Displaying publications 41 - 60 of 143 in total

Abstract:
Sort:
  1. Voon PT, Ng TK, Lee VK, Nesaretnam K
    Eur J Clin Nutr, 2015 Jun;69(6):712-6.
    PMID: 25804278 DOI: 10.1038/ejcn.2015.26
    Effects of high-protein diets that are rich in saturated fats on cell adhesion molecules, thrombogenicity and other nonlipid markers of atherosclerosis in humans have not been firmly established. We aim to investigate the effects of high-protein Malaysian diets prepared separately with virgin olive oil (OO), palm olein (PO) and coconut oil (CO) on cell adhesion molecules, lipid inflammatory mediators and thromobogenicity indices in healthy adults.
    Matched MeSH terms: Diet, High-Fat/adverse effects*; Diet, High-Fat/ethnology
  2. Che HL, Kanthimathi MS, Loganathan R, Yuen KH, Tan AT, Selvaduray KR, et al.
    Eur J Clin Nutr, 2017 01;71(1):107-114.
    PMID: 27759074 DOI: 10.1038/ejcn.2016.200
    BACKGROUND/OBJECTIVES: Evidence shows that tocotrienols potentially reverse various chronic disease progressions caused by the metabolic syndrome. We aimed to investigate the acute effects of a single-dose supplementation of gamma and delta tocotrienols (γδ-T3, 1:4 ratio) compared with those in placebo on the insulinemic, anti-inflammatory and anti-thrombogenic responses in metabolic syndrome subjects.

    SUBJECTS/METHODS: Thirty metabolic syndrome subjects (15 men and 15 women) were recruited to a randomized, double-blinded and crossover study. The subjects were administered a single dose of 200 mg or 400 mg γδ-T3 emulsions or placebo incorporated into a glass of strawberry-flavored milkshake, consumed together with a high-fat muffin. Blood samples were collected at 0, 5, 15, 30, 60, 90, 120, 180, 240, 300 and 360 min after meal intake.

    RESULTS: Plasma vitamin E levels reflected the absorption of γδ-T3 after treatments. Postprandial changes in serum C-peptide, serum insulin, plasma glucose, triacylglycerol, non-esterified fatty acid and adiponectin did not differ between treatments, with women displaying delayed increase in the aforementioned markers. No significant difference between treatments was observed for plasma cytokines (interleukin-1 beta, interleukin-6 and tumor necrosis factor alpha) and thrombogenic markers (plasminogen activator inhibitor type 1 and D-dimer).

    CONCLUSIONS: Supplementation of a single dose of γδ-T3 did not change the insulinemic, anti-inflammatory and anti-thrombogenic responses in metabolic syndrome subjects.

    Matched MeSH terms: Diet, High-Fat/adverse effects; Diet, High-Fat/methods
  3. Karupiah S, Ismail Z
    AAPS PharmSciTech, 2015 Jun;16(3):548-53.
    PMID: 25374344 DOI: 10.1208/s12249-014-0245-1
    Obesity is one of the major public health problems worldwide and it is generally associated with many diseases. Although synthetic drugs are available for the treatment of obesity, herbal remedies may provide safe, natural, and cost-effective alternative to synthetic drugs. One example of such drugs is Melastoma malabathricum var Alba Linn (MM). Although several studies have been reported for the pharmacological activities of MM, there is no report on the anti-obesity effect of MM. The aim of the present study is to evaluate the anti-obesity potential of methanolic extract of MM. The anti-obesity effect of MM on rats fed with a high-fat diet was investigated through determination of the changes in body weight, fat weight, organ weights, and blood biochemicals. The animals in this study were divided into three groups: a normal group with a standard diet (N), a control group fed with high-fat diet (C), and a MM treatment group fed with high-fat (HFD + MM) diet for 8 weeks. There was no significant difference in the amount of food intake between control and HFD + MM treatments. These results also suggest that MM does not induce a dislike for the diet due to its smell or taste. The study shows that MM significantly prevented increases in body weight, cholesterol, LDL, HDL, and total lipids that resulted from the high-fat diet. MM also decreased the epididymal fat (E-fat) and retroperitoneal fat (R-fat) weights and phospholipid concentrations induced by the high-fat diet. On the basis of these findings, it was concluded that MM had anti-obesity effects by suppressing body weight gain and abdominal fat formation.
    Matched MeSH terms: Diet, High-Fat/adverse effects*
  4. Azman KF, Amom Z, Azlan A, Esa NM, Ali RM, Shah ZM, et al.
    J Nat Med, 2012 Apr;66(2):333-42.
    PMID: 21989999 DOI: 10.1007/s11418-011-0597-8
    Obesity and overweight are associated with atherosclerosis, fatty liver, hyperlipemia, diabetes mellitus, and various types of cancer. The global prevalence of overweight and obesity has reached epidemic proportions. Here, we investigated the effect of Tamarindus indica pulp aqueous extract (TIE) in diet-induced obese Sprague-Dawley rats. The animals were divided into five groups and labeled as follows: the normal control (NC) group received normal diet; the positive control (PC) group received high-fat diet; and the TIE 5, 25, and 50 groups, after the induction of obesity via a high-fat diet, received TIE at 5, 25, or 50 mg/kg orally for 10 weeks. It was observed that TIE decreased the levels of plasma total cholesterol, low-density lipoprotein (LDL), and triglyceride, and increased high-density lipoprotein (HDL), with the concomitant reduction of body weight. Moreover, TIE decreased plasma leptin and reduced fatty acid synthase (FAS) activity and enhanced the efficiency of the antioxidant defense system. TIE exhibits antiobesity effects, as indicated by a significant reduction in adipose tissue weights, as well as lowering the degree of hepatic steatosis in the obesity-induced rats. The extract possesses hepatoprotective activity, as it reversed the plasma liver enzymes level elevation prior to the high-fat diet. In conclusion, TIE improved obesity-related parameters in blood, liver, and adipose tissue in a rat model and suppressed obesity induced by a high-fat diet, possibly by regulating lipid metabolism and lowering plasma leptin and FAS levels. A dose-dependant effect of TIE is detected, where TIE at 50 mg/kg showed the most prominent effect, followed by TIE at 25 mg/kg and, subsequently, 5 mg/kg.
    Matched MeSH terms: Diet, High-Fat/adverse effects*
  5. Kuate D, Kengne AP, Biapa CP, Azantsa BG, Abdul Manan Bin Wan Muda W
    Lipids Health Dis, 2015;14:50.
    PMID: 26003803 DOI: 10.1186/s12944-015-0051-0
    Background: Tetrapleura tetraptera, a seasoning and nutritive spice is also used in western African folk medicine in the management of wide variety of diseases including diabetes, inflammation and hypertension. Flavonoids and saponins are some abundant secondary metabolic constituents in the fruits of this plant. This study aimed at evaluating the potential therapeutic action of the polyphenol-rich hydroethanolic extract (HET) of this fruit in experimentally induced obese and type 2 diabetic rats (T2DM) with characteristic metabolic syndrome (MetS).

    Methods: MetS was induced in rats by high-carbohydrate, high-fat diet and administration of low-dose streptozotocin. Then different oral doses of HET (200 and 400 mg/kg) were administered to T2DM rats for 28 days. A standard antidiabetic drug, metformin (300 mg/kg), was used for comparison. The body weight, systolic blood pressure, oxidative stress and metabolic parameters were then assessed to evaluate the effect of HET on MetS.

    Results: HET reduced weight gain, fasting blood glucose and plasma insulin levels as well as homeostasis model assessment of insulin resistance (HOMA-IR) and alleviated obesity and T2DM associated oxidative stress and hypertension in rats. Moreover, a significantly hypolipidemic property and an attenuation of liver injury and tissue steatosis was observed after HET administration. HET further demonstrated its anti-inflammation effect via down regulation of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), C-reactive protein (CRP), leptin and an increase in adiponectin. The HET exhibited dose-dependent effects which were comparable to that of metformin.

    Conclusions: The present study thereby demonstrates the anti-insulin resistance, antilipidemic, anti-obesity, hypotensive and anti-inflammatory properties of HET; hence it has the potential to be further developed for the management of MetS such as obesity, T2DM and hypertension.
    Matched MeSH terms: Diet, High-Fat/adverse effects
  6. Yida Z, Imam MU, Ismail M, Ooi DJ, Sarega N, Azmi NH, et al.
    J Diabetes Res, 2015;2015:760535.
    PMID: 26273674 DOI: 10.1155/2015/760535
    Edible bird's nest (EBN) is used traditionally in many parts of Asia to improve wellbeing, but there are limited studies on its efficacy. We explored the potential use of EBN for prevention of high fat diet- (HFD-) induced insulin resistance in rats. HFD was given to rats with or without simvastatin or EBN for 12 weeks. During the intervention period, weight measurements were recorded weekly. Blood samples were collected at the end of the intervention and oral glucose tolerance test conducted, after which the rats were sacrificed and their liver and adipose tissues collected for further studies. Serum adiponectin, leptin, F2-isoprostane, insulin, and lipid profile were estimated, and homeostatic model assessment of insulin resistance computed. Effects of the different interventions on transcriptional regulation of insulin signaling genes were also evaluated. The results showed that HFD worsened metabolic indices and induced insulin resistance partly through transcriptional regulation of the insulin signaling genes. Additionally, simvastatin was able to prevent hypercholesterolemia but promoted insulin resistance similar to HFD. EBN, on the other hand, prevented the worsening of metabolic indices and transcriptional changes in insulin signaling genes due to HFD. The results suggest that EBN may be used as functional food to prevent insulin resistance.
    Matched MeSH terms: Diet, High-Fat*
  7. Phang SCW, Palanisamy UD, Kadir KA
    J Integr Med, 2019 Mar;17(2):100-106.
    PMID: 30738774 DOI: 10.1016/j.joim.2019.01.008
    OBJECTIVE: A preliminary study showed that geraniin extracted from Nephelium lappaceum L. at 50 mg/kg caused reduction in blood glucose and insulin resistance. The present study serves to further investigate the effects of geraniin at increasing doses between 3.125 and 100 mg/kg in high-fat diet-treated rats.

    METHODS: Geraniin (95% purity) was extracted and purified from rambutan rind. Two groups of male Sprague-Dawley rats were fed with 60% high-fat diet and standard rat chow, respectively, for 12 weeks. High-fat diet-treated rats were then administered geraniin at different doses. Body weight, blood pressure and blood glucose readings were measured. At the end of treatment, blood was collected for analysis of glycated haemoglobin A1c (HbA1c), insulin, advanced glycation end-product (AGE) levels, renin, aldosterone and electrolytes.

    RESULTS: Within the first week of treatment, even the lowest dose of geraniin caused a significant reduction in blood pressure, which was comparable to control diet-treated rats. There were no changes in serum electrolytes, renin or aldosterone. Similarly, there was a significant reduction in serum insulin, insulin resistance and AGE levels at the lowest dose. However, there was no significant decrease in fasting blood glucose or HbA1c. The effects of decreasing insulin, insulin resistance and AGEs were observed only at the lower doses, unlike the results observed for blood pressure reduction.

    CONCLUSION: Geraniin at lower doses improved blood pressure and other metabolic parameters. Secondary metabolites of geraniin, associated with antihypertensive activity, are relatively different to those involved in inhibiting AGE formation and increasing insulin sensitivity. The secondary metabolites of geraniin may be individually responsible for the bioactivities demonstrated.

    Matched MeSH terms: Diet, High-Fat/adverse effects
  8. Othman ZA, Zakaria Z, Suleiman JB, Nna VU, Che Romli A, Wan Ghazali WS, et al.
    Int J Mol Sci, 2021 Apr 19;22(8).
    PMID: 33921777 DOI: 10.3390/ijms22084225
    Obesity and hyperlipidemia are major risk factors for developing vascular diseases. Bee bread (BB) has been reported to exhibit some biological actions, including anti-obesity and anti-hyperlipidemic. This study aims to investigate whether bee bread can ameliorate vascular inflammation and impaired vasorelaxation activity through eNOS/NO/cGMP pathway in obese rats. Forty male Sprague-Dawley rats were randomly divided into four groups (n = 10/group), namely: control (normal group), obese rats (OB group), obese rats treated with bee bread (0.5 g/kg/day, OB/BB group) and obese rats treated with orlistat (10 mg/kg/day, OB/OR group). The latter three groups were given a high-fat diet (HFD) for 6 weeks to induced obesity before being administered with their respective treatments for another 6 weeks. After 12 weeks of the total experimental period, rats in the OB group demonstrated significantly higher Lee obesity index, lipid profile (total cholesterol, triglyceride, low-density lipoprotein), aortic proinflammatory markers (tumor necrosis factor-α, nuclear factor-κβ), aortic structural damage and impairment in vasorelaxation response to acetylcholine (ACh). Bee bread significantly ameliorated the obesity-induced vascular damage manifested by improvements in the lipid profile, aortic inflammatory markers, and the impaired vasorelaxation activity by significantly enhancing nitric oxide release, promoting endothelial nitric oxide synthase (eNOS) and cyclic guanosine monophosphate (cGMP) immunoexpression. These findings suggest that the administration of bee bread ameliorates the impaired vasorelaxation response to ACh by improving eNOS/NO/cGMP-signaling pathway in obese rats, suggesting its vascular therapeutic role.
    Matched MeSH terms: Diet, High-Fat/adverse effects
  9. Zaydi AI, Lew LC, Hor YY, Jaafar MH, Chuah LO, Yap KP, et al.
    Benef Microbes, 2020 Dec 02;11(8):753-766.
    PMID: 33245015 DOI: 10.3920/BM2019.0200
    Aging processes affect the brain in many ways, ranging from cellular to functional levels which lead to cognitive decline and increased oxidative stress. The aim of this study was to investigate the potentials of Lactobacillus plantarum DR7 on brain health including cognitive and memory functions during aging and the impacts of high fat diet during a 12-week period. Male Sprague-Dawley rats were separated into six groups: (1) young animals on normal diet (ND, (2) young animals on a high fat diet (HFD), (3) aged animals on ND, (4) aged animals on HFD, (5) aged animals on HFD and L. plantarum DR7 (109 cfu/day) and (6) aged animals receiving HFD and lovastatin. To induce ageing, all rats in group 3 to 6 were injected sub-cutaneously at 600 mg/kg/day of D-galactose daily. The administration of DR7 has reduced anxiety accompanied by enhanced memory during behavioural assessments in aged-HFD rats (P<0.05). Hippocampal concentration of all three pro-inflammatory cytokines were increased during aging but reduced upon administration of both statin and DR7. Expressions of hippocampal neurotransmitters and apoptosis genes showed reduced expressions of indoleamine dioxygenase and P53 accompanied by increased expression of TPH1 in aged- HFD rats administered with DR7, indicating potential effects of DR7 along the pathways of serotonin and oxidative senescence. This study provided an insight into potentials of L. plantarum DR7 as a prospective dietary strategy to improve cognitive functions during aging. This study provided an insight into potentials of L. plantarum DR7 as a prospective dietary strategy to improve cognitive functions during aging.
    Matched MeSH terms: Diet, High-Fat/adverse effects
  10. Chai BK, Lau YS, Loong BJ, Rais MM, Ting KN, Dharmani DM, et al.
    Physiol Res, 2018 Nov 14;67(5):729-740.
    PMID: 29750886
    The cis(c)-9, trans(t)-11 (c9,t11) and t10,c12 isomers of conjugated linoleic acid (CLA) have been reported as agonists of peroxisome proliferator-activated receptor (PPAR) and beneficial in lipidemia and glycemia. However, it is unclear whether CLA isomers enhance or antagonize effects of conventional drugs targeting PPAR. Male Sprague-Dawley rats were fed high fat diet (HFD) for 8 weeks and treated without or with CLA, rosiglitazone or both for 4 weeks. Oral glucose tolerance and surrogate markers of insulin resistance were not significantly different for all treatments compared to untreated normal diet (ND) or HFD group, except lipoprotein levels. The combination of CLA and rosiglitazone had suppressed levels of low and high density lipoproteins (46 % and 25 %, respectively), compared to HFD-alone. Conversely, the atherogenic co-efficient of the animals received HFD or HFD+rosiglitazone+CLA was 2-folds higher than ND, HFD+rosiglitazone or HFD+CLA. Isolated aortic rings from the combined CLA and rosiglitazone treated animals were less sensitive to isoprenaline-induced relaxation among endothelium-denuded aortas with a decreased efficacy and potency (R(max)=53+/-4.7 %; pEC50=6+/-0.2) compared to endothelium-intact aortas (R(max)=100+/-9.9 %; pEC50=7+/-0.2). Our findings illustrate that the combination of CLA and rosiglitazone precede the atherogenic state with impaired endothelium-independent vasodilatation before the onset of HFD-induced insulin resistance.
    Matched MeSH terms: Diet, High-Fat/adverse effects*
  11. Zulkawi N, Ng KH, Zamberi NR, Yeap SK, Satharasinghe DA, Tan SW, et al.
    Drug Des Devel Ther, 2018;12:1373-1383.
    PMID: 29872261 DOI: 10.2147/DDDT.S157803
    Background: Fermented food has been widely consumed as health food to ameliorate or prevent several chronic diseases including diabetes. Xeniji™, a fermented food paste (FFP), has been previously reported with various bioactivities, which may be caused by the presence of several metabolites including polyphenolic acids, flavonoids, and vitamins. In this study, the anti-hyperglycemic and anti-inflammatory effects of FFP were assessed.

    Methods: In this study, type 2 diabetes model mice were induced by streptozotocin and high-fat diet (HFD) and used to evaluate the antihyperglycemic and anti-inflammatory effects of FFP. Mice were fed with HFD and challenged with 30 mg/kg body weight (BW) of streptozotocin for 1 month followed by 6 weeks of supplementation with 0.1 and 1.0 g/kg BW of FFP. Metformin was used as positive control treatment.

    Results: Xeniji™-supplemented hyperglycemic mice were recorded with lower glucose level after 6 weeks of duration. This effect was contributed by the improvement of insulin sensitivity in the hyperglycemic mice indicated by the oral glucose tolerance test, insulin tolerance test, and end point insulin level. In addition, gene expression study has shown that the antihyperglycemic effect of FFP is related to the improvement of lipid and glucose metabolism in the mice. Furthermore, both 0.1 and 1 g/kg BW of FFP was able to reduce hyperglycemia-related inflammation indicated by the reduction of proinflammatory cytokines, NF-kB and iNOS gene expression and nitric oxide level.

    Conclusion: FFP potentially demonstrated in vivo antihyperglycemic and anti-inflammatory effects on HFD and streptozotocin-induced diabetic mice.

    Matched MeSH terms: Diet, High-Fat/adverse effects*
  12. Ahmed IA, Mikail MA, Ibrahim M
    Nutr Res, 2017 Jun;42:31-42.
    PMID: 28633869 DOI: 10.1016/j.nutres.2017.04.012
    Hypercholesterolemia is an important risk factor linked to the alteration of blood hematology and clinical chemistry associated with the development and progression of atherosclerosis. Previous studies have demonstrated the safety and potential health benefits of Baccaurea angulata (BA) fruit. We hypothesized that the oral administration of BA fruit juice could ameliorate the alteration in the hematological and biochemical biomarkers of diet-induced hypercholesterolemic rabbits. The aim of this study was to investigate the effects of different doses of BA juice on the hematological and biochemical biomarkers in normo- and hypercholesterolemic rabbits. Thirty-five healthy adult New Zealand White rabbits were assigned to seven different groups for 90days of diet intervention. Four atherogenic groups were fed a 1% cholesterol diet and 0, 0.5, 1.0, and 1.5mL of BA juice per kg of rabbit daily. The other three normal groups were fed a commercial rabbit pellet diet and 0, 0.5, and 1.0mL of BA juice per kg of rabbit daily. Baseline and final blood samples after 90days of repeated administration BA juice were analyzed for hematological parameters while serum, aortic and hepatic lysates were analyzed for lipid profiles and other biochemical biomarkers. The alteration of the hemopoietic system, physiological changes in serum and tissues lipid profiles and other biochemicals resulting from the consumption of a high-cholesterol diet were significantly (P
    Matched MeSH terms: Diet, High-Fat/adverse effects
  13. Beh BK, Mohamad NE, Yeap SK, Ky H, Boo SY, Chua JYH, et al.
    Sci Rep, 2017 07 27;7(1):6664.
    PMID: 28751642 DOI: 10.1038/s41598-017-06235-7
    Recently, food-based bioactive ingredients, such as vinegar, have been proposed as a potential solution to overcome the global obesity epidemic. Although acetic acid has been identified as the main component in vinegar that contributes to its anti-obesity effect, reports have shown that vinegar produced from different starting materials possess different degrees of bioactivity. This study was performed to compare the anti-obesity and anti-inflammatory effects of synthetic acetic acid vinegar and Nipa vinegar in mice fed a high-fat diet. In this work, mice were fed a high-fat diet for 33 weeks. At the start of week 24, obese mice were orally fed synthetic acetic acid vinegar or Nipa vinegar (0.08 and 2 ml/kg BW) until the end of week 33. Mice fed a standard pellet diet served as a control. Although both synthetic acetic acid vinegar and Nipa vinegar effectively reduced food intake and body weight, a high dose of Nipa vinegar more effectively reduced lipid deposition, improved the serum lipid profile, increased adipokine expression and suppressed inflammation in the obese mice. Thus, a high dose of Nipa vinegar may potentially alleviate obesity by altering the lipid metabolism, inflammation and gut microbe composition in high-fat-diet-induced obese mice.
    Matched MeSH terms: Diet, High-Fat/adverse effects
  14. Abu Bakar MH, Azmi MN, Shariff KA, Tan JS
    Appl Biochem Biotechnol, 2019 May;188(1):241-259.
    PMID: 30417321 DOI: 10.1007/s12010-018-2920-2
    Withaferin A (WA), a bioactive constituent derived from Withania somnifera plant, has been shown to exhibit many qualifying properties in attenuating several metabolic diseases. The current investigation sought to elucidate the protective mechanisms of WA (1.25 mg/kg/day) on pre-existing obese mice mediated by high-fat diet (HFD) for 12 weeks. Following dietary administration of WA, significant metabolic improvements in hepatic insulin sensitivity, adipocytokines with enhanced glucose tolerance were observed. The hepatic oxidative functions of obese mice treated with WA were improved via augmented antioxidant enzyme activities. The levels of serum pro-inflammatory cytokines and hepatic mRNA expressions of toll-like receptor (TLR4), nuclear factor κB (NF-κB), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand-receptor, and cyclooxygenase 2 (COX2) in HFD-induced obese mice were reduced. Mechanistically, WA increased hepatic mRNA expression of peroxisome proliferator-activated receptors (PPARs), cluster of differentiation 36 (CD36), fatty acid synthase (FAS), carnitine palmitoyltransferase 1 (CPT1), glucokinase (GCK), phosphofructokinase (PFK), and phosphoenolpyruvate carboxykinase (PCK1) that were associated with enhanced lipid and glucose metabolism. Taken together, these results indicate that WA exhibits protective effects against HFD-induced obesity through attenuation of hepatic inflammation, oxidative stress, and insulin resistance in mice.
    Matched MeSH terms: Diet, High-Fat*
  15. Lim PS, Loke CF, Ho YW, Tan HY
    J Appl Microbiol, 2020 Nov;129(5):1374-1388.
    PMID: 32356362 DOI: 10.1111/jam.14678
    AIMS: To determine the mechanism underlying the serum cholesterol reduction effect by probiotics isolated from local fermented tapioca (Tapai).

    METHODS AND RESULTS: Lactic acid bacteria strains were isolated and examined for acid tolerance, bile salt resistance and hypocholesterolemic properties. Among the isolates, Lactobacillus plantarum TAR4 showed the highest cholesterol reduction ability (48·01%). The focus in the in vivo trial was to elucidate the cholesterol balance from findings pertaining to serum cholesterol reduction in rat model fed with high fat diet via oral administration. Rats fed with high-cholesterol diet supplemented with Lact. plantarum TAR4 showed significant reduction in serum total cholesterol (29·55%), serum triglyceride (45·31%) and liver triglyceride (23·44%) as compared to high-cholesterol diet (HCD) group. There was a significant increment in faecal triglyceride (45·83%) and faecal total bile acid (384·95%) as compared to HCD group.

    CONCLUSIONS: The findings showed that probiotic Lact. plantarum TAR4 supplementation reduced the absorption of bile acids for enterohepatic recycling and increased the catabolism of cholesterol to bile acids and not by suppressing the rate of cholesterol synthesis.

    SIGNIFICANCE AND IMPACT OF STUDY: Probiotic supplements could provide a new nonpharmacological alternative to reduce cardiovascular risk factors.

    Matched MeSH terms: Diet, High-Fat/adverse effects
  16. Goon DE, Ab-Rahim S, Mohd Sakri AH, Mazlan M, Tan JK, Abdul Aziz M, et al.
    Sci Rep, 2021 10 25;11(1):21001.
    PMID: 34697380 DOI: 10.1038/s41598-021-00454-9
    Excessive high fat dietary intake promotes risk of developing non-alcoholic fatty liver disease (NAFLD) and predisposed with oxidative stress. Palm based tocotrienol-rich fraction (TRF) has been reported able to ameliorate oxidative stress but exhibited poor bioavailability. Thus, we investigated whether an enhanced formulation of TRF in combination with palm kernel oil (medium-chain triglycerides) (ETRF) could ameliorate the effect of high-fat diet (HFD) on leptin-deficient male mice. All the animals were divided into HFD only (HFD group), HFD supplemented with ETRF (ETRF group) and HFD supplemented with TRF (TRF group) and HFD supplemented with PKO (PKO group). After 6 weeks, sera were collected for untargeted metabolite profiling using UHPLC-Orbitrap MS. Univariate analysis unveiled alternation in metabolites for bile acids, amino acids, fatty acids, sphingolipids, and alkaloids. Bile acids, lysine, arachidonic acid, and sphingolipids were downregulated while xanthine and hypoxanthine were upregulated in TRF and ETRF group. The regulation of these metabolites suggests that ETRF may promote better fatty acid oxidation, reduce oxidative stress and pro-inflammatory metabolites and acts as anti-inflammatory in fatty liver compared to TRF. Metabolites regulated by ETRF also provide insight of its role in fatty liver. However, further investigation is warranted to identify the mechanisms involved.
    Matched MeSH terms: Diet, High-Fat*
  17. Nallappan D, Chua KH, Ong KC, Chong CW, Teh CSJ, Palanisamy UD, et al.
    Food Funct, 2021 Jul 05;12(13):5876-5891.
    PMID: 34019055 DOI: 10.1039/d1fo00539a
    Obesity is a driving factor in the onset of metabolic disorders. This study aims to investigate the effects of the myricetin derivative-rich fraction (MD) from Syzygium malaccense leaf extract on high-fat diet (HFD)-induced obesity and its associated complications and its influence on uncoupling protein-1 (UCP-1) and gut microbiota in C57BL/6J mice. Mice were randomly assigned into four groups (n = 6) and given a normal diet (ND) or high-fat diet (HFD) for 10 weeks to induce obesity. The HFD groups (continued with HFD) were administered 50 mg kg-1 MD (treatment), 50 mg kg-1 metformin (positive control) and normal saline (HFD and ND controls) daily for four weeks via oral gavage. The ten-week HFD-feeding resulted in hyperglycemia and elevated urinary oxidative indices. The subsequent MD administration caused significant weight reduction without appetite suppression and amelioration of insulin resistance, steatosis and dyslipidemia. Besides, MD significantly reduced lipid hydroperoxides and protein carbonyls in tissue homogenates and urine and elevated Trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP) and reduced glutathione (GSH) and thus, alleviated oxidative stress. The weight reduction was correlated with downregulation of inflammatory markers and the increased UCP-1 level, suggesting weight loss plausibly through thermogenesis. The Akkermansia genus (reflects improved metabolic status) in the HFD50 group was more abundant than that in the HFD group while the non-enzymatic antioxidant markers were strongly associated with UCP-1. In conclusion, MD ameliorates obesity and its related complications possibly via the upregulation of UCP-1 and increased abundance of Akkermansia genus and is promising as a therapeutic agent in the treatment of obesity and its associated metabolic disorders.
    Matched MeSH terms: Diet, High-Fat/adverse effects*
  18. Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S
    Exp. Clin. Endocrinol. Diabetes, 2018 Apr;126(4):205-212.
    PMID: 29117620 DOI: 10.1055/s-0043-119352
    Metabolic syndrome is a cluster of metabolic abnormalities including central obesity, hyperglycemia, hypertension, and dyslipidemia. A previous study has established that high-carbohydrate high-fat diet (HCHF) can induce MetS in rats. In this study, we modified components of the diet so that it resembled the diet of Southeast Asians. This study aimed to determine the effects of this modified HCHF diet on metabolic parameters in rats. Male Wistar rats (n=14) were randomised into two groups. The normal group was given standard rat chow. The MetS group was given the HCHF diet, comprises of fructose, sweetened condensed milk, ghee, Hubble Mendel and Wakeman salt mixture, and powdered rat food. The diet regimen was assigned for a period of 16 weeks. Metabolic syndrome parameters (abdominal circumference, blood glucose, blood pressure, and lipid profile) were measured at week 0, 8, 12, and 16 of the study. The measurement of whole body composition (fat mass, lean mass, and percentage of fat) was performed using dual-energy X-ray absorptiometry at week 0, 8, and 16. Our results indicated that the components of MetS were partially developed after 8 weeks of HCHF diet. Systolic blood pressure, triglyceride, low density lipoprotein cholesterol, fat content, and percentage of fat was significantly higher in the HCHF group compared to normal group (p<0.05). After 12 weeks of HCHF diet, the rats showed significant increases in abdominal circumference, blood pressure, glucose intolerance, and dyslipidemia compared to normal control (p<0.05). In conclusion, MetS is successfully established in male rats induced by the modified HCHF diet after 12 weeks.
    Matched MeSH terms: Diet, High-Fat/adverse effects*
  19. Si LY, Ali SAM, Latip J, Fauzi NM, Budin SB, Zainalabidin S
    Life Sci, 2017 Dec 15;191:157-165.
    PMID: 29066253 DOI: 10.1016/j.lfs.2017.10.030
    AIMS: Obesity increase the risks of hypertension and myocardial infarction (MI) mediated by oxidative stress. This study was undertaken to investigate the actions of roselle aqueous extract (R) on cardiotoxicity in obese (OB) rats and thereon OB rats subjected to MI.

    MAIN METHODS: Male Sprague-Dawley rats were fed with either normal diet or high-fat diet for 8weeks. Firstly, OB rats were divided into (1) OB and (2) OB+R (100mg/kg, p.o, 28days). Then, OB rats were subjected to MI (ISO, 85mg/kg, s.c, 2days) and divided into three groups: (1) OB+MI, (2) OB+MI+R and (3) OB+MI+enalapril for another 4weeks.

    KEY FINDINGS: Roselle ameliorated OB and OB+MI's cardiac systolic dysfunction and reduced cardiac hypertrophy and fibrosis. The increased oxidative markers and decreased antioxidant enzymes in OB and OB+MI groups were all attenuated by roselle.

    SIGNIFICANCE: These observations indicate the protective effect of roselle on cardiac dysfunction in OB and OB+MI rats, which suggest its potential to be developed as a nutraceutical product for obese and obese patients with MI in the future.

    Matched MeSH terms: Diet, High-Fat/adverse effects
  20. Cheng HS, Ton SH, Tan JBL, Abdul Kadir K
    Nutrients, 2017 Sep 07;9(9).
    PMID: 28880217 DOI: 10.3390/nu9090984
    The clinical value of tocotrienols is increasingly appreciated because of the unique therapeutic effects that are not shared by tocopherols. However, their effect on metabolic syndrome is not well-established. This study aimed to investigate the effects of a tocotrienol-rich fraction (TRF) from palm oil in high-fat-diet-treated rats. Male, post-weaning Sprague Dawley rats were provided high-fat (60% kcal) diet for eight weeks followed by a TRF (60 mg/kg) treatment for another four weeks. Physical, metabolic, and histological changes were compared to those on control and high-fat diets respectively. High-fat feeding for eight weeks induced all hallmarks of metabolic syndrome. The TRF reversed systolic and diastolic hypertension, hypercholesterolemia, hepatic steatosis, impaired antioxidant defense, and myeloperoxidase hyperactivity triggered by the high-fat diet. It also conferred an inhibitory effect on protein glycation to reduce glycated hemoglobin A1c and advanced glycation end products (AGE). This was accompanied by the suppression of the receptor for advanced glycation end product (RAGE) expression in the liver. The treatment effects on visceral adiposity, glycemic control, triglyceride level, as well as peroxisome proliferator-activated receptor α and γ expression were negligible. To conclude, treatment with a TRF exhibited protective effects on the cardiovascular and liver health in addition to the amelioration of plasma redox imbalance and AGE-RAGE activation. Further investigation as a therapy for metabolic syndrome is therefore worthwhile.
    Matched MeSH terms: Diet, High-Fat/adverse effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links