with HP.
    Matched MeSH terms: DNA Mutational Analysis
  8. Yoke-Kqueen C, Ab Mutalib NS, Sidik SM, Learn-Han L, Geok-Chin T
    Oncol Rep, 2012 Mar;27(3):753-63.
    PMID: 22159872 DOI: 10.3892/or.2011.1581
    Non-melanoma skin cancer (NMSC) is classified among the ten most frequent cancers in Malaysia. A common polymorphism at codon 72 of the p53 tumor suppressor gene and its influence on cancer risk has been studied for different types of cancer with mixed and inconsistent results with limited published data on the Malaysian population so far. In the present study, the frequency of p53 codon 72 polymorphism in 60 patients with NMSC was investigated from archival formalin-fixed paraffin-embedded (FFPE) tissue obtained from Hospital Universiti Kebangsaan Malaysia (HUKM). Additionally, random amplified polymorhic DNA -polymorphic chain reaction (RAPD-PCR) was employed for preliminary biomarker development. NMSC FFPE samples (70%) possess Arg/Arg, 20% with Pro/Pro and 10% with Arg/Pro. In total, there was no significant difference in the p53 codon 72 genotypes between histological types of NMSC, gender, race, tumor location and age group. However, there was an apparent age-associated increase in the Arg/Arg genotype but did not reach statistical significance (P=0.235). NMSC types and demographic characteristics did not influence genotype distribution. On the other hand, BCC and SCC distributions are influenced by age group, race and tumor location.
    Matched MeSH terms: DNA Mutational Analysis
  9. Mohamed Yusoff AA, Mohd Nasir KN, Haris K, Mohd Khair SZN, Abdul Ghani ARI, Idris Z, et al.
    Oncol Lett, 2017 Nov;14(5):5179-5188.
    PMID: 29098023 DOI: 10.3892/ol.2017.6851
    Although the role of nuclear-encoded gene alterations has been well documented in brain tumor development, the involvement of the mitochondrial genome in brain tumorigenesis has not yet been fully elucidated and remains controversial. The present study aimed to identify mutations in the mitochondrial DNA (mtDNA) control region D-loop in patients with brain tumors in Malaysia. A mutation analysis was performed in which DNA was extracted from paired tumor tissue and blood samples obtained from 49 patients with brain tumors. The D-loop region DNA was amplified using the PCR technique, and genetic data from DNA sequencing analyses were compared with the published revised Cambridge sequence to identify somatic mutations. Among the 49 brain tumor tissue samples evaluated, 25 cases (51%) had somatic mutations of the mtDNA D-loop, with a total of 48 mutations. Novel mutations that had not previously been identified in the D-loop region (176 A-deletion, 476 C>A, 566 C>A and 16405 A-deletion) were also classified. No significant associations between the D-loop mutation status and the clinicopathological parameters were observed. To the best of our knowledge, the current study presents the first evidence of alterations in the mtDNA D-loop regions in the brain tumors of Malaysian patients. These results may provide an overview and data regarding the incidence of mitochondrial genome alterations in Malaysian patients with brain tumors. In addition to nuclear genome aberrations, these specific mitochondrial genome alterations may also be considered as potential cancer biomarkers for the diagnosis and staging of brain cancers.
    Matched MeSH terms: DNA Mutational Analysis
  10. Goh KJ, Wong KT, Nishino I, Minami N, Nonaka I
    Neuromuscul Disord, 2005 Mar;15(3):262-4.
    PMID: 15725589
    Oculopharyngeal muscular dystrophy (OPMD) is an autosomal dominant disorder of middle age presenting as progressive dysphagia and eyelid ptosis, due to short expansions of the GCG trinucleotide repeat (from GCG6 to GCG8-13) in the polyadenylate binding-protein nuclear 1 (PABPN1) gene. OPMD is rarely seen in Asians and morphologically and/or genetically confirmed cases have been reported in Japanese kindreds only. We report a 64 year old Chinese-Malaysian woman who presented with progressive dysphagia and bilateral ptosis for about 6 years. Her mother and elder brother (both deceased) were believed to be affected. Muscle histopathology revealed angulated fibres with rimmed vacuoles. Genetic analysis showed repeat expansion in one allele to (GCG)9 while normal in the other (GCG)6. This is the first non-Japanese Asian family with genetically confirmed OPMD.
    Matched MeSH terms: DNA Mutational Analysis
  11. Abdullah JM, Ahmad F, Ahmad KA, Ghazali MM, Jaafar H, Ideris A, et al.
    Neurol Res, 2007 Apr;29(3):239-42.
    PMID: 17509221
    Brain tumorigenesis is a complex process involving multiple genetic alterations. Cyclin D1 and BAX genes are two of the most important regulators in controlling the normal proliferation and apoptosis of cells, respectively. In this study, we analysed the possibilities of involvement of cyclin D1 and BAX genes in the gliomagenesis.
    Matched MeSH terms: DNA Mutational Analysis/methods
  12. Zainuddin N, Jaafart H, Isa MN, Abdullah JM
    Neurol Res, 2004 Jan;26(1):88-92.
    PMID: 14977064
    Recent advances in neuro-oncology have revealed different pathways of molecular oncogenesis in malignant gliomas including loss of heterozygosity on chromosomal regions harboring tumor suppressor genes. In the present study, we performed polymerase chain reaction-loss of heterozygosity (PCR-LOH) analysis using microsatellite markers to identify loss of heterozygosity on chromosomes 10q, 9p, 17p and 13q in the Malays with malignant gliomas. Of 12 cases with allelic losses, seven (58.3%) cases showed LOH on chromosome 10q, three (25.0%) cases showed LOH on chromosome 9p, four (33.3%) cases showed LOH on chromosome 17p and two (16.7%) cases showed LOH on chromosome 13q. The cases include five (41.7%) cases of glioblastoma multiforme, three (25.0%) cases of anaplastic astrocytoma, three (25.0%) cases of anaplastic oligodendroglioma and one (8.3%) case of anaplastic ependymoma. Four cases showed loss of heterozygosity on more than one locus. Our findings showed that loss of heterozygosity on specific chromosomal regions contributes to the molecular pathway of glioma progression in Malay population. In addition, these data provide useful evidence of molecular genetic alterations of malignant glioma in South East Asian patients, particularly in the East Coast of Malaysia.
    Matched MeSH terms: DNA Mutational Analysis
  13. Kotlarz D, Marquardt B, Barøy T, Lee WS, Konnikova L, Hollizeck S, et al.
    Nat Genet, 2018 Mar;50(3):344-348.
    PMID: 29483653 DOI: 10.1038/s41588-018-0063-6
    Transforming growth factor (TGF)-β1 (encoded by TGFB1) is the prototypic member of the TGF-β family of 33 proteins that orchestrate embryogenesis, development and tissue homeostasis1,2. Following its discovery 3 , enormous interest and numerous controversies have emerged about the role of TGF-β in coordinating the balance of pro- and anti-oncogenic properties4,5, pro- and anti-inflammatory effects 6 , or pro- and anti-fibrinogenic characteristics 7 . Here we describe three individuals from two pedigrees with biallelic loss-of-function mutations in the TGFB1 gene who presented with severe infantile inflammatory bowel disease (IBD) and central nervous system (CNS) disease associated with epilepsy, brain atrophy and posterior leukoencephalopathy. The proteins encoded by the mutated TGFB1 alleles were characterized by impaired secretion, function or stability of the TGF-β1-LAP complex, which is suggestive of perturbed bioavailability of TGF-β1. Our study shows that TGF-β1 has a critical and nonredundant role in the development and homeostasis of intestinal immunity and the CNS in humans.
    Matched MeSH terms: DNA Mutational Analysis
  14. Mohd Khalid MK, Yakob Y, Md Yasin R, Wee Teik K, Siew CG, Rahmat J, et al.
    Mol Vis, 2015;21:1185-90.
    PMID: 26539030
    The availability of molecular genetic testing for retinoblastoma (RB) in Malaysia has enabled patients with a heritable predisposition to the disease to be identified, which thus improves the clinical management of these patients and their families. In this paper, we presented our strategy for performing molecular genetic testing of the RB1 gene and the findings from our first 2 years of starting this service.
    Matched MeSH terms: DNA Mutational Analysis
  15. Wang B, Ngoi S, Wang J, Chong SS, Lee CG
    Mol. Pharmacol., 2006 Jul;70(1):267-76.
    PMID: 16608921
    The MDR1 multidrug transporter represents one of the better characterized drug transporters that play an important role in protecting the body against xenobiotic insults. Single nucleotide polymorphisms (SNPs) and SNP haplotypes within this gene have been variously associated with differences in MDR1 expression/function, drug response as well as disease susceptibility. Nonetheless, the effect of polymorphisms at the MDR1 promoter region on its promoter activity remains less characterized. Through the examination of approximately 1.5 kilobases of MDR1 promoter region from five populations, including the Chinese, Malays, Indians, European Americans, and African Americans, we identified eight low-frequency SNPs, of which only two were polymorphic in at least four of the five populations examined. The other SNPs are mainly population-specific, the majority of which occur only in the African-American population. Recapitulation of the various combinations of SNP haplotypes in vitro in promoter-reporter assays revealed a few notable trends. The African and European American-specific haplotypes tended to result in enhanced MDR1 promoter activity only in the human embryonic kidney (HEK) 293 cell line. Haplotype GCTAACC, which occurs at variable frequencies in all the populations examined, with Asians having much lower frequencies (<2%) compared with the European Americans/African Americans (>4%), affected MDR1 promoter activity differently in different cell lines. Compared with the commonest haplotype, GCTA-ACC haplotype resulted in a significant decrease in MDR1 promoter activity in HeLa cells (P < 0.05) but a significant increase in the same promoter activity in HEK293 cells (P < 0.05). These results suggest that the MDR1 promoter region is largely invariant but that different haplotypes have differential effects on the MDR1 promoter activity in different cell lines.
    Matched MeSH terms: DNA Mutational Analysis
  16. Li G, Tang H, Chen Y, Yin Y, Ogawa S, Liu M, et al.
    Mol Cell Endocrinol, 2018 02 05;461:1-11.
    PMID: 28801227 DOI: 10.1016/j.mce.2017.08.003
    The LHb expression is up-regulated during puberty in female zebrafish. However, the molecular mechanism underlying how LHb expression is regulated during puberty remains largely unknown. In this study, we found that the mRNA expression levels of lhb, fshb and cyp19a1b were up-regulated along with the puberty onset in zebrafish. Among the three nuclear estrogen receptors (nERs), the esr2b is the only type whose expression is significantly up-regulated during puberty onset in the pituitary. However, in situ hybridization results revealed that lhb mRNA was colocalized with esr1 and esr2a but not esr2b. Exposure to estradiol (E2) significantly stimulates LHb expression in both wild-type and kiss1-/-;kiss2-/-;gnrh3-/- triple knockout pubertal zebrafish. Moreover, exposure of cultured pituitary cells to E2 increased the LHb expression, indicating that the estrogenic effect on LHb expression could be acted at the pituitary level. Finally, we cloned and analyzed the promoter of lhb by luciferase assay. Our results indicated that the E2 responsive regions of lhb promoter for ERα and ERβ2 are identical, suggesting that ERα and ERβ2 could bind to the same half ERE region of the promoter of lhb, exhibiting a classical ERE-dependent pathway. In summary, we demonstrate that E2 could directly act on the pituitary level to stimulate LHb transcription during puberty in zebrafish.
    Matched MeSH terms: DNA Mutational Analysis
  17. Prando C, Samarina A, Bustamante J, Boisson-Dupuis S, Cobat A, Picard C, et al.
    Medicine (Baltimore), 2013 Mar;92(2):109-122.
    PMID: 23429356 DOI: 10.1097/MD.0b013e31828a01f9
    Autosomal recessive interleukin (IL)-12 p40 (IL-12p40) deficiency is a rare genetic etiology of mendelian susceptibility to mycobacterial disease (MSMD). We report the genetic, immunologic, and clinical features of 49 patients from 30 kindreds originating from 5 countries (India, Iran, Pakistan, Saudi Arabia, and Tunisia). There are only 9 different mutant alleles of the IL12B gene: 2 small insertions, 3 small deletions, 2 splice site mutations, and 1 large deletion, each causing a frameshift and leading to a premature stop codon, and 1 nonsense mutation. Four of these 9 variants are recurrent, affecting 25 of the 30 reported kindreds, due to founder effects in specific countries. All patients are homozygous and display complete IL-12p40 deficiency. As a result, the patients lack detectable IL-12p70 and IL-12p40 and have low levels of interferon gamma (IFN-γ). The clinical features are characterized by childhood onset of bacille Calmette-Guérin (attenuated Mycobacterium bovis strain) (BCG) and Salmonella infections, with recurrences of salmonellosis (36.4%) more common than recurrences of mycobacterial disease (25%). BCG vaccination led to BCG disease in 40 of the 41 patients vaccinated (97.5%). Multiple mycobacterial infections were rare, observed in only 3 patients, whereas the association of salmonellosis and mycobacteriosis was observed in 9 patients. A few other infections were diagnosed, including chronic mucocutaneous candidiasis (n = 3), nocardiosis (n = 2), and klebsiellosis (n = 1). IL-12p40 deficiency has a high but incomplete clinical penetrance, with 33.3% of genetically affected relatives of index cases showing no symptoms. However, the prognosis is poor, with mortality rates of up to 28.6%. Overall, the clinical phenotype of IL-12p40 deficiency closely resembles that of interleukin 12 receptor β1 (IL-12Rβ1) deficiency. In conclusion, IL-12p40 deficiency is more common than initially thought and should be considered worldwide in patients with MSMD and other intramacrophagic infectious diseases, salmonellosis in particular.
    Matched MeSH terms: DNA Mutational Analysis
  18. Mohd Yusoff, N., Choo, K.E., Ghazali, S., Ibrahim, I., Mohd Hussin, Z.A., Mohd Yunus, et al.
    MyJurnal
    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked red blood cell enzymopathy common in malaria endemic areas. Individuals affected by this disease show a wide variety of clinical signs including neonatal jaundice. In this preliminary report we describe the heterogeneity of G6PD deficient gene in neonatal jaundice in the Malay population in Kelantan. Thirteen G6PD deficient Malay neonates with hyperbilirubinemia were subjected to mutation analysis of the G6PD gene for known candidate mutations. Molecular defects were identified in the 13 patients studied. Though all of these were mis-sense mutations, identified nucleotide changes were heterogeneous. Six patients were found to have a C to T nucleotide change at nucleotide 563 of the G6PD gene (C563T), corresponding to G6PD Mediterranean; three cases had a single nucleotide change at T383C (G6PD Vanua Lava), two cases had G487A (G6PD Mahidol) and two cases had G1376T (G6PD Canton). These findings suggest that there are heterogeneous mutations of the G6PD gene associated with neonatal jaundice in the Malay population in Kelantan.
    Matched MeSH terms: DNA Mutational Analysis
  19. Lau TY, Sylvi M, William T
    Malar J, 2013;12:445.
    PMID: 24321120 DOI: 10.1186/1475-2875-12-445
    The sulphadoxine/pyrimethamine (SDX/PYR) combination had been chosen to treat uncomplicated falciparum malaria in Malaysia for more than 30 years. Non-silent mutations in dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes are responsible for the resistance to pyrimethamine and sulphadoxine, respectively. This study reports the mutational analysis of pfdhfr and pfdhps in single Plasmodium falciparum infection isolates from the interior division of Sabah, Malaysian Borneo.
    Matched MeSH terms: DNA Mutational Analysis
  20. Wu YL, Lee V, Liam CK, Lu S, Park K, Srimuninnimit V, et al.
    Lung Cancer, 2018 12;126:1-8.
    PMID: 30527172 DOI: 10.1016/j.lungcan.2018.10.004
    OBJECTIVE: Patients with advanced non-small-cell lung cancer (NSCLC) with an adenocarcinoma component are recommended to undergo epidermal growth factor receptor (EGFR) mutation testing when being considered for EGFR targeted therapy. We conducted an exploratory analysis to inform the clinical utility of EGFR mutation testing in blood cell-free DNA using the cobas®EGFR Mutation Test v2.

    MATERIALS AND METHODS: Two EGFR mutation tests, a tissue-based assay (cobas® v1) and a tissue- and blood-based assay (cobas® v2) were used to analyze matched biopsy and blood samples (897 paired samples) from three Asian studies of first-line erlotinib with similar intent-to-treat populations. ENSURE was a phase III comparison of erlotinib and gemcitabine/platinum, FASTACT-2 was a phase III study of gemcitabine/platinum plus erlotinib or placebo, and ASPIRATION was a single-arm phase II study of erlotinib. Agreement statistics were evaluated, based on sensitivity and specificity between the two assays in subgroups of patients with increasing tumor burden.

    RESULTS: Patients with discordant EGFR (tissue+/plasma-) mutation status achieved longer progression-free and overall survival than those with concordant (tissue+/plasma+) mutation status. Tumor burden was significantly greater in patients with concordant versus discordant mutations. Pooled analyses of data from the three studies showed a sensitivity of 72.1% (95% confidence interval [CI] 67.8-76.1) and a specificity of 97.9% (95% CI 96.0-99.0) for blood-based testing; sensitivity was greatest in patients with larger baseline tumors.

    CONCLUSIONS: Blood-based EGFR mutation testing demonstrated high specificity and good sensitivity, and offers a convenient and easily accessible diagnostic method to complement tissue-based tests. Patients with a discordant mutation status in plasma and tissue, had improved survival outcomes compared with those with a concordant mutation status, which may be due to their lower tumor burden. These data help to inform the clinical utility of this blood-based assay for the detection of EGFR mutations.

    Matched MeSH terms: DNA Mutational Analysis/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links