Displaying publications 41 - 60 of 900 in total

Abstract:
Sort:
  1. Chook JB, Teo WL, Ngeow YF, Tee KK, Ng KP, Mohamed R
    J Clin Microbiol, 2015 Jun;53(6):1831-5.
    PMID: 25788548 DOI: 10.1128/JCM.03449-14
    Hepatitis B virus (HBV) has been divided into 10 genotypes, A to J, based on an 8% nucleotide sequence divergence between genotypes. The conventional practice of using a single set of primers to amplify a near-complete HBV genome is hampered by its low analytical sensitivity. The current practice of using overlapping conserved primer sets to amplify a complete HBV genome in a clinical sample is limited by the lack of pan-primers to detect all HBV genotypes. In this study, we designed six highly conserved, overlapping primer sets to cover the complete HBV genome. We based our design on the sequences of 5,154 HBV genomes of genotypes A to I downloaded from the GenBank nucleotide database. These primer sets were tested on 126 plasma samples from Malaysia, containing genotypes A to D and with viral loads ranging from 20 to >79,780,000 IU/ml. The overall success rates for PCR amplification and sequencing were >96% and >94%, respectively. Similarly, there was 100% amplification and sequencing success when the primer sets were tested on an HBV reference panel of genotypes A to G. Thus, we have established primer sets that gave a high analytical sensitivity for PCR-based detection of HBV and a high rate of sequencing success for HBV genomes in most of the viral genotypes, if not all, without prior known sequence data for the particular genotype/genome.
    Matched MeSH terms: Genome, Viral/genetics
  2. Schumacher-Schuh AF, Bieger A, Okunoye O, Mok KY, Lim SY, Bardien S, et al.
    Mov Disord, 2022 Aug;37(8):1593-1604.
    PMID: 35867623 DOI: 10.1002/mds.29126
    BACKGROUND: Human genetics research lacks diversity; over 80% of genome-wide association studies have been conducted on individuals of European ancestry. In addition to limiting insights regarding disease mechanisms, disproportionate representation can create disparities preventing equitable implementation of personalized medicine.

    OBJECTIVE: This systematic review provides an overview of research involving Parkinson's disease (PD) genetics in underrepresented populations (URP) and sets a baseline to measure the future impact of current efforts in those populations.

    METHODS: We searched PubMed and EMBASE until October 2021 using search strings for "PD," "genetics," the main "URP," and and the countries in Latin America, Caribbean, Africa, Asia, and Oceania (excluding Australia and New Zealand). Inclusion criteria were original studies, written in English, reporting genetic results on PD from non-European populations. Two levels of independent reviewers identified and extracted information.

    RESULTS: We observed imbalances in PD genetic studies among URPs. Asian participants from Greater China were described in the majority of the articles published (57%), but other populations were less well studied; for example, Blacks were represented in just 4.0% of the publications. Also, although idiopathic PD was more studied than monogenic forms of the disease, most studies analyzed a limited number of genetic variants. We identified just nine studies using a genome-wide approach published up to 2021, including URPs.

    CONCLUSION: This review provides insight into the significant lack of population diversity in PD research highlighting the immediate need for better representation. The Global Parkinson's Genetics Program (GP2) and similar initiatives aim to impact research in URPs, and the early metrics presented here can be used to measure progress in the field of PD genetics in the future. © 2022 International Parkinson and Movement Disorder Society.

    Matched MeSH terms: Genome-Wide Association Study
  3. Patel RP, Förster DW, Kitchener AC, Rayan MD, Mohamed SW, Werner L, et al.
    R Soc Open Sci, 2016 Oct;3(10):160350.
    PMID: 27853549
    Background. The bay cat Catopuma badia is endemic to Borneo, whereas its sister species the Asian golden cat Catopuma temminckii is distributed from the Himalayas and southern China through Indochina, Peninsular Malaysia and Sumatra. Based on morphological data, up to five subspecies of the Asian golden cat have been recognized, but a taxonomic assessment, including molecular data and morphological characters, is still lacking. Results. We combined molecular data (whole mitochondrial genomes), morphological data (pelage) and species distribution projections (up to the Late Pleistocene) to infer how environmental changes may have influenced the distribution of these sister species over the past 120 000 years. The molecular analysis was based on sequenced mitogenomes of 3 bay cats and 40 Asian golden cats derived mainly from archival samples. Our molecular data suggested a time of split between the two species approximately 3.16 Ma and revealed very low nucleotide diversity within the Asian golden cat population, which supports recent expansion of the population. Discussion. The low nucleotide diversity suggested a population bottleneck in the Asian golden cat, possibly caused by the eruption of the Toba volcano in Northern Sumatra (approx. 74 kya), followed by a continuous population expansion in the Late Pleistocene/Early Holocene. Species distribution projections, the reconstruction of the demographic history, a genetic isolation-by-distance pattern and a gradual variation of pelage pattern support the hypothesis of a post-Toba population expansion of the Asian golden cat from south China/Indochina to Peninsular Malaysia and Sumatra. Our findings reject the current classification of five subspecies for the Asian golden cat, but instead support either a monotypic species or one comprising two subspecies: (i) the Sunda golden cat, distributed south of the Isthmus of Kra: C. t. temminckii and (ii) Indochinese, Indian, Himalayan and Chinese golden cats, occurring north of the Isthmus: C. t. moormensis.
    Matched MeSH terms: Genome, Mitochondrial
  4. Gan HM, Linton SM, Austin CM
    Mar Genomics, 2019 Jun;45:64-71.
    PMID: 30928201 DOI: 10.1016/j.margen.2019.02.002
    Despite recent advances in sequencing technology, a complete mitogenome assembly is still unavailable for the gecarcinid land crabs that include the iconic Christmas Island red crab (Gecarcoidea natalis) which is known for its high population density, annual mass breeding migration and ecological significance in maintaining rainforest structure. Using sequences generated from Nanopore and Illumina platforms, we assembled the complete mitogenome for G. natalis, the first for the genus and only second for the family Gecarcinidae. Nine Nanopore long reads representing 0.15% of the sequencing output from an overnight MinION Nanopore run were aligned to the mitogenome. Two of them were >10 kb and combined are sufficient to span the entire G. natalis mitogenome. The use of Illumina genome skimming data only resulted in a fragmented assembly that can be attributed to low to zero sequencing coverage in multiple high AT-regions including the mitochondrial protein-coding genes (NAD4 and NAD5), 16S ribosomal rRNA and non-coding control region. Supplementing the mitogenome assembly with previously acquired transcriptome dataset containing high abundance of mitochondrial transcripts improved mitogenome sequence coverage and assembly reliability. We then inferred the phylogeny of the Eubrachyura using Maximum Likelihood and Bayesian approaches, confirming the phylogenetic placement of G. natalis within the family Gecarcinidae based on whole mitogenome alignment. Given the substantial impact of AT-content on mitogenome assembly and the value of complete mitogenomes in phylogenetic and comparative studies, we recommend that future mitogenome sequencing projects consider generating a modest amount of Nanopore long reads to facilitate the closing of problematic and fragmented mitogenome assemblies.
    Matched MeSH terms: Genome, Mitochondrial/genetics*
  5. King A
    Science, 2021 05 28;372(6545):893.
    PMID: 34045334 DOI: 10.1126/science.372.6545.893
    Matched MeSH terms: Genome, Viral
  6. Mat Razali N, Cheah BH, Nadarajah K
    Int J Mol Sci, 2019 Jul 23;20(14).
    PMID: 31340492 DOI: 10.3390/ijms20143597
    Transposable elements (TEs) are agents of genetic variability in phytopathogens as they are a source of adaptive evolution through genome diversification. Although many studies have uncovered information on TEs, the exact mechanism behind TE-induced changes within the genome remains poorly understood. Furthermore, convergent trends towards bigger genomes, emergence of novel genes and gain or loss of genes implicate a TE-regulated genome plasticity of fungal phytopathogens. TEs are able to alter gene expression by revamping the cis-regulatory elements or recruiting epigenetic control. Recent findings show that TEs recruit epigenetic control on the expression of effector genes as part of the coordinated infection strategy. In addition to genome plasticity and diversity, fungal pathogenicity is an area of economic concern. A survey of TE distribution suggests that their proximity to pathogenicity genes TEs may act as sites for emergence of novel pathogenicity factors via nucleotide changes and expansion or reduction of the gene family. Through a systematic survey of literature, we were able to conclude that the role of TEs in fungi is wide: ranging from genome plasticity, pathogenicity to adaptive behavior in evolution. This review also identifies the gaps in knowledge that requires further elucidation for a better understanding of TEs' contribution to genome architecture and versatility.
    Matched MeSH terms: Genome, Fungal*
  7. Zhang L, Cenci A, Rouard M, Zhang D, Wang Y, Tang W, et al.
    Sci Rep, 2019 06 03;9(1):8199.
    PMID: 31160634 DOI: 10.1038/s41598-019-44637-x
    Fusarium wilt disease, caused by Fusarium oxysporum f. sp. cubense, especially by tropical race 4 (Foc TR4), is threatening the global banana industry. Musa acuminata Pahang, a wild diploid banana that displays strong resistance to Foc TR4, holds great potential to understand the underlying resistance mechanisms. Microscopic examination reports that, in a wounding inoculation system, the Foc TR4 infection processes in roots of Pahang (resistant) and a triploid cultivar Brazilian (susceptible) were similar by 7 days post inoculation (dpi), but significant differences were observed in corms of both genotypes at 14 dpi. We compare transcriptomic responses in the corms of Pahang and Brazilian, and show that Pahang exhibited constitutive defense responses before Foc TR4 infection and inducible defense responses prior to Brazilian at the initial Foc TR4 infection stage. Most key enzymatic genes in the phenylalanine metabolism pathway were up-regulated in Brazilian, suggesting that lignin and phytotoxin may be triggered during later stages of Foc TR4 infection. This study unravels a few potential resistance candidate genes whose expression patterns were assessed by RT-qPCR assay and improves our understanding the defense mechanisms of Pahang response to Foc TR4.
    Matched MeSH terms: Genome, Plant
  8. Md-Mustafa ND, Khalid N, Gao H, Peng Z, Alimin MF, Bujang N, et al.
    BMC Genomics, 2014;15:984.
    PMID: 25407215 DOI: 10.1186/1471-2164-15-984
    Panduratin A extracted from Boesenbergia rotunda is a flavonoid reported to possess a range of medicinal indications which include anti-dengue, anti-HIV, anti-cancer, antioxidant and anti-inflammatory properties. Boesenbergia rotunda is a plant from the Zingiberaceae family commonly used as a food ingredient and traditional medicine in Southeast Asia and China. Reports on the health benefits of secondary metabolites extracted from Boesenbergia rotunda over the last few years has resulted in rising demands for panduratin A. However large scale extraction has been hindered by the naturally low abundance of the compound and limited knowledge of its biosynthetic pathway.
    Matched MeSH terms: Genome, Plant
  9. Kwasiborski A, Mondy S, Chong TM, Barbey C, Chan KG, Beury-Cirou A, et al.
    Heredity (Edinb), 2015 May;114(5):476-84.
    PMID: 25585922 DOI: 10.1038/hdy.2014.121
    Social bacteria use chemical communication to coordinate and synchronize gene expression via the quorum-sensing (QS) regulatory pathway. In Pectobacterium, a causative agent of the blackleg and soft-rot diseases on potato plants and tubers, expression of the virulence factors is collectively controlled by the QS-signals N-acylhomoserine lactones (NAHLs). Several soil bacteria, such as the actinobacterium Rhodococcus erythropolis, are able to degrade NAHLs, hence quench the chemical communication and virulence of Pectobacterium. Here, next-generation sequencing was used to investigate structural and functional genomics of the NAHL-degrading R. erythropolis strain R138. The R. erythropolis R138 genome (6.7 Mbp) contained a single circular chromosome, one linear (250 kbp) and one circular (84 kbp) plasmid. Growth of R. erythropolis and P. atrosepticum was not altered in mixed-cultures as compared with monocultures on potato tuber slices. HiSeq-transcriptomics revealed that no R. erythropolis genes were differentially expressed when R. erythropolis was cultivated in the presence vs absence of the avirulent P. atrosepticum mutant expI, which is defective for QS-signal synthesis. By contrast 50 genes (<1% of the R. erythropolis genome) were differentially expressed when R. erythropolis was cultivated in the presence vs absence of the NAHL-producing virulent P. atrosepticum. Among them, quantitative real-time reverse-transcriptase-PCR confirmed that the expression of some alkyl-sulfatase genes decreased in the presence of a virulent P. atrosepticum, as well as deprivation of organic sulfur such as methionine, which is a key precursor in the synthesis of NAHL by P. atrosepticum.
    Matched MeSH terms: Genome, Bacterial*
  10. Conti DV, Darst BF, Moss LC, Saunders EJ, Sheng X, Chou A, et al.
    Nat Genet, 2021 Jan;53(1):65-75.
    PMID: 33398198 DOI: 10.1038/s41588-020-00748-0
    Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction.
    Matched MeSH terms: Genome-Wide Association Study*
  11. Maran S, Lee YY, Xu SH, Raj MS, Abdul Majid N, Choo KE, et al.
    J Dig Dis, 2013 Apr;14(4):196-202.
    PMID: 23241512 DOI: 10.1111/1751-2980.12023
    To identify gene polymorphisms that differ between Malays, Han Chinese and South Indians, and to identify candidate genes for the investigation of their role in protecting Malays from Helicobacter pylori (H. pylori) infection.
    Matched MeSH terms: Genome-Wide Association Study
  12. Acharya UR, Hagiwara Y, Sudarshan VK, Chan WY, Ng KH
    J Zhejiang Univ Sci B, 2018 1 9;19(1):6-24.
    PMID: 29308604 DOI: 10.1631/jzus.B1700260
    Radiology (imaging) and imaging-guided interventions, which provide multi-parametric morphologic and functional information, are playing an increasingly significant role in precision medicine. Radiologists are trained to understand the imaging phenotypes, transcribe those observations (phenotypes) to correlate with underlying diseases and to characterize the images. However, in order to understand and characterize the molecular phenotype (to obtain genomic information) of solid heterogeneous tumours, the advanced sequencing of those tissues using biopsy is required. Thus, radiologists image the tissues from various views and angles in order to have the complete image phenotypes, thereby acquiring a huge amount of data. Deriving meaningful details from all these radiological data becomes challenging and raises the big data issues. Therefore, interest in the application of radiomics has been growing in recent years as it has the potential to provide significant interpretive and predictive information for decision support. Radiomics is a combination of conventional computer-aided diagnosis, deep learning methods, and human skills, and thus can be used for quantitative characterization of tumour phenotypes. This paper discusses the overview of radiomics workflow, the results of various radiomics-based studies conducted using various radiological images such as computed tomography (CT), magnetic resonance imaging (MRI), and positron-emission tomography (PET), the challenges we are facing, and the potential contribution of radiomics towards precision medicine.
    Matched MeSH terms: Genome
  13. Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, Koren S, et al.
    Nature, 2021 Apr;592(7856):737-746.
    PMID: 33911273 DOI: 10.1038/s41586-021-03451-0
    High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species1-4. To address this issue, the international Genome 10K (G10K) consortium5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant vertebrate species and to help to enable a new era of discovery across the life sciences.
    Matched MeSH terms: Genome*; Genomics/methods*; Genome, Mitochondrial; Genome Size
  14. Ranganathan S, Schönbach C, Kelso J, Rost B, Nathan S, Tan TW
    BMC Bioinformatics, 2011;12 Suppl 13:S1.
    PMID: 22372736 DOI: 10.1186/1471-2105-12-S13-S1
    The 2011 International Conference on Bioinformatics (InCoB) conference, which is the annual scientific conference of the Asia-Pacific Bioinformatics Network (APBioNet), is hosted by Kuala Lumpur, Malaysia, is co-organized with the first ISCB-Asia conference of the International Society for Computational Biology (ISCB). InCoB and the sequencing of the human genome are both celebrating their tenth anniversaries and InCoB's goalposts for the next decade, implementing standards in bioinformatics and globally distributed computational networks, will be discussed and adopted at this conference. Of the 49 manuscripts (selected from 104 submissions) accepted to BMC Genomics and BMC Bioinformatics conference supplements, 24 are featured in this issue, covering software tools, genome/proteome analysis, systems biology (networks, pathways, bioimaging) and drug discovery and design.
    Matched MeSH terms: Genome, Human*
  15. Zhang M, Wang Z, Obazee O, Jia J, Childs EJ, Hoskins J, et al.
    Oncotarget, 2016 Oct 11;7(41):66328-66343.
    PMID: 27579533 DOI: 10.18632/oncotarget.11041
    Genome-wide association studies (GWAS) have identified common pancreatic cancer susceptibility variants at 13 chromosomal loci in individuals of European descent. To identify new susceptibility variants, we performed imputation based on 1000 Genomes (1000G) Project data and association analysis using 5,107 case and 8,845 control subjects from 27 cohort and case-control studies that participated in the PanScan I-III GWAS. This analysis, in combination with a two-staged replication in an additional 6,076 case and 7,555 control subjects from the PANcreatic Disease ReseArch (PANDoRA) and Pancreatic Cancer Case-Control (PanC4) Consortia uncovered 3 new pancreatic cancer risk signals marked by single nucleotide polymorphisms (SNPs) rs2816938 at chromosome 1q32.1 (per allele odds ratio (OR) = 1.20, P = 4.88x10 -15), rs10094872 at 8q24.21 (OR = 1.15, P = 3.22x10 -9) and rs35226131 at 5p15.33 (OR = 0.71, P = 1.70x10 -8). These SNPs represent independent risk variants at previously identified pancreatic cancer risk loci on chr1q32.1 ( NR5A2), chr8q24.21 ( MYC) and chr5p15.33 ( CLPTM1L- TERT) as per analyses conditioned on previously reported susceptibility variants. We assessed expression of candidate genes at the three risk loci in histologically normal ( n = 10) and tumor ( n = 8) derived pancreatic tissue samples and observed a marked reduction of NR5A2 expression (chr1q32.1) in the tumors (fold change -7.6, P = 5.7x10 -8). This finding was validated in a second set of paired ( n = 20) histologically normal and tumor derived pancreatic tissue samples (average fold change for three NR5A2 isoforms -31.3 to -95.7, P = 7.5x10 -4-2.0x10 -3). Our study has identified new susceptibility variants independently conferring pancreatic cancer risk that merit functional follow-up to identify target genes and explain the underlying biology.
    Matched MeSH terms: Genome-Wide Association Study/methods
  16. Najafi S, Tan SC, Aghamiri S, Raee P, Ebrahimi Z, Jahromi ZK, et al.
    Biomed Pharmacother, 2022 Apr;148:112743.
    PMID: 35228065 DOI: 10.1016/j.biopha.2022.112743
    Viral infections are a common cause of morbidity worldwide. The emergence of Coronavirus Disease 2019 (COVID-19) has led to more attention to viral infections and finding novel therapeutics. The CRISPR-Cas9 system has been recently proposed as a potential therapeutic tool for the treatment of viral diseases. Here, we review the research progress in the use of CRISPR-Cas technology for treating viral infections, as well as the strategies for improving the delivery of this gene-editing tool in vivo. Key challenges that hinder the widespread clinical application of CRISPR-Cas9 technology are also discussed, and several possible directions for future research are proposed.
    Matched MeSH terms: Genome, Viral
  17. Kuruvilla J, Sasmita AO, Ling APK
    Neurol Sci, 2018 Nov;39(11):1827-1835.
    PMID: 30076486 DOI: 10.1007/s10072-018-3521-0
    BACKGROUND AND PURPOSE: The central nervous system (CNS) faces unique difficulties in attaining permanent therapy for neurodegenerative disorder (ND). Genomic level forms of therapy have garnered interest in the recent decade, with the novel CRISPR/Cas9 gene editing tool continuing to be explored due to its efficiency, safety, and adaptability to varying conditions. With the aid of viral vectors as transport vectors, the gene editing tool has produced promising in vitro and in vivo findings in study models. Thus, this review focuses on the recent advancements and update of CRISPR/Cas9 to combat neurodegenerative diseases.

    METHODS: Articles detailing potential applications of CRISPR/Cas9 in neurodegenerative settings were retrieved from PubMed and Google Scholar with the keywords "CRISPR," "gene editing," and "neurodegenerative diseases." Relevant information was collected and critically reviewed.

    RESULTS: The utility of CRISPR/Cas9 coupled with viral transduction ranges from the disruption of amyloid precursor protein (APP) production at a genomic level in Alzheimer's disease (AD) to the deletion of varying exon portions of the Dmd gene in Duchenne muscular dystrophy (DMD) which would increase dystrophin expression. This usage of CRISPR/Cas9 also extends to experimentally ameliorate the neurodegenerative effects caused by viral infections.

    CONCLUSION: The CRISPR/Cas9 gene editing tool is a powerful arsenal in the field of gene therapy and molecular medicine; hence, more research should be called to focus on the ample potential this tool has to offer in the field of neurodegenerative diseases.

    Matched MeSH terms: Genome
  18. Guan M, Liu X, Lin F, Xie Z, Fazhan H, Ikhwanuddin M, et al.
    Mitochondrial DNA B Resour, 2018 Mar 14;3(1):368-369.
    PMID: 33490509 DOI: 10.1080/23802359.2018.1450685
    In this study, we sequenced and analyzed the whole mitochondrial genome of Metopograpsus frontalis Miers, 1880 (Decapoda, Grapsidae). The circular genome is 15,587 bp in length, consisting of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, as well as a control region. Both atp8/atp6 and nad4L/nad4 share 7 nucleotides in their adjacent overlapping region, which is identical to those observed in other Grapsidae crabs. The genome composition and gene order follow a classic crab-type arrangement regulation. The phylogenetic analysis suggested that Grapsidae crabs formed a solid monophyletic group. The newly described mitochondrial genome may provide genetic marker for studies on phylogeny of the grapsid crabs.
    Matched MeSH terms: Genome, Mitochondrial
  19. Guan M, Tan H, Fazhan H, Xie Z, Shi X, Zhang Y, et al.
    Mitochondrial DNA B Resour, 2018 Oct 26;3(2):1244-1245.
    PMID: 33474478 DOI: 10.1080/23802359.2018.1532345
    The mitochondrial genome plays an important role in studies on phylogeography and population genetic diversity. Here we report the complete mitochondrial genome of Lupocycloporus gracilimanus (Stimpson, 1858) which is the first mitochondrial genome reported in genus Lupocycloporus by now. The mitogenome is 15,990 bp in length, consisting of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and a putative control region. The phylogenetic analysis showed that L. gracilimanus was closest to genus Scylla. The present research should provide valuable information for phylogenetic analysis and classification of Portunidae.
    Matched MeSH terms: Genome, Mitochondrial
  20. Walters K, Cox A, Yaacob H
    Genet Epidemiol, 2021 Jun;45(4):386-401.
    PMID: 33410201 DOI: 10.1002/gepi.22375
    The Gaussian distribution is usually the default causal single-nucleotide polymorphism (SNP) effect size prior in Bayesian population-based fine-mapping association studies, but a recent study showed that the heavier-tailed Laplace prior distribution provided a better fit to breast cancer top hits identified in genome-wide association studies. We investigate the utility of the Laplace prior as an effect size prior in univariate fine-mapping studies. We consider ranking SNPs using Bayes factors and other summaries of the effect size posterior distribution, the effect of prior choice on credible set size based on the posterior probability of causality, and on the noteworthiness of SNPs in univariate analyses. Across a wide range of fine-mapping scenarios the Laplace prior generally leads to larger 90% credible sets than the Gaussian prior. These larger credible sets for the Laplace prior are due to relatively high prior mass around zero which can yield many noncausal SNPs with relatively large Bayes factors. If using conventional credible sets, the Gaussian prior generally yields a better trade off between including the causal SNP with high probability and keeping the set size reasonable. Interestingly when using the less well utilised measure of noteworthiness, the Laplace prior performs well, leading to causal SNPs being declared noteworthy with high probability, whilst generally declaring fewer than 5% of noncausal SNPs as being noteworthy. In contrast, the Gaussian prior leads to the causal SNP being declared noteworthy with very low probability.
    Matched MeSH terms: Genome-Wide Association Study
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links