Displaying publications 41 - 60 of 106 in total

Abstract:
Sort:
  1. Kashiwazaki Y, Na YN, Tanimura N, Imada T
    J Virol Methods, 2004 Nov;121(2):259-61.
    PMID: 15381364
    A monoclonal antibody (MAb) based solid-phase blocking ELISA was developed for detection of antibodies to Nipah virus. The ELISA was designed to detect remaining antigens on the plate with anti-Nipah MAb conjugate after the reaction with sample serum, and enabled simple procedure, detection of neutralizing antibody to Nipah virus, and application of samples from different animal species. Forty of 200 swine reference sera examined were positive by the ELISA, of which thirty seven were found positive by serum neutralization test. Sera from a total of 131 fruit bats captured in Malaysia were also tested and all found negative by the both tests. It is considered that the solid-phase blocking ELISA can be used as a screening test for Nipah virus infection followed by the serum neutralization test as confirmatory test.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods*
  2. Mohd Jaafar F, Attoui H, Gallian P, Isahak I, Wong KT, Cheong SK, et al.
    J Virol Methods, 2004 Mar 01;116(1):55-61.
    PMID: 14715307
    Banna virus (BAV, genus Seadornavirus, family Reoviridae) is an arbovirus suspected to be responsible for encephalitis in humans. Two genotypes of this virus are distinguishable: A (Chinese isolate, BAV-Ch) and B (Indonesian isolate, BAV-In6969) which exhibit only 41% amino-acid identity in the sequence of their VP9. The VP7 to VP12 of BAV-Ch and VP9 of BAV-In6969 were expressed in bacteria using pGEX-4T-2 vector. VP9 was chosen to establish an ELISA for BAV, based mainly on two observations: (i). VP9 is a major protein in virus-infected cells and is a capsid protein (ii). among all the proteins expressed, VP9 was obtained in high amount and showed the highest immuno-reactivity to anti-BAV ascitic fluid. The VP9s ELISA was evaluated in three populations: French blood donors and two populations (blood donors and patients with a neurological syndrome) from Malaysia, representing the region where the virus was isolated in the past. The specificity of this ELISA was >98%. In mice injected with live BAV, the assay detected IgG-antibody to BAV infection 21 days post-injection, which was confirmed by Western blot using BAV-infected cells. The VP9 ELISA permits to determine the sero-status of a population without special safety precautions and without any requirements to propagate the BAV. This test should be a useful tool for epidemiological survey of BAV.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods*
  3. Kho CL, Mohd-Azmi ML, Arshad SS, Yusoff K
    J Virol Methods, 2000 Apr;86(1):71-83.
    PMID: 10713378
    A sensitive and specific RT-nested PCR coupled with an ELISA detection system for detecting Newcastle disease virus is described. Two nested pairs of primer which were highly specific to all the three different pathotypes of NDV were designed from the consensus fusion gene sequence. No cross-reactions with other avian infectious agents such as infectious bronchitis virus, infectious bursal disease virus, influenza virus, and fowl pox virus were observed. Based on agarose electrophoresis detection, the RT-nested PCR was about 100 times more sensitive compared to that of a non-nested RT-PCR. To facilitate the detection of the PCR product, an ELISA detection method was then developed to detect the amplified PCR products and it was shown to be ten times more sensitive than gel electrophoresis. The efficacy of the nested PCR-ELISA was also compared with the conventional NDV detection method (HA test) and non-nested RT-PCR by testing against a total of 35 tissue specimens collected from ND-symptomatic chickens. The RT-nested PCR ELISA found NDV positive in 21 (60%) tissue specimens, while only eight (22.9%) and two (5.7%) out of 35 tissue specimens were tested NDV positive by both the non-nested RT-PCR and conventional HA test, respectively. Due to its high sensitivity for the detection of NDV from tissue specimens, this PCR-ELISA based diagnostic test may be useful for screening large number of samples.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods*
  4. Cheng HM, Foong YT, Mathew A, Sam CK, Dillner J, Prasad U
    J Virol Methods, 1993 Apr;42(1):45-51.
    PMID: 7686558
    An ELISA using the Epstein-Barr virus nuclear antigen 1 (EBNA 1) was found to detect selectively specific IgA in sera from patients with nasopharyngeal carcinoma (NPC). The antigen, p107, was a 20-amino acid synthetic peptide, representing a major epitope of EBNA 1.267/294 (90.8%) of NPC patients had IgA antibodies to p107 but in normal individuals, only 41/577 (7.1%) had IgA/p107. In sera from patients with other cancers, 11/77 (14.3%) had IgA/p107 reactivity. 124 IgA/VCA positive and 86 IgA/VCA negative NPC sera were also tested for IgA/p107 binding in ELISA. The majority of IgA/VCA positive sera (117) also contained IgA/p107 antibodies. Of interest was the detection of 74/86 IgA/p107 reactive sera in the IgA/VCA negative group. The results suggest that the IgA/p107 ELISA could become a useful, complementary screening assay to the IgA/VCA immunofluorescence test for detection of NPC.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods*
  5. Zainah S, Wahab AH, Mariam M, Fauziah MK, Khairul AH, Roslina I, et al.
    J Virol Methods, 2009 Feb;155(2):157-60.
    PMID: 19022293 DOI: 10.1016/j.jviromet.2008.10.016
    The performance of a commercial immunochromatography test for rapid detection of dengue NS1 antigen present in serum or plasma of patients was evaluated against a commercial dengue NS1 antigen-capture ELISA. The rapid immunochromatography test gave an overall sensitivity of 90.4% with a specificity of 99.5%. The sensitivity was highest for serum samples from which virus was isolated (96.3%) and lowest for those from which virus was not isolated and RT-PCR was negative (76.4%). The sensitivity was significantly higher for serum samples from patients with acute primary dengue (92.3%) than those from patients with acute secondary dengue (79.1%). The positive predictive value and negative predictive value of this commercial immunochromatography test were 99.6% and 87.9% respectively.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods*
  6. Wong CL, Sieo CC, Tan WS
    J Virol Methods, 2013 Nov;193(2):611-9.
    PMID: 23933075 DOI: 10.1016/j.jviromet.2013.07.053
    Foot-and-mouth disease (FMD) is a highly contagious epidemic disease threatening the cattle industry since the sixteenth century. In recent years, the development of diagnostic assays for FMD has benefited considerably from the advances of recombinant DNA technology. In this study, the immunodominant region of the capsid protein VP1 of the foot-and-mouth disease virus (FMDV) was fused to the T7 bacteriophage and expressed on the surface of the bacteriophage capsid protein. The recombinant protein of about 42 kDa was detected by the anti-T7 tag monoclonal antibody in Western blot analysis. Phage ELISA showed that both the vaccinated and positive infected bovine sera reacted significantly with the recombinant T7 particle. This study demonstrated the potential of the T7 phage displaying the VP1 epitope as a diagnostic reagent.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods
  7. Palaeya V, Lau YL, Mahmud R, Chen Y, Fong MY
    Malar J, 2013;12:182.
    PMID: 23734702 DOI: 10.1186/1475-2875-12-182
    Plasmodium knowlesi is the fifth species identified to cause malaria in humans and is often misdiagnosed as Plasmodium malariae due to morphological similarities. The development of an inexpensive, serological detection method utilizing antibodies specific to P. knowlesi would be a valuable tool for diagnosis. However, the identification of specific antigens for these parasites remains a major challenge for generating such assays. In this study, surface protein containing an altered thrombospondin repeat domain (SPATR) was selected as a potentially specific antigen from P. knowlesi. Its multistage expression by sporozoites, asexual erythrocytic forms and gametocytes, along with its possible role in liver cell invasion, suggests that SPATR could be used as a biomarker for diagnosis of P. knowlesi.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods
  8. Ch'ng ACW, Konthur Z, Lim TS
    Methods Enzymol, 2020;630:159-178.
    PMID: 31931984 DOI: 10.1016/bs.mie.2019.10.023
    Directed evolution is a proven approach to fine tune or modify biomolecules for various applications ranging from research to industry. The process of evolution requires methods that are capable of not only generating genetic diversity but also to distinguish the variants of desired characteristics. One method that is synonymous with directed evolution of proteins is phage display. Here, we present a protocol describing the application of magnetic nanoparticles coupled with a processor to carry out the identification of monoclonal antibodies (mAbs) from a diverse antibody library via phage display. Target antigens are coupled to magnetic nanoparticles as the solid phase for the isolation of the binding mAbs via affinity. A gradual enrichment in clones would result in increasing ELISA readouts with increasing rounds of panning. During monoclonal level analysis, positivity can be deduced with comparison to background and controls. The biopanning process can also be adopted for the directed evolution of enzymes, scaffold proteins or even peptides.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods
  9. Ch'ng ACW, Hamidon NHB, Konthur Z, Lim TS
    Methods Mol Biol, 2018;1701:301-319.
    PMID: 29116512 DOI: 10.1007/978-1-4939-7447-4_16
    The application of recombinant human antibodies is growing rapidly mainly in the field of diagnostics and therapeutics. To identify antibodies against a specific antigen, panning selection is carried out using different display technologies. Phage display technology remains the preferred platform due to its robustness and efficiency in biopanning experiments. There are both manual and semi-automated panning selections using polystyrene plastic, magnetic beads, and nitrocellulose as the immobilizing solid surface. Magnetic nanoparticles allow for improved antigen binding due to their large surface area. The Kingfisher Flex magnetic particle processing system was originally designed to aid in RNA, DNA, and protein extraction using magnetic beads. However, the system can be programmed for antibody phage display panning. The automation allows for a reduction in human error and improves reproducibility in between selections with the preprogrammed movements. The system requires minimum human intervention to operate; however, human intervention is needed for post-panning steps like phage rescue. In addition, polyclonal and monoclonal ELISA can be performed using the semi-automated platform to evaluate the selected antibody clones. This chapter will summarize the suggested protocol from the panning stage till the monoclonal ELISA evaluation. Other than this, important notes on the possible optimization and troubleshooting are also included at the end of this chapter.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods
  10. Hairul Aini H, Omar AR, Hair-Bejo M, Aini I
    Microbiol Res, 2008;163(5):556-63.
    PMID: 16971101
    The current available molecular method to detect infectious bursal disease virus (IBDV) is by reverse transcriptase-polymerase chain reaction (RT-PCR). However, the conventional PCR is time consuming, prone to error and less sensitive. In this study, the performances of Sybr Green I real-time PCR, enzyme-linked immunosorbent assay (ELISA) and conventional agarose detection methods in detecting specific IBDV PCR products were compared. We found the real-time PCR was at least 10 times more sensitive than ELISA detection method with a detection limit of 0.25pg. The latter was also at least 10 times more sensitive than agarose gel electrophoresis detection method. The developed assay detects both very virulent and vaccine strains of IBDV but not other RNA viruses such as Newcastle disease virus and infectious bronchitis virus. Hence, Sybr Green I-based real-time PCR is a highly sensitive assay for the detection of IBDV.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods*
  11. Ong EB, Ignatius J, Anthony AA, Aziah I, Ismail A, Lim TS
    Microbiol. Immunol., 2015 Jan;59(1):43-7.
    PMID: 25399538 DOI: 10.1111/1348-0421.12211
    The detection and measurement of different antibody isotypes in the serum provide valuable indicators of the different stages of typhoid infection. Here, the ability of S. Typhi recombinant hemolysin E (HlyE) to detect multi-isotype antibody responses in sera of patients with typhoid and paratyphoid A was investigated using an indirect antibody immunoassay. Nanogram amounts of HlyE were found to be sufficient for detection of IgG and IgA isotypes and, in a study of individuals' sera (n = 100), the immunoassay was able to distinguish between typhoid and non-typhoid sera. The overall sensitivity, specificity and efficiency of the ELISA were 70% (39/56), 100% (44/44) and 83% respectively.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods
  12. Hunsperger EA, Yoksan S, Buchy P, Nguyen VC, Sekaran SD, Enria DA, et al.
    PLoS Negl Trop Dis, 2014 Oct;8(10):e3171.
    PMID: 25330157 DOI: 10.1371/journal.pntd.0003171
    Commercially available diagnostic test kits for detection of dengue virus (DENV) non-structural protein 1 (NS1) and anti-DENV IgM were evaluated for their sensitivity and specificity and other performance characteristics by a diagnostic laboratory network developed by World Health Organization (WHO), the UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR) and the Pediatric Dengue Vaccine Initiative (PDVI). Each network laboratory contributed characterized serum specimens for the panels used in the evaluation. Microplate enzyme-linked immunosorbent assay (ELISA) and rapid diagnostic test (RDT formats) were represented by the kits. Each ELISA was evaluated by 2 laboratories and RDTs were evaluated by at least 3 laboratories. The reference tests for IgM anti-DENV were laboratory developed assays produced by the Armed Forces Research Institute for Medical Science (AFRIMS) and the Centers for Disease Control and Prevention (CDC), and the NS1 reference test was reverse transcriptase polymerase chain reaction (RT-PCR). Results were analyzed to determine sensitivity, specificity, inter-laboratory and inter-reader agreement, lot-to-lot variation and ease-of-use. NS1 ELISA sensitivity was 60-75% and specificity 71-80%; NS1 RDT sensitivity was 38-71% and specificity 76-80%; the IgM anti-DENV RDTs sensitivity was 30-96%, with a specificity of 86-92%, and IgM anti-DENV ELISA sensitivity was 96-98% and specificity 78-91%. NS1 tests were generally more sensitive in specimens from the acute phase of dengue and in primary DENV infection, whereas IgM anti-DENV tests were less sensitive in secondary DENV infections. The reproducibility of the NS1 RDTs ranged from 92-99% and the IgM anti-DENV RDTs from 88-94%.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods
  13. Herman LS, Fornace K, Phelan J, Grigg MJ, Anstey NM, William T, et al.
    PLoS Negl Trop Dis, 2018 Jun;12(6):e0006457.
    PMID: 29902183 DOI: 10.1371/journal.pntd.0006457
    BACKGROUND: Plasmodium knowlesi is the most common cause of malaria in Malaysian Borneo, with reporting limited to clinical cases presenting to health facilities and scarce data on the true extent of transmission. Serological estimations of transmission have been used with other malaria species to garner information about epidemiological patterns. However, there are a distinct lack of suitable serosurveillance tools for this neglected disease.

    METHODOLOGY/PRINCIPAL FINDINGS: Using in silico tools, we designed and expressed four novel P. knowlesi protein products to address the distinct lack of suitable serosurveillance tools: PkSERA3 antigens 1 and 2, PkSSP2/TRAP and PkTSERA2 antigen 1. Antibody prevalence to these antigens was determined by ELISA for three time-points post-treatment from a hospital-based clinical treatment trial in Sabah, East Malaysia (n = 97 individuals; 241 total samples for all time points). Higher responses were observed for the PkSERA3 antigen 2 (67%, 65/97) across all time-points (day 0: 36.9% 34/92; day 7: 63.8% 46/72; day 28: 58.4% 45/77) with significant differences between the clinical cases and controls (n = 55, mean plus 3 SD) (day 0 p<0.0001; day 7 p<0.0001; day 28 p<0.0001). Using boosted regression trees, we developed models to classify P. knowlesi exposure (cross-validated AUC 88.9%; IQR 86.1-91.3%) and identified the most predictive antibody responses.

    CONCLUSIONS/SIGNIFICANCE: The PkSERA3 antigen 2 had the highest relative variable importance in all models. Further validation of these antigens is underway to determine the specificity of these tools in the context of multi-species infections at the population level.

    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods
  14. Hajissa K, Zakaria R, Suppian R, Mohamed Z
    Parasit Vectors, 2015;8:315.
    PMID: 26062975 DOI: 10.1186/s13071-015-0932-0
    Serological investigation remains the primary approach to achieve satisfactory results in Toxoplasma gondii identification. However, the accuracy of the native antigen used in the current diagnostic kits has proven to be insufficient as well as difficult to standardize, so significant efforts have been made to find alternative reagents as capture antigens. Consequently, multi-epitope peptides are promising diagnostic markers, with the potential for improving the accuracy of diagnostic kits. In this study, we described a simple, inexpensive and improved strategy to acquire such diagnostic markers. The study was aimed at producing novel synthetic protein consisting of multiple immunodominant epitopes of several T. gondii antigens.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods*
  15. Hoe LN, Wan KL, Nathan S
    Parasitology, 2005 Dec;131(Pt 6):759-68.
    PMID: 16336729
    The protozoan parasite Toxoplasma gondii produces a family of microneme proteins that are thought to play diverse roles in aiding the parasite's intracellular existence. Among these, TgMIC2 has a putative function in parasite adhesion to the host cell to initiate the invasion process. The invasion process may be localized and inhibited by monoclonal antibodies against the protein(s) involved. Here we report on the construction of a phage-displayed single-chain variable fragment (scFv) library from mice immunized with whole T. gondii parasites. The library was subsequently panned against recombinant TgMIC2 (rpTgMIC2) and 2 different groups of antibody clones were obtained, based on fingerprinting and sequencing data. The expressed recombinant scFv antibody was able to recognize rpTgMIC2 in a Western blot detection experiment. These results show that the phage display technology allows quick and effective production of monoclonal antibodies against parasite antigens. By panning the scFv-displayed library, we should be able to obtain a plethora of multi-functional scFv antibodies towards T. gondii proteins.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods
  16. Low GKK, Gan SC, Zainal N, Naidu KD, Amin-Nordin S, Khoo CS, et al.
    Pathog Glob Health, 2018 09;112(6):334-341.
    PMID: 30246621 DOI: 10.1080/20477724.2018.1516417
    This study aimed to evaluate vascular endothelial growth factor (VEGF) and pentraxin 3 (PTX-3) as predictive and diagnostic markers in differentiating severe dengue from non-severe dengue. The study was conducted in Ampang Health Clinic, Ampang Hospital and Serdang Hospital. The plasma levels of VEGF and PTX-3 were compared between severe dengue and non-severe dengue by ELISA from the day of presentation until discharged. Multiple logistic regression was used to develop predictive and diagnostic models by incorporating other clinical parameters. The receiver operating characteristics (ROC) analysis was used to assess the accuracy of the biomarkers and the developed models. Eighty-two patients were recruited, 29 with severe dengue and four died. The Area Under the Curve (AUC) was statistically significant in VEGF as diagnostic marker at Day 2 and 3 of illness with sensitivity of 80.00%-100.00% and specificity of 76.47%-80.00%. The predictive model with AUC of 0.84 (p 
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods*
  17. Mathieu C, Guillaume V, Sabine A, Ong KC, Wong KT, Legras-Lachuer C, et al.
    PLoS One, 2012;7(2):e32157.
    PMID: 22393386 DOI: 10.1371/journal.pone.0032157
    Nipah virus (NiV) is a recently emerged zoonotic Paramyxovirus that causes regular outbreaks in East Asia with mortality rate exceeding 75%. Major cellular targets of NiV infection are endothelial cells and neurons. To better understand virus-host interaction, we analyzed the transcriptome profile of NiV infection in primary human umbilical vein endothelial cells. We further assessed some of the obtained results by in vitro and in vivo methods in a hamster model and in brain samples from NiV-infected patients. We found that NiV infection strongly induces genes involved in interferon response in endothelial cells. Among the top ten upregulated genes, we identified the chemokine CXCL10 (interferon-induced protein 10, IP-10), an important chemoattractant involved in the generation of inflammatory immune response and neurotoxicity. In NiV-infected hamsters, which develop pathology similar to what is seen in humans, expression of CXCL10 mRNA was induced in different organs with kinetics that followed NiV replication. Finally, we showed intense staining for CXCL10 in the brain of patients who succumbed to lethal NiV infection during the outbreak in Malaysia, confirming induction of this chemokine in fatal human infections. This study sheds new light on NiV pathogenesis, indicating the role of CXCL10 during the course of infection and suggests that this chemokine may serve as a potential new marker for lethal NiV encephalitis.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods
  18. Lakshmipriya T, Gopinath SC, Tang TH
    PLoS One, 2016;11(3):e0151153.
    PMID: 26954237 DOI: 10.1371/journal.pone.0151153
    Enzyme Linked Immunosorbent Assay (ELISA) is the gold standard assay for detecting and identifying biomolecules using antibodies as the probe. Improving ELISA is crucial for detecting disease-causing agents and facilitating diagnosis at the early stages of disease. Biotinylated antibody and streptavidin-conjugated horse radish peroxide (streptavidin-HRP) often are used with ELISA to enhance the detection of various kinds of targets. In the present study, we used a competition-based strategy in which we pre-mixed free biotin with streptavidin-HRP to generate high-performance system, as free biotin occupies some of the biotin binding sites on streptavidin, thereby providing more chances for streptavidin-HRP to bind with biotinylated antibody. ESAT-6, which is a protein secreted early during tuberculosis infection, was used as the model target. We found that 8 fM of free biotin mixed with streptavidin-HRP anchored the higher detection level of ESAT-6 by four-fold compared with detection without free biotin (only streptavidin-HRP), and the limit of detection of the new method was 250 pM. These results suggest that biotin-streptavidin competition can be used to improve the diagnosis of analytes in other types of sensors.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods*
  19. Mirzadeh A, Saadatnia G, Golkar M, Babaie J, Noordin R
    Protein Expr Purif, 2017 05;133:66-74.
    PMID: 28263855 DOI: 10.1016/j.pep.2017.03.001
    SAG1-related sequence 3 (SRS3) is one of the major Toxoplasma gondii tachyzoite surface antigens and has been shown to be potentially useful for the detection of toxoplasmosis. This protein is highly conformational due to the presence of six disulfide bonds. To achieve solubility and antigenicity, SRS3 depends on proper disulfide bond formation. The aim of this study was to over-express the SRS3 protein with correct folding for use in serodiagnosis of the disease. To achieve this, a truncated SRS3 fusion protein (rtSRS3) was produced, containing six histidyl residues at both terminals and purified by immobilized metal affinity chromatography. The refolding process was performed through three methods, namely dialysis in the presence of chemical additives along with reduced/oxidized glutathione and drop-wise dilution methods with reduced/oxidized glutathione or reduced DTT/oxidized glutathione. Ellman's assay and ELISA showed that the protein folding obtained by the dialysis method was the most favorable, probably due to the correct folding. Subsequently, serum samples from individuals with chronic infection (n = 76), probable acute infection (n = 14), and healthy controls (n = 81) were used to determine the usefulness of the refolded rtSRS3 for Toxoplasma serodiagnosis. The results of the developed IgG-ELISA showed a diagnostic specificity of 91% and a sensitivity of 82.89% and 100% for chronic and acute serum samples, respectively. In conclusion, correctly folded rtSRS3 has the potential to be used as a soluble antigen for the detection of human toxoplasmosis.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods
  20. Teoh BT, Sam SS, Tan KK, Johari J, Abd-Jamil J, Hooi PS, et al.
    Sci Rep, 2016 06 09;6:27663.
    PMID: 27278716 DOI: 10.1038/srep27663
    Timely and accurate dengue diagnosis is important for differential diagnosis and immediate implementation of appropriate disease control measures. In this study, we compared the usefulness and applicability of NS1 RDT (NS1 Ag Strip) and qRT-PCR tests in complementing the IgM ELISA for dengue diagnosis on single serum specimen (n = 375). The NS1 Ag Strip and qRT-PCR showed a fair concordance (κ = 0.207, p = 0.001). While the NS1 Ag Strip showed higher positivity than qRT-PCR for acute (97.8% vs. 84.8%) and post-acute samples (94.8% vs. 71.8%) of primary infection, qRT-PCR showed higher positivity for acute (58.1% vs. 48.4%) and post-acute (50.0% vs.41.4%) samples in secondary infection. IgM ELISA showed higher positivity in samples from secondary dengue (74.2-94.8%) than in those from primary dengue (21.7-64.1%). More primary dengue samples showed positive with combined NS1 Ag Strip/IgM ELISA (99.0% vs. 92.8%) whereas more secondary samples showed positive with combined qRT-PCR/IgM ELISA (99.4% vs. 96.2%). Combined NS1 Ag Strip/IgM ELISA is a suitable combination tests for timely and accurate dengue diagnosis on single serum specimen. If complemented with qRT-PCR, combined NS1 Ag Strip/IgM ELISA would improve detection of secondary dengue samples.
    Matched MeSH terms: Enzyme-Linked Immunosorbent Assay/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links