Displaying publications 41 - 60 of 382 in total

Abstract:
Sort:
  1. Taha M, Ismail NH, Imran S, Rahim F, Wadood A, Al Muqarrabun LM, et al.
    Bioorg Chem, 2016 10;68:80-9.
    PMID: 27474803 DOI: 10.1016/j.bioorg.2016.07.010
    Thymidine phosphorylase (TP) is up regulated in wide variety of solid tumors and therefore presents a remarkable target for drug discovery in cancer. A novel class of extremely potent TPase inhibitors based on benzopyrazine (1-28) has been developed and evaluated against thymidine phosphorylase enzyme. Out of these twenty-eight analogs eleven (11) compounds 1, 4, 14, 15, 16, 17, 18, 19, 20, 24 and 28 showed potent thymidine phosphorylase inhibitory potentials with IC50 values ranged between 3.20±0.30 and 37.60±1.15μM when compared with the standard 7-Deazaxanthine (IC50=38.68±4.42μM). Structure-activity relationship was established and molecular docking studies were performed to determine the binding interactions of these newly synthesized compounds. Current studies have revealed that these compounds established stronger hydrogen bonding networks with active site residues as compare to the standard compound 7DX.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis; Enzyme Inhibitors/pharmacology*; Enzyme Inhibitors/chemistry
  2. Salar U, Khan KM, Taha M, Ismail NH, Ali B, Qurat-Ul-Ain, et al.
    Eur J Med Chem, 2017 Jan 05;125:1289-1299.
    PMID: 27886546 DOI: 10.1016/j.ejmech.2016.11.031
    Current study is based on the biology-oriented drug synthesis (BIODS) of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl carboxylate derivatives 1-26, by treating metronidazole with different aryl and hetero-aryl carboxylic acids in the presence of 1,1'-carbonyl diimidazole (CDI) as a coupling agent. Structures of all synthetic derivatives were confirmed with the help of various spectroscopic techniques such as EI-MS, (1)H -NMR and (13)C NMR. CHN elemental analyses were also found in agreement with the calculated values. Synthetic derivatives were evaluated to check their β-glucuronidase inhibitory activity which revealed that except few derivatives, all demonstrated good inhibition in the range of IC50 = 1.20 ± 0.01-60.30 ± 1.40 μM as compared to the standard d-saccharic acid 1,4-lactone (IC50 = 48.38 ± 1.05 μM). Compounds 1, 3, 4, 6, 9-19, and 21-24 were found to be potent analogs and showed superior activity than standard. Limited structure-activity relationship is suggested that the molecules having electron withdrawing groups like NO2, F, Cl, and Br, were displayed better activity than the compounds with electron donating groups such as Me, OMe and BuO. To verify these interpretations, in silico study was also performed, a good correlation was observed between bioactivities and docking studies.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis; Enzyme Inhibitors/pharmacology*; Enzyme Inhibitors/chemistry*
  3. Teo CY, Tejo BA, Leow ATC, Salleh AB, Abdul Rahman MB
    Chem Biol Drug Des, 2017 Dec;90(6):1134-1146.
    PMID: 28581157 DOI: 10.1111/cbdd.13033
    Protein arginine deiminase type IV (PAD4) is responsible for the posttranslational conversion of peptidylarginine to peptidylcitrulline. Citrullinated protein is the autoantigen in rheumatoid arthritis, and therefore, PAD4 is currently a promising therapeutic target for the disease. Recently, we reported the importance of the furan ring in the structure of PAD4 inhibitors. In this study, the furan ring was incorporated into peptides to act as the "warhead" of the inhibitors for PAD4. IC50 studies showed that the furan-containing peptide-based inhibitors were able to inhibit PAD4 to a better extent than the furan-containing small molecules that were previously reported. The best peptide-based inhibitor inhibited PAD4 reversibly and competitively with an IC50 value of 243.2 ± 2.4 μm. NMR spectroscopy and NMR-restrained molecular dynamic simulations revealed that the peptide-based inhibitor had a random structure. Molecular docking studies showed that the peptide-based inhibitor entered the binding site and interacted with the essential amino acids involved in the catalytic activity. The peptide-based inhibitor could be further developed into a therapeutic drug for rheumatoid arthritis.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis; Enzyme Inhibitors/metabolism; Enzyme Inhibitors/chemistry*
  4. Taha M, Imran S, Ismail NH, Selvaraj M, Rahim F, Chigurupati S, et al.
    Bioorg Chem, 2017 10;74:1-9.
    PMID: 28719801 DOI: 10.1016/j.bioorg.2017.07.001
    A new library of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl ether derivatives (1-23) were synthesized and characterized by EI-MS and 1H NMR, and screened for their α-amylase inhibitory activity. Out of twenty-three derivatives, two molecules 19 (IC50=0.38±0.82µM) and 23 (IC50=1.66±0.14µM), showed excellent activity whereas the remaining compounds, except 10 and 17, showed good to moderate inhibition in the range of IC50=1.77-2.98µM when compared with the standard acarbose (IC50=1.66±0.1µM). A plausible structure-activity relationship has also been presented. In addition, in silico studies was carried out in order to rationalize the binding interaction of compounds with the active site of enzyme.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis; Enzyme Inhibitors/pharmacology*; Enzyme Inhibitors/chemistry
  5. Iftikhar F, Ali Y, Ahmad Kiani F, Fahad Hassan S, Fatima T, Khan A, et al.
    Bioorg Chem, 2017 10;74:53-65.
    PMID: 28753459 DOI: 10.1016/j.bioorg.2017.07.003
    In our previous report, we have identified 3,4-dihydropyrimidine scaffold as promising class of urease inhibitor in a structure based virtual screen (SBVS) experiment. In present study, we attempted to optimize the scaffold by varying C-5 substituent. The elongation of the C-5 chain was achieved by the reaction of C-5 ester with hydrazine leading to C-5 carbohydrazides which were further used as building blocks for the synthesis of fifteen new compounds having diverse moieties. A significantly higher in vitro urease inhibitory activity with IC50 values in submicromolar range was observed for semithiocarbazide derivatives (4a-c, 0.58-0.79µM) and isatin Schiff base derivative 5a (0.23µM). Docking analysis suggests that the synthesized compounds were anchored well in the catalytic site and extending to the entrance of binding pocket and thus restrict the mobility of the flap by interacting with its key amino acid residues. The overall results of urease inhibition have shown that these compounds can be further optimized and developed as lead urease inhibitors.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis; Enzyme Inhibitors/pharmacology*; Enzyme Inhibitors/chemistry
  6. Saleh MSM, Siddiqui MJ, Mat So'ad SZ, Roheem FO, Saidi-Besbes S, Khatib A
    Molecules, 2018 06 13;23(6).
    PMID: 29899270 DOI: 10.3390/molecules23061434
    Salak fruit (Salacca zalacca), commonly known as snake fruit, is used indigenously as food and for medicinal applications in Southeast Asia. This study was conducted to evaluate the α-glucosidase inhibitory activity of salak fruit extracts in correlation to its Fourier transform infrared spectroscopy (FT-IR) fingerprint, utilizing orthogonal partial least square. This calibration model was applied to develop a rapid analytical method tool for quality control of this fruit. A total of 36 extracts prepared with different solvent ratios of ethanol⁻water (100, 80, 60, 40.20, 0% v/v) and their α-glucosidase inhibitory activities determined. The FT-IR spectra of ethanol⁻water extracts measured in the region of 400 and 4000 cm−1 at a resolution of 4 cm−1. Multivariate analysis with a combination of orthogonal partial least-squares (OPLS) algorithm was used to correlate the bioactivity of the samples with the FT-IR spectral data. The OPLS biplot model identified several functional groups (C⁻H, C=O, C⁻N, N⁻H, C⁻O, and C=C) which actively induced α-glucosidase inhibitory activity.
    Matched MeSH terms: Enzyme Inhibitors/analysis*; Enzyme Inhibitors/pharmacology; Enzyme Inhibitors/chemistry
  7. Arshad T, Khan KM, Rasool N, Salar U, Hussain S, Asghar H, et al.
    Bioorg Chem, 2017 06;72:21-31.
    PMID: 28346872 DOI: 10.1016/j.bioorg.2017.03.007
    On the basis of previous report on promising α-glucosidase inhibitory activity of 5-bromo-2-aryl benzimidazole derivatives, these derivatives were further screened for urease inhibitory and cytotoxicity activity in order to get more potent and non-cytotoxic potential dual inhibitor for the patients suffering from diabetes as well as peptic ulcer. In this study, all compounds showed varying degree of potency in the range of (IC50=8.15±0.03-354.67±0.19μM) as compared to standard thiourea (IC50=21.25±0.15μM). It is worth mentioning that derivatives 7 (IC50=12.07±0.05μM), 8 (IC50=10.57±0.12μM), 11 (IC50=13.76±0.02μM), 14 (IC50=15.70±0.12μM) and 22 (IC50=8.15±0.03μM) were found to be more potent inhibitors than standard. All compounds were also evaluated for cytotoxicity towards 3T3 mouse fibroblast cell line and found to be completely non-toxic. Previously benzimidazole 1-25 were also showed α-glucosidase inhibitory potential. In silico studies were performed on the lead molecules i.e.2, 7, 8, 11, 14, and 22, in order to rationalize the binding interaction of compounds with the active site of urease enzyme.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis; Enzyme Inhibitors/pharmacology*; Enzyme Inhibitors/chemistry
  8. Sharma G, Vasanth Kumar S, Wahab HA
    J Biomol Struct Dyn, 2018 01;36(1):233-242.
    PMID: 28013578 DOI: 10.1080/07391102.2016.1274271
    A series of dimeric naphthoquinones containing natural 2-hydroxy-1-4-naphthoquinone moiety was designed, synthesized, and evaluated against neuraminidase of H5N1 virus. p-hydroxy derivatives showed higher inhibition when compared to p-halogenated compounds. Molecular docking studies conducted with H5N1 neuraminidase clearly demonstrated different binding modes of the most active compound onto the open and closed conformations of loop 150. The results thus provide not only evidences of a novel scaffold evaluated as inhibitor, but also a rational explanation involving molecular modeling and the role of loop 150 in the binding.
    Matched MeSH terms: Enzyme Inhibitors/metabolism; Enzyme Inhibitors/pharmacology; Enzyme Inhibitors/chemistry
  9. Butt ARS, Abbasi MA, Aziz-Ur-Rehman, Siddiqui SZ, Hassan M, Raza H, et al.
    Bioorg Chem, 2019 05;86:197-209.
    PMID: 30711702 DOI: 10.1016/j.bioorg.2019.01.040
    Keeping in mind the pharmacological importance of 2-aminothiazole and 1,2,4-triazole heterocyclic moieties, a series of novel ethylated bi-heterocyclic acetamide hybrids, 9a-p, was synthesized in a multi-step protocol. The structures of newly synthesized compounds were characterized by 1H NMR, 13C NMR, IR and EI-MS spectral studies. The inhibitory effects of these bi-heterocyclic acetamides (9a-n) were evaluated against elastase and all these molecules were identified as potent inhibitors relative to the standard used. The Kinetics mechanism was analyzed by Lineweaver-Burk plots which revealed that, 9h, inhibited elastase competitively by forming an enzyme-inhibitor complex. The inhibition constants Ki calculated from Dixon plots for this compound was 0.9 µM. The computational study was articulate with the experimental results and these ligands unveiled good binding energy values (kcal/mol). So, these molecules can be considered as promising medicinal scaffolds for the treatment of skin melanoma, wrinkle formation, uneven pigmentation, and solar elastosis.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis; Enzyme Inhibitors/pharmacology*; Enzyme Inhibitors/chemistry
  10. Choy YW, Cheong I
    Family Physician, 1989;1:19-22.
    This study was carried out on 30 patients to: i) determine the efficacy of low dose captopril as monotherapy (with or without a diuretic) in the treatment of various grades of hypertension. ii) assess the quality of life of these patients 12 weeks after commencement of therapy. Our results showed that there was a sustained and significant fall in both mean systolic and diastolic blood pressure from 171.9 ± 24 to 150.5 ± 25 mm Hg and 109.0 ± 14 to 93.6 ± 15mmHg respectively (p<0.001). Improvement in quality of life was however not statistically significant (p<0.05). We concluded that low dose captopril used alone or in combination with a diuretic can be considered for the initial therapy of mild to moderate hypertension. The optimal dosage and the longterm benefits on quality of life need further evaluation in a larger series.
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors
  11. Rehman A, Aslam SJ, Abbasi MA, Siddiqui SZ, Rasool S, Shah SAA
    Pak J Pharm Sci, 2019 May;32(3):987-996.
    PMID: 31278711
    Heterocyclic chemistry is an important field of organic chemistry due to therapeutic potential. The minor modification in the structure of poly-functional compounds has great effect on therapeutic ability. In the presented research work, substituted 1,3,4-oxadiazole derivatives, 8a-p, have been synthesized by the reaction of 1-(4-bromomethylbenzenesulfonyl)-3-methylpiperidine (7) and 5-substituted-1,3,4-oxadiazole-2-thiol (4a-p). The 5-substituted-1,3,4-oxadiazole-2-thiol were synthesized by converting carboxylic acids correspondingly into esters, hydrazides and oxadiazoles. Secondly the electrophile, 1-(4-Bromomethylbenzenesulfonyl)-3-methylpiperidine (7), was prepared by the reaction of 3-methylpiperidine with 4-bromomethylbenzenesulfonyl chloride in the presence of water and Na2CO3 under pH of 9-10. The compounds were structurally corroborated through spectroscopic data analysis of IR, EI-MS and 1H-NMR. The screening for antibacterial activity revealed the compounds to be moderate to excellent inhibitors against bacteria under study. Anti-enzymatic activity was assessed against urease enzyme and 1-{[4-({[5-(3-nitrophenyl)-1,3,4-oxadiazol-2-yl]sulfanyl}methyl)phenyl]sulfonyl}-3-methylpiperidine (8d) was the most active one.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis; Enzyme Inhibitors/pharmacology*; Enzyme Inhibitors/chemistry*
  12. Taha M, Tariq Javid M, Imran S, Selvaraj M, Chigurupati S, Ullah H, et al.
    Bioorg Chem, 2017 10;74:179-186.
    PMID: 28826047 DOI: 10.1016/j.bioorg.2017.08.003
    α-Amylase is a target for type-2 diabetes mellitus treatment. However, small molecule inhibitors of α-amylase are currently scarce. In the course of developing small molecule α-amylase inhibitors, we designed and synthesized thiadiazole quinoline analogs (1-30), characterized by different spectroscopic techniques such as 1HNMR and EI-MS and screened for α-amylase inhibitory potential. Thirteen analogs 1, 2, 3, 4, 5, 6, 22, 23, 25, 26, 27, 28 and 30 showed outstanding α-amylase inhibitory potential with IC50 values ranges between 0.002±0.60 and 42.31±0.17μM which is many folds better than standard acarbose having IC50 value 53.02±0.12μM. Eleven analogs 7, 9, 10, 11, 12, 14, 15, 17, 18, 19 and 24 showed good to moderate inhibitory potential while seven analogs 8, 13, 16, 20, 21 and 29 were found inactive. Our study identifies novel series of potent α-amylase inhibitors for further investigation. Structure activity relationship has been established.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis; Enzyme Inhibitors/pharmacology*; Enzyme Inhibitors/chemistry
  13. Taha M, Shah SAA, Imran S, Afifi M, Chigurupati S, Selvaraj M, et al.
    Bioorg Chem, 2017 12;75:78-85.
    PMID: 28918064 DOI: 10.1016/j.bioorg.2017.09.002
    The α-amylase acts as attractive target to treat type-2 diabetes mellitus. Therefore in discovering a small molecule as α-amylase inhibitor, we have synthesized benzofuran carbohydrazide analogs (1-25), characterized through different spectroscopic techniques such as 1HNMR and EI-MS. All screened analog shows good α-amylase inhibitory potentials with IC50 value ranging between 1.078±0.19 and 2.926±0.05µM when compared with acarbose having IC50=0.62±0.22µM. Only nine analogs among the series such as analogs 3, 5, 7, 8, 10, 12, 21, 23 and 24 exhibit good inhibitory potential with IC50 values 1.644±0.128, 1.078±0.19, 1.245±0.25, 1.843±0.19, 1.350±0.24, 1.629±0.015, 1.353±0.232, 1.359±0.119 and 1.488±0.07µM when compare with standard drug acarbose. All other analogs showed good to moderate α-amylase inhibitory potentials. The SAR study was conducted on the basis of substituent difference at the phenyl ring. The binding interaction between analogs and active site of enzyme was confirmed by docking studies.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis*; Enzyme Inhibitors/metabolism; Enzyme Inhibitors/chemistry
  14. Taha M, Ullah H, Al Muqarrabun LMR, Khan MN, Rahim F, Ahmat N, et al.
    Bioorg Med Chem, 2018 01 01;26(1):152-160.
    PMID: 29183662 DOI: 10.1016/j.bmc.2017.11.028
    Bisindolylmethane thiosemicarbazides 1-18 were synthesized, characterized by 1H NMR and ESI MS and evaluated for urease inhibitory potential. All analogs showed outstanding urease inhibitory potentials with IC50 values ranging between 0.14 ± 0.01 to 18.50 ± 0.90 μM when compared with the standard inhibitor thiourea having IC50 value 21.25 ± 0.90 μM. Among the series, analog 9 (0.14 ± 0.01 μM) with di-chloro substitution on phenyl ring was identified as the most potent inhibitor of urease. The structure activity relationship has been also established on the basis of binding interactions of the active analogs. These binding interactions were identified by molecular docking studies.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis; Enzyme Inhibitors/pharmacology*; Enzyme Inhibitors/chemistry
  15. Evaristus NA, Wan Abdullah WN, Gan CY
    Peptides, 2018 04;102:61-67.
    PMID: 29510154 DOI: 10.1016/j.peptides.2018.03.001
    The potential of N. lappacheum and N. mutabile seed as a source of α-amylase inhibitor peptides was explored based on the local traditional practice of using the seed. Different gastro-digestive enzymes (i.e. pepsin or chymotrypsin) or a sequential digestion were used to extract the peptides. The effects of digestion time and enzyme to substrate (E:S) ratio on the α-amylase inhibitory activity were investigated. Results showed that chymotrypsin was effective in producing the inhibitor peptides from rambutan seed protein at E:S ratio 1:20 for 1 h, whereas pepsin was more effective for pulasan seed protein under the same condition. A total of 20 and 31 novel inhibitor peptides were identified, respectively. These peptides could bind with the subsites of α-amylase (i.e. Trp58, Trp59, Tyr62, Asp96, Arg195, Asp197, Glu233, His299, Asp300, and His305) and formed a sliding barrier that preventing the formation of enzyme/substrate intermediate leading to lower α-amylase activity.
    Matched MeSH terms: Enzyme Inhibitors/isolation & purification; Enzyme Inhibitors/pharmacology; Enzyme Inhibitors/chemistry*
  16. Ullah H, Rahim F, Taha M, Uddin I, Wadood A, Shah SAA, et al.
    Bioorg Chem, 2018 08;78:58-67.
    PMID: 29533215 DOI: 10.1016/j.bioorg.2018.02.020
    We have synthesized oxadiazole derivatives (1-16), characterized by 1H NMR, 13C NMR and HREI-MS and screened for thymidine phosphorylase inhibitory potential. All derivatives display varied degree of thymidine phosphorylase inhibition in the range of 1.10 ± 0.05 to 49.60 ± 1.30 μM when compared with the standard inhibitor 7-Deazaxanthine having an IC50 value 38.68 ± 1.12 μM. Structure activity relationships (SAR) has been established for all compounds to explore the role of substitution and nature of functional group attached to the phenyl ring which applies imperious effect on thymidine phosphorylase activity. Molecular docking study was performed to understand the binding interaction of the most active derivatives with enzyme active site.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis; Enzyme Inhibitors/pharmacology*; Enzyme Inhibitors/chemistry
  17. Alasmary FAS, Alnahdi FS, Ben Bacha A, El-Araby AM, Moubayed N, Alafeefy AM, et al.
    J Enzyme Inhib Med Chem, 2017 Dec;32(1):1143-1151.
    PMID: 28856929 DOI: 10.1080/14756366.2017.1363743
    Elevated blood glucose and increased activities of secreted phospholipase A2 (sPLA2) are strongly linked to coronary heart disease. In this report, our goal was to develop small heterocyclic compound that inhibit sPLA2. The title compounds were also tested against α-glucosidase and α-amylase. This array of enzymes was selected due to their implication in blood glucose regulation and diabetic cardiovascular complications. Therefore, two distinct series of quinoxalinone derivatives were synthesised; 3-[N'-(substituted-benzylidene)-hydrazino]-1H-quinoxalin-2-ones 3a-f and 1-(substituted-phenyl)-5H-[1,2,4]triazolo[4,3-a]quinoxalin-4-ones 4a-f. Four compounds showed promising enzyme inhibitory effect, compounds 3f and 4b-d potently inhibited the catalytic activities of all of the studied proinflammatory sPLA2. Compound 3e inhibited α-glucosidase (IC50 = 9.99 ± 0.18 µM); which is comparable to quercetin (IC50 = 9.93 ± 0.66 µM), a known inhibitor of this enzyme. Unfortunately, all compounds showed weak activity against α-amylase (IC50 > 200 µM). Structure-based molecular modelling tools were utilised to rationalise the SAR compared to co-crystal structures with sPLA2-GX as well as α-glucosidase. This report introduces novel compounds with dual activities on biochemically unrelated enzymes mutually involved in diabetes and its complications.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis; Enzyme Inhibitors/pharmacology*; Enzyme Inhibitors/chemistry
  18. Roney M, Issahaku AR, Huq AKMM, Sapari S, Abdul Razak FI, Wilhelm A, et al.
    Cell Biochem Biophys, 2024 Dec;82(4):3351-3366.
    PMID: 39020086 DOI: 10.1007/s12013-024-01419-1
    Diabetes mellitus (DM) a metabolic disorder characterized by high blood sugar levels causing damage to various organs over time. Current anti-diabetic drugs have limitations and side effects, prompting a search for new inhibitors targeting the α-amylase enzyme. This study aims to discover such inhibitors from thirty isoxazole derivatives of usnic acid using in silico approaches. The potential inhibitory effects of compounds were investigated using ADMET, molecular docking, molecular dynamic simulation, principal component analysis and density functional theory studies. ADMET analysis exhibited a wide range of physicochemical, pharmacokinetic, and drug-like qualities with no significant side effects which were then investigated using molecular docking experiment to determine the lead compound with the best binding affinity for the α-amylase enzyme. All compounds showed good binding affinity against α-amylase enzyme (-7.9 to -9.2 kcal/mol) where compound-13 showed the best binding affinity of -9.2 kcal/mol forming hydrogen bonds with Leu162, Tyr62, Glu233 and Asp300 amino acids. Furthermore, the binding posture and the stability of the compound-13-α-amylase enzyme complex was confirmed by molecular dynamic simulation experiment. Moreover, compound-13 showed binding energy value of -27.92 ± 5.61 kcal/mol, which indicated it could be an α-amylase inhibitor. Additionally, the reactivity of compound-13 was further confirmed by density functional theory analysis. The above findings suggest compound-13 to be a potential α-amylase inhibitor in DM. And setting the stage for further in vitro and in vivo experimental validation.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology; Enzyme Inhibitors/therapeutic use; Enzyme Inhibitors/chemistry
  19. Lau CC, Abdullah N, Shuib AS, Aminudin N
    Food Chem, 2014 Apr 1;148:396-401.
    PMID: 24262574 DOI: 10.1016/j.foodchem.2013.10.053
    Angiotensin I-converting enzyme (ACE) inhibitors derived from foods are valuable auxiliaries to agents such as captopril. Eight highly functional ACE inhibitory peptides from the mushroom, Agaricus bisporus, were identified by LC-MS/MS. Among these peptides, the most potent ACE inhibitory activity was exhibited by AHEPVK, RIGLF and PSSNK with IC₅₀ values of 63, 116 and 129 μM, respectively. These peptides exhibited high ACE inhibitory activity after gastrointestinal digestion. Lineweaver-Burk plots suggested that AHEPVK and RIGLF act as competitive inhibitors against ACE, whereas PSSNK acts as a non-competitive inhibitor. Mushrooms can be a good component of dietary supplement due to their readily available source and, in addition, they rarely cause food allergy. Compared to ACE inhibitory peptides isolated from other edible mushrooms, AHEPVK, RIGLF and PSSNK have lower IC₅₀ values. Therefore, these peptides may serve as an ideal ingredient in the production of antihypertensive supplements.
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/isolation & purification; Angiotensin-Converting Enzyme Inhibitors/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links