Displaying publications 41 - 60 of 96 in total

Abstract:
Sort:
  1. Hui H, Gopinath SCB, Ismail ZH, Chen Y, Pandian K, Velusamy P
    Biotechnol Appl Biochem, 2023 Apr;70(2):581-591.
    PMID: 35765758 DOI: 10.1002/bab.2380
    Myocardial infarction (MI) is highly related to cardiac arrest leading to death and organ damage. Radiological techniques and electrocardiography have been used as preliminary tests to diagnose MI; however, these techniques are not sensitive enough for early-stage detection. A blood biomarker-based diagnosis is an immediate solution, and due to the high correlation of troponin with MI, it has been considered to be a gold-standard biomarker. In the present research, the cardiac biomarker troponin I (cTnI) was detected on an interdigitated electrode sensor with various surface interfaces. To detect cTnI, a capture aptamer-conjugated gold nanoparticle probe and detection antibody probe were utilized and compared through an alternating sandwich pattern. The surface metal oxide morphology of the developed sensor was proven by microscopic assessments. The limit of detection with the aptamer-gold-cTnI-antibody sandwich pattern was 100 aM, while it was 1 fM with antibody-gold-cTnI-aptamer, representing 10-fold differences. Further, the high performance of the sensor was confirmed by selective cTnI determination in serum, exhibiting superior nonfouling. These methods of determination provide options for generating novel assays for diagnosing MI.
    Matched MeSH terms: Immunoassay
  2. Sheikhzadeh E, Eissa S, Ismail A, Zourob M
    Talanta, 2020 Dec 01;220:121392.
    PMID: 32928412 DOI: 10.1016/j.talanta.2020.121392
    COVID-19 pandemic is a serious global health issue today due to the rapid human to human transmission of SARS-CoV-2, a new type of coronavirus that causes fatal pneumonia. SARS -CoV-2 has a faster rate of transmission than other coronaviruses such as SARS and MERS and until now there are no approved specific drugs or vaccines for treatment. Thus, early diagnosis is crucial to prevent the extensive spread of the disease. The reverse transcription-polymerase chain reaction (RT-PCR) is the most routinely used method until now to detect SARS-CoV-2 infections. However, several other faster and accurate assays are being developed for the diagnosis of COVID-19 aiming to control the spread of infection through the identification of patients and immediate isolation. In this review, we will discuss the various detection methods of the SARS-CoV-2 virus including the recent developments in immunological assays, amplification techniques as well as biosensors.
    Matched MeSH terms: Immunoassay
  3. Wan Omar A, Sulaiman O, Yusof S, Ismail G, Fatmah MS, Rahmah N, et al.
    Malays J Med Sci, 2001 Jul;8(2):19-24.
    PMID: 22893756
    We have recently reported that a dipstick colloidal dye immunoassay (DIA) that detect parasite antigens in human serum is sensitive and specific for the diagnosis of active infection of lymphatic filariasis. Rabbit polyclonal antibodies (RbBmCAg) labelled with a commercial dye, palanil navy blue was used to detect filarial antigenemia among Indonesian and Bangladeshi immigrant workers (N= 630) at oil palm estates at Hulu Trengganu District, Peninsular Malaysia. Microfilaremia with Brugia malayi were detected in 51 (8.10 %) individuals, of which 42 (6.67 %) were among the Indonesians and 9 (1.98 %) among the Bangladeshis. Microfilaremia with Wuchereria bancrofti were detected in 33 (5.24 %) individuals of which 15 (2.38 %) were among the Indonesians and 18 (2.86 %) among the Bangladeshis workers. The DIA detected 96 (15.24 %) antigenemic cases which comprise of all the microfilaremic cases and 15 (2.38 %) amicrofilaremic cases. The amicrofilaremic cases with filarial antigenemia consisted of 9 (1. 43 %) Indonesians and 6 (0.95%) Bangladeshis. We have used 6 ul of the RbBmCAg and diluted (1:10) patients' sera per dipstick which make the DIA reagent conservative. The DIA is a rapid test and can be read in approximate 2 hours.. Additionally, coloured dots developed in the DIA can be qualitatively assessed visually for intensity. The DIA does not require sophisticated equipment or radioactivity, and therefore suitable for field application.
    Matched MeSH terms: Immunoassay
  4. Seenichamy A, Bahaman AR, Mutalib AR, Khairani-Bejo S
    Biomed Res Int, 2014;2014:592858.
    PMID: 24860824 DOI: 10.1155/2014/592858
    Leptospirosis is one of the zoonotic diseases in animals and humans throughout the world. LipL21 is one of the important surface-exposed lipoproteins in leptospires and the most effective cross protective immunogenic antigen. It is widely considered as a diagnostic marker for leptospirosis. In this study, we evaluated the serodiagnostic potential of LipL21 protein of Leptospira interrogans serovar Pomona. We have successfully amplified, cloned, and expressed LipL21 in E. coli and evaluated its specificity by immunoblotting. Purified recombinant LipL21 (rLipL21) was inoculated into rabbits for the production of polyclonal antibody. Characterization of the purified IgG antibody against rLipL21 was performed by cross reactivity assay. Only sera from leptospirosis patients and rabbit hyperimmune sera recognized rLipL21 while the nonleptospirosis control sera showed no reaction in immunoblotting. We confirmed that anti-rLipL21-IgG antibody cross reacted with and detected only pathogenic leptospiral species and it did not react with nonpathogenic leptospires and other bacterial species. Results observed showed that anti-rLipL21-IgG antibody has high specificity and sensitivity to leptospires. The findings indicated that the antibody could be used in a diagnostic assay for detection of leptospires or their proteins in the early phase of infection.
    Matched MeSH terms: Immunoassay/methods
  5. Ahmad AL, Low SC, Shukor SR, Ismail A
    J Immunoassay Immunochem, 2012 Jan;33(1):48-58.
    PMID: 22181820 DOI: 10.1080/15321819.2011.591479
    This study was aimed at gaining a quantitative understanding of the effect of protein quantity and membrane pore structure on protein immobilization. The concentration of immobilized protein was measured by staining with Ponceau S and measuring its color intensity. In this study, both membrane morphology and the quantity of deposited protein significantly influenced the quantity of protein immobilization on the membrane surface. The sharpness and intensity of the red protein spots varied depending on the membrane pore structure, indicating a dependence of protein immobilization on this factor. Membranes with smaller pores resulted in a higher color density, corresponding to enhanced protein immobilization and an increased assay sensitivity level. An increased of immobilized volume has a significant jagged outline on the protein spot but, conversely, no difference in binding capacity.
    Matched MeSH terms: Immunoassay/methods*
  6. Balakrishnan SR, Hashim U, Gopinath SC, Poopalan P, Ramayya HR, Veeradasan P, et al.
    Biosens Bioelectron, 2016 Oct 15;84:44-52.
    PMID: 26560969 DOI: 10.1016/j.bios.2015.10.075
    Rationally designed biosensing system supports multiplex analyses is warranted for medical diagnosis to determine the level of analyte interaction. The chemically functionalized novel multi-electrode polysilicon nanogap (PSNG) lab-on-chip is designed in this study, facilitates multiplex analyses for a single analyte. On the fabricated 69nm PSNG, biocompatibility and structural characteristics were verified for the efficient binding of Human Chorionic Gonadotropin (hCG). With the assistance of microfluidics, hCG sample was delivered via single-injection to 3-Aminopropyl(triethoxy)silane (APTES) and Glycidoxypropyl(trimethoxy)silane (GPMS) modified PSNG electrodes and the transduced signal was used to investigate the dielectric mechanisms for multiplex analyses. The results from amperometric response and impedance measurement delivered the scale of interaction between anti-hCG antibody and hCG that exhibited 6.5 times higher sensitivity for the chemical linker, APTES than GPMS. Under optimized experimental conditions, APTES and GPMS modified immunosensor has a limit of detection as 0.56mIU/ml and 2.93mIU/ml (at S/N=3), with dissociation constants (Kd) of 5.65±2.5mIU/ml and 7.28±2.6mIU/ml, respectively. These results suggest that multiplex analysis of single target could enhance the accuracy of detection and reliable for real-time comparative analyses. The designed PSNG is simple, feasible, requires low sample consumption and could be applied for any given multiplex analyses.
    Matched MeSH terms: Immunoassay/instrumentation
  7. Rohani MY, Hasnidah D, Ong KH
    Malays J Pathol, 1998 Jun;20(1):31-3.
    PMID: 10879261
    A chromatographic immunoassay cholera antigen detection kit, the Cholera Spot test, was evaluated. The test was found to be specific with a sensitivity of 10(6) cfu/ml for the direct detection of V. cholerae in simulated stool specimens and 10 cfu/ml in simulated cotton-tipped swab specimens after overnight incubation in alkaline peptone water. This enables early recognition of cholera cases and their contacts so that prevention and control measures can be promptly instituted.
    Matched MeSH terms: Immunoassay/methods
  8. Rusul G, Yaacob NH
    Int J Food Microbiol, 1995 Apr;25(2):131-9.
    PMID: 7547144
    Enterotoxigenic Bacillus cereus was detected in cooked foods (17), rice noodles (3), wet wheat noodles (2), dry wheat noodles (10), spices (8), grains (4), legumes (11) and legume products (3). One hundred ninety-four (42.3%), 70 (15.3%) and 23 (5.2%) of the 459 presumptive B. cereus colonies isolated from PEMBA agar were identified as B. cereus, Bacillus thuringiensis and B. mycoides, respectively. B. cereus isolates were examined for growth temperature, pH profile and enterotoxin production using both TECRA-VIA and BCET-RPLA kits. One hundred seventy-eight (91.8%) and 164 (84%) of the strains were enterotoxigenic as determined using TECRA-VIA and BCET-RPLA, respectively. Eighty-two (50%) of the enterotoxigenic strains were capable of growing at 5 degrees C, and 142 (86.6%) grew at 7 degrees C within 7 days of incubation. The enterotoxigenic strains did not grow at pH 4.0 but 69 (42.0%) of the strains were able to grow at pH 4.5 within 7 days at 37 degrees C. The isolates were resistant to ampicillin (98.8%), cloxallin (100%) and tetracycline (61.0%), and susceptible to chloroamphenicol (87%), erythromycin (77.4%), gentamycin (100%) and streptomycin (98.7%).
    Matched MeSH terms: Immunoassay/methods*
  9. Jahangir MA, Gilani SJ, Muheem A, Jafar M, Aslam M, Ansari MT, et al.
    Pharm Nanotechnol, 2019;7(3):234-245.
    PMID: 31486752 DOI: 10.2174/2211738507666190429113906
    BACKGROUND: The amalgamation of biological sciences with nano stuff has significantly expedited the progress of biological strategies, greatly promoting practical applications in biomedical fields.

    OBJECTIVE: With distinct optical attributes (e.g., robust photostability, restricted emission spectra, tunable broad excitation, and high quantum output), fluorescent quantum dots (QDs) have been feasibly functionalized with manageable interfaces and considerably utilized as a new class of optical probe in biological investigations.

    METHODS: In this review article, we structured the current advancements in the preparation methods and attributes of QDs. Furthermore, we extend an overview of the outstanding potential of QDs for biomedical research and radical approaches to drug delivery.

    CONCLUSION: Notably, the applications of QDs as smart next-generation nanosystems for neuroscience and pharmacokinetic studies have been explained. Moreover, recent interests in the potential toxicity of QDs are also apprised, ranging from cell investigations to animal studies.

    Matched MeSH terms: Immunoassay/methods
  10. Ogunfowokan O, Ogunfowokan BA, Nwajei AI
    Afr J Prim Health Care Fam Med, 2020 Jun 17;12(1):e1-e8.
    PMID: 32634015 DOI: 10.4102/phcfm.v12i1.2212
    BACKGROUND: Malaria diagnosis using microscopy is currently the gold standard. However, malaria rapid diagnostic tests (mRDTs) were developed to simplify the diagnosis in regions without access to functional microscopy.

    AIM: The objective of this study was to compare the diagnostic accuracy of mRDT CareStatTM with microscopy.

    SETTING: This study was conducted in the paediatric primary care clinic of the Federal Medical Centre, Asaba, Nigeria.

    METHODS: A cross-sectional study for diagnostic accuracy was conducted from May 2016 to October 2016. Ninety-eight participants were involved to obtain a precision of 5%, sensitivity of mRDT CareStatTM of 95% from published work and 95% level of confidence after adjusting for 20% non-response rate or missing data. Consecutive participants were tested using both microscopy and mRDT. The results were analysed using EPI Info Version 7.

    RESULTS: A total of 98 children aged 3-59 months were enrolled. Malaria prevalence was found to be 53% (95% confidence interval [CI] = 46% - 60%), whilst sensitivity and specificity were 29% (95% CI = 20% - 38%) and 89% (95% CI = 83% - 95%), respectively. The positive and negative predictive values were 75% (95% CI = 66.4% - 83.6%) and 53% (95% CI = 46% - 60%), respectively.

    CONCLUSION: Agreement between malaria parasitaemia using microscopy and mRDT positivity increased with increase in the parasite density. The mRDT might be negative when malaria parasite density using microscopy is low.

    Matched MeSH terms: Immunoassay/methods
  11. Jamail M, Andrew K, Junaidi D, Krishnan AK, Faizal M, Rahmah N
    Trop Med Int Health, 2005 Jan;10(1):99-104.
    PMID: 15655019
    We conducted a field study of a rapid test (Brugia Rapid) for detection of Brugia malayi infection to validate its sensitivity and specificity under operational conditions. Seven districts in the state of Sarawak, Malaysia, which are endemic for brugian filariasis, were used to determine the test sensitivity. Determination of specificity was performed in another state in Malaysia (Bachok, Kelantan) which is non-endemic for filariasis but endemic for soil-transmitted helminths. In Sarawak both the rapid test and thick blood smear preparation were performed in the field. The rapid test was interpreted on site, whereas blood smears were taken to the district health centres for staining and microscopic examination. Sensitivity of Brugia Rapid dipstick as compared with microscopy of thick blood smears was 87% (20/23; 95% CI: 66.4-97.2) whereas the specificity was 100% (512/512). The lower sensitivity of the test in the field than in laboratory evaluations (> or =95%), was probably due to the small number of microfilaraemic individuals, in addition to difficulties in performing the test in remote villages by field personnel. The overall prevalence of brugian filariasis as determined by the dipstick is 9.4% (95% CI: 8.2-0.5) while that determined by microscopy is 0.90% (95% CI: 0.5-1.3) thus the dipstick detected about 10 times more cases than microscopy. Equal percentages of adults and children were found to be positive by the dipstick whereas microscopy showed that the number of infected children was seven times less than infected adults. The rapid dipstick test was useful as a diagnostic tool for mapping and certification phases of the lymphatic filariasis elimination programme in B. malayi-endemic areas.
    Matched MeSH terms: Immunoassay/methods
  12. Awaludin N, Abdullah J, Salam F, Ramachandran K, Yusof NA, Wasoh H
    Anal Biochem, 2020 12 01;610:113876.
    PMID: 32750357 DOI: 10.1016/j.ab.2020.113876
    The identification of rice bacterial leaf blight disease requires a simple, rapid, highly sensitive, and quantitative approach that can be applied as an early detection monitoring tool in rice health. This paper highlights the development of a turn-off fluorescence-based immunoassay for the early detection of Xanthomonas oryzae pv. oryzae (Xoo), a gram-negative bacterium that causes rice bacterial leaf blight disease. Antibodies against Xoo bacterial cells were produced as specific bio-recognition molecules and the conjugation of these antibodies with graphene quantum dots and gold nanoparticles was performed and characterized, respectively. The combination of both these bio-probes as a fluorescent donor and metal quencher led to changes in the fluorescence signal. The immunoreaction between AntiXoo-GQDs, Xoo cells, and AntiXoo-AuNPs in the immuno-aggregation complex led to the energy transfer in the turn-off fluorescence-based quenching system. The change in fluorescence intensity was proportional to the logarithm of Xoo cells in the range of 100-105 CFU mL-1. The limit of detection was achieved at 22 CFU mL-1 and the specificity test against other plant disease pathogens showed high specificity towards Xoo. The detection of Xoo in real plant samples was also performed in this study and demonstrated satisfactory results.
    Matched MeSH terms: Immunoassay/methods*
  13. Eamsobhana P, Prasartvit A, Gan XX, Yong HS
    Trop Biomed, 2015 Mar;32(1):121-5.
    PMID: 25801261
    Angiostrongylus cantonensis is the most frequent cause of eosinophilic meningitis in humans in Thailand and worldwide. Because of difficulty of recovering the Angiostrongylus larvae from infected patients, detection of parasite-specific antibodies is used to support clinical diagnosis. This study tested serum samples from eosinophilic meningitis patients and individuals at risk of infection with A. cantonensis to evaluate a recently developed simple and rapid dot-immunogold filtration assay (DIGFA) for detection of specific antibodies against A. cantonensis. Purified 31-kDa glycoprotein of A. cantonensis and protein A colloidal gold conjugate were employed to detect the 31-kDa anti-A. cantonensis antibody in patients sera from the parasite endemic areas of northeast Thailand. The results were compared with those obtained by dot-blot enzyme-linked immunosorbent assay (ELISA) with 31-kDa A. cantonensis antigen. The overall positivity rate of DIGFA and dot-blot ELISA for A. cantonensis infection in 98 clinically diagnosed cases from three highly endemic districts in Khon Kaen province were 39.79% and 37.75%, respectively. Among 86 sera of subjects at risk of infection with A. cantonensis, 24.41% were positive by DIGFA and 23.25% by dot-blot ELISA. There were good correlation between the visual grading of DIGFA and dot-blot ELISA in both groups of defined sera. DIGFA is as sensitive and specific as dot-blot ELISA for confirming eosinophilic meningitis due to A. cantonensis infection, with advantages of simplicity, rapidity and without the use of specific and expensive equipment, and can be used in field settings.
    Matched MeSH terms: Immunoassay/methods
  14. Syamila N, Syahir A, Sulaiman Y, Ikeno S, Tan WS, Ahmad H, et al.
    Bioelectrochemistry, 2022 Feb;143:107952.
    PMID: 34600402 DOI: 10.1016/j.bioelechem.2021.107952
    The diagnosis of hepatitis B virus (HBV) and monitoring of the vaccination efficiency against HBV require real-time analysis. The presence of antibody against hepatitis B virus surface antigen (anti-HBsAg) as a result of HBV infection and/or immunization may indicate individual immune status towards HBV. This study investigated the ability of a bio-nanogate-based displacement immunosensing strategy in detecting anti-HBsAg antibody, via nonspecific-binding between polyamidoamine dendrimers encapsulated gold nanoparticles (PAMAM-Au) and the 'antigenic determinant' region (aD) of HBsAg. For this purpose, maltose binding protein harbouring the aD region (MBP-aD) was synthesized as a bioreceptor and immobilized on the screen-printed carbon electrode (SPCE). Following that, PAMAM-Au was deposited on MBP-aD, forming the 'gate' and was used as a monitoring agent. Under optimal conditions, the high specificity of anti-HBsAg antibody towards MBP-aD displaced PAMAM-Au causing the decrement of anodic peak in differential pulse voltammetry (DPV) analysis. The signal changes were proportionally related to the concentration of anti-HBsAg antibody, in a range of 1 - 1000 mIU/mL with a limit of detection (LOD) of 2.5 mIU/mL. The results also showed high specificity and selectivity of the immunosensor platform in detecting anti-HBsAg antibody both in spiked buffer and human serum samples.
    Matched MeSH terms: Immunoassay/methods
  15. Moghadam ZK, Ghaffarifar F, Khalilpour A, Abdul Aziz F, Saadatnia G, Noordin R
    Clin Vaccine Immunol, 2013 Apr;20(4):501-5.
    PMID: 23365208 DOI: 10.1128/CVI.00019-13
    Hydatidosis is a public health problem in many parts of the world, and improvement in diagnosis of the disease is still being pursued. Protoscoleces of Echinococcus granulosus were isolated from hydatid cysts collected from naturally infected sheep slaughtered in abattoirs in Iran. Sonicated extract of protoscolex was subjected to two-dimensional gel electrophoresis and Western blot analysis. Primary antibodies were from serum samples from 130 hydatidosis patients, 38 individuals infected with other parasitic infections, and 30 healthy people, whereas peroxidase (HRP)-conjugated anti-human IgG and IgG4 were used as secondary antibodies. The recombinant form of the identified protein was produced and tested for its sensitivity and specificity for the detection of human hydatidosis. An antigenic band of ∼60 kDa was found to be sensitive (82%) and specific (100%) for the detection of hydatidosis when probed with anti-human IgG4-HRP, while the sensitivity and specificity were 33 and 100%, respectively, with anti-human IgG-HRP. By mass spectrometry, the band was identified as protoscolex tegument paramyosin. The sensitivity and specificity of full-length paramyosin-recombinant protein in IgG4 blots were found to be 86 and 98%, respectively. In conclusion, IgG4 detection of Echinococcus granulosus paramyosin was found to be useful for the diagnosis of human hydatidosis.
    Matched MeSH terms: Immunoassay/methods
  16. Zaborowski MP, Lee K, Na YJ, Sammarco A, Zhang X, Iwanicki M, et al.
    Cell Rep, 2019 Apr 02;27(1):255-268.e6.
    PMID: 30943406 DOI: 10.1016/j.celrep.2019.03.003
    Analysis of cancer-derived extracellular vesicles (EVs) in biofluids potentially provides a source of disease biomarkers. At present there is no procedure to systematically identify which antigens should be targeted to differentiate cancer-derived from normal host cell-derived EVs. Here, we propose a computational framework that integrates information about membrane proteins in tumors and normal tissues from databases: UniProt, The Cancer Genome Atlas, the Genotype-Tissue Expression Project, and the Human Protein Atlas. We developed two methods to assess capture of EVs from specific cell types. (1) We used palmitoylated fluorescent protein (palmtdTomato) to label tumor-derived EVs. Beads displaying antibodies of interest were incubated with conditioned medium from palmtdTomato-expressing cells. Bound EVs were quantified using flow cytometry. (2) We also showed that membrane-bound Gaussia luciferase allows the detection of cancer-derived EVs in blood of tumor-bearing animals. Our analytical and validation platform should be applicable to identify antigens on EVs from any tumor type.
    Matched MeSH terms: Immunoassay/methods
  17. Noordin R, Yunus MH, Robinson K, Won KY, Babu S, Fischer PU, et al.
    Am J Trop Med Hyg, 2018 12;99(6):1587-1590.
    PMID: 30350768 DOI: 10.4269/ajtmh.18-0566
    At the end phase of the Global Programme to Eliminate Lymphatic Filariasis, antibody testing may have a role in decision-making for bancroftian filariasis-endemic areas. This study evaluated the diagnostic performance of BLF Rapid™, a prototype immunochromatographic IgG4-based test using BmSXP recombinant protein, for detection of bancroftian filariasis. The test was evaluated using 258 serum samples, comprising 96 samples tested at Universiti Sains Malaysia (in-house) and 162 samples tested independently at three international laboratories in the USA and India, and two laboratories in Malaysia. The independent testing involved 99 samples from Wuchereria bancrofti microfilaria or antigen positive individuals and 63 samples from people who were healthy or had other infections. The in-house evaluation showed 100% diagnostic sensitivity and specificity. The independent evaluations showed a diagnostic sensitivity of 84-100% and 100% specificity (excluding non-lymphatic filarial infections). BLF Rapid has potential as a surveillance diagnostic tool to make "Transmission Assessment Survey"-stopping decisions and conduct post-elimination surveillance.
    Matched MeSH terms: Immunoassay/standards*
  18. Ross RS, Viazov S, Schmitt U, Schmolke S, Tacke M, Ofenloch-Haehnle B, et al.
    J Med Virol, 1998 Feb;54(2):103-6.
    PMID: 9496367
    Since the identification of the new human virus, GB virus C (GBV-C)/hepatitis G-virus (HGV), in 1995/1996, reverse transcription polymerase chain reaction remained the sole available diagnostic tool for GBV-C/HGV infection. Recently, a serologic test based on the detection of antibodies to the putative envelope protein 2 (anti-E2) has been introduced. We used this assay for a seroepidemiological survey including 3,314 healthy individuals from different parts of the world, 123 patients from Germany who were suspected to have an increased risk of acquiring GBV-C/HGV infection, 128 multiple organ donors, and 90 GBV-C/HGV RNA positive persons. In European countries, anti-E2 seropositivity ranged from 10.9% (Germany) to 15.3% (Austria). In South Africa (20.3%) and Brazil (19.5%), even higher anti-E2 prevalence rates were recorded. In Asian countries like Bhutan (3.9%), Malaysia (6.3%), and the Philippines (2.7%), anti-E2 positivity was significantly lower. GBV-C/HGV anti-E2 prevalence in potential "risk groups," i.e., patients on hemodialysis and renal transplant recipients, did not vary significantly from anti-E2 seroprevalence in German blood donors. Anti-E2 and GBV-C/HGV RNA were found to be mutually exclusive, confirming the notion that anti-E2 has to be considered as a marker of past infection.
    Matched MeSH terms: Immunoassay/methods
  19. Bador KM, Intan S, Hussin S, Gafor AH
    Lupus, 2012 Oct;21(11):1172-7.
    PMID: 22652631 DOI: 10.1177/0961203312450085
    Previous studies in systemic lupus erythematosus (SLE) patients have produced conflicting results regarding the diagnostic utility of procalcitonin (PCT). The aim of this study was to determine predictive values of PCT and C-reactive protein (CRP) for bacterial infection in SLE patients.
    Matched MeSH terms: Immunoassay/methods
  20. Fry SR, Meyer M, Semple MG, Simmons CP, Sekaran SD, Huang JX, et al.
    PLoS Negl Trop Dis, 2011 Jun;5(6):e1199.
    PMID: 21713023 DOI: 10.1371/journal.pntd.0001199
    BACKGROUND: Serological tests for IgM and IgG are routinely used in clinical laboratories for the rapid diagnosis of dengue and can differentiate between primary and secondary infections. Dengue virus non-structural protein 1 (NS1) has been identified as an early marker for acute dengue, and is typically present between days 1-9 post-onset of illness but following seroconversion it can be difficult to detect in serum.
    AIMS: To evaluate the performance of a newly developed Panbio® Dengue Early Rapid test for NS1 and determine if it can improve diagnostic sensitivity when used in combination with a commercial IgM/IgG rapid test.
    METHODOLOGY: The clinical performance of the Dengue Early Rapid was evaluated in a retrospective study in Vietnam with 198 acute laboratory-confirmed positive and 100 negative samples. The performance of the Dengue Early Rapid in combination with the IgM/IgG Rapid test was also evaluated in Malaysia with 263 laboratory-confirmed positive and 30 negative samples.
    KEY RESULTS: In Vietnam the sensitivity and specificity of the test was 69.2% (95% CI: 62.8% to 75.6%) and 96% (95% CI: 92.2% to 99.8) respectively. In Malaysia the performance was similar with 68.9% sensitivity (95% CI: 61.8% to 76.1%) and 96.7% specificity (95% CI: 82.8% to 99.9%) compared to RT-PCR. Importantly, when the Dengue Early Rapid test was used in combination with the IgM/IgG test the sensitivity increased to 93.0%. When the two tests were compared at each day post-onset of illness there was clear differentiation between the antigen and antibody markers.
    CONCLUSIONS: This study highlights that using dengue NS1 antigen detection in combination with anti-glycoprotein E IgM and IgG serology can significantly increase the sensitivity of acute dengue diagnosis and extends the possible window of detection to include very early acute samples and enhances the clinical utility of rapid immunochromatographic testing for dengue.
    Matched MeSH terms: Immunoassay/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links