Displaying publications 41 - 52 of 52 in total

Abstract:
Sort:
  1. Inam Ali Shah, Sultan Mehmod Wazir, Rahmat Ali Khan
    Sains Malaysiana, 2017;46:117-122.
    Effects of different doses of fertilizers on growth and yield components of biodiesel plant (Jatropha curcas L.), was
    made in the prevailing environment of University of Science and Technology Bannu. The experiment was carried out in
    randomized complete block design (RCBD) with three replications. Nitrogen, phosphorus and potassium were applied
    in the form of urea, single super phosphate and potash in the shape of combined NPK, respectively, during sprouting
    of leaves and thereafter with each irrigation in split doses. The analysis of variance for number of branches per plant
    showed significant results indicated in ANOVA. Significantly the number of primary branches per plant 8.07 was recorded
    in T4 with the application of dose of (N P K: 2507.5 gm: 1091.5 gm: 501.5 gm). Maximum No. of secondary branches
    per plant (9.100) were recorded in T1 especially at both plots. Flower per inflorescence showed that maximum value
    (122.810) was recorded in T5 of especially at both plots. Inflorescence plant-1 showed that maximum value (39.477) were
    recorded in T1 and minimum value were noted as (12.733) at T3 on both the flats. The data for fruits per plant showed
    that maximum value (143.300) was recorded in T1. The seed index, which was the output of the aim of this research work,
    reflects highly significant differences in mean value observed for both subplots. Mean values showed that maximum seeds
    weight 45.86 was recorded in T1 of especially at both plots while low seed index was noted as 22.84 at T5 (N: 3400 gm,
    P: 1480 gm, K: 680 gm) at both the subplots.
    Matched MeSH terms: Jatropha
  2. Irshad M, Ullah F, Mehmood S, Khan AU
    Sains Malaysiana, 2016;45:1013-1018.
    Allelopathy is a process in which one plant species may usefully or adversely affect the growth of other plant species
    through the production of allelochemicals. During the present investigation, mulch effect of Jatropha curcas leaves was
    evaluated on seed germination and seedling growth of maize varieties viz. Pioneer (V1), Azam (V2) and Jalal (V3). Mulch
    was applied at 1 and 2 tons/hectare. Phenolic compounds were detected in Jatropha curcas leaf (131.15 mg gallic acid
    eq./gm extract). Mulch applied at 2 tons/hectare significantly reduced seed germination (%), germination index, relative
    water content, root width and seedling dry weight. From the findings of the present investigation, it was inferred that
    Jatropha curcas leaves exhibited phytotoxic effects on maize at high concentrations.
    Matched MeSH terms: Jatropha
  3. Mohammad M, Yaakob Z, Abdullah SRS
    Materials (Basel), 2013 Oct 09;6(10):4462-4478.
    PMID: 28788340 DOI: 10.3390/ma6104462
    Carbon from jatropha seed hull (JC) was prepared to study the adsorption of cadmium ions (Cd(2+)) from aqueous solutions under various experimental conditions. Batch equilibrium methods have been used to study the influences of the initial metal ion concentration (0.5-50 ppm), dosage (0.2-1 g), contact time (0-300 min), pH (2-7), and temperature (26-60 °C) on adsorption behavior. It has been found that the amount of cadmium adsorbed increases with the initial metal ion concentration, temperature, pH, contact time, and amount of adsorbent. A kinetic study proved that the mechanism of Cd(2+) adsorption on JC followed a three steps process, confirmed by an intraparticle diffusion model: rapid adsorption of metal ions, a transition phase, and nearly flat plateau section. The experimental results also showed that the Cd(2+) adsorption process followed pseudo-second-order kinetics. The Langmuir and Freundlich adsorption isotherm models were used to describe the experimental data, with the former exhibiting a better correlation coefficient than the latter (R² = 0.999). The monolayer adsorption capacity of JC has been compared with the capacities of the other reported agriculturally-based adsorbents. It has been clearly demonstrated that this agricultural waste generated by the biofuel industry can be considered a potential low-cost adsorbent for the removal of Cd(2+) from industrial effluents.
    Matched MeSH terms: Jatropha
  4. Mohammad M, Maitra S, Ahmad N, Bustam A, Sen TK, Dutta BK
    J Hazard Mater, 2010 Jul 15;179(1-3):363-72.
    PMID: 20362390 DOI: 10.1016/j.jhazmat.2010.03.014
    The potential of physic seed hull (PSH), Jantropha curcas L. as an adsorbent for the removal of Cd(2+) and Zn(2+) metal ions from aqueous solution has been investigated. It has been found that the amount of adsorption for both Cd(2+) and Zn(2+) increased with the increase in initial metal ions concentration, contact time, temperature, adsorbent dosage and the solution pH (in acidic range), but decreased with the increase in the particle size of the adsorbent. The adsorption process for both metal ions on PSH consists of three stages-a rapid initial adsorption followed by a period of slower uptake of metal ions and virtually no uptake at the final stage. The kinetics of metal ions adsorption on PSH followed a pseudo-second-order model. The adsorption equilibrium data were fitted in the three adsorption isotherms-Freundlich, Langmuir and Dubinin-Radushkevich isotherms. The data best fit in the Langmuir isotherm indication monolayer chemisorption of the metal ions. The adsorption capacity of PSH for both Zn(2+) and Cd(2+) was found to be comparable with other available adsorbents. About 36-47% of the adsorbed metal could be leached out of the loaded PSH using 0.1M HCl as the eluting medium.
    Matched MeSH terms: Jatropha/chemistry*
  5. Nepal S, Kumar V, Makkar HPS, Stadtlander T, Romano N, Becker K
    Fish Physiol Biochem, 2018 Feb;44(1):143-162.
    PMID: 28900838 DOI: 10.1007/s10695-017-0420-x
    Jatropha seed cake (JSC) is an excellent source of protein but does contain some antinutritional factors (ANF) that can act as toxins and thus negatively affect the growth and health status of fish. While this can limit the use of JSC, detoxified Jatropha protein isolate (DJPI) may be a better option. An 8-week study was performed to evaluate dietary DJPI to common carp Cyprinus carpio. Five iso-nitrogenous diets (crude protein of 38%) were formulated that consisted of a C ontrol (fish meal (FM) based protein), J 50 or J 75 (50 and 75% of FM protein replaced by DJPI), and S 50 or S 75 (50 and 75% of FM protein replaced by soy protein isolate, SPI) and fed to triplicate groups of 75 carp fingerlings (75; av. wt. ± SD; 11.4 ± 0.25 g). The growth, feeding efficiencies, digestibility, plasma biochemistry, and intestinal enzymes were measured. Results showed that growth performance of fish fed the S 75- or DJPI-based diets were not significantly different from those fed the C ontrol diet, while carp fed the S 50 had significantly better growth than the J 75 diet. Fish fed the J 75 diet had significantly lower protein and lipid digestibility as well as significantly lower intestinal amylase and protease activities than all other groups. However, all plant protein-based diets led to significantly higher crude protein, crude lipid, and gross energy in the body of common carp compared to the control treatment. Plasma cholesterol and creatinine significantly decreased in the plant protein fed groups, although plasma triglyceride as well as the red blood cells count, hematocrit, albumin, globulin, total plasma protein, and lysozyme activity were higher in plant protein fed groups compared to FM fed group. White blood cells, hemoglobulin concentration, alkaline phosphatase and alanine transaminase activities, and glucose level in blood did not differ significantly among treatments. The results suggest that the DJPI is non-toxic to carp and can be used to replace FM in the diets of common carp up to 75%, but further research to potentially reduce some inherent ANF within this protein source, such as non-starch polysaccharides, may improve nutrient utilization.
    Matched MeSH terms: Jatropha/chemistry*
  6. Oskoueian E, Abdullah N, Ahmad S
    Int J Mol Sci, 2012;13(11):13816-29.
    PMID: 23203036 DOI: 10.3390/ijms131113816
    The direct feeding of Jatropha meal containing phorbol esters (PEs) indicated mild to severe toxicity symptoms in various organs of different animals. However, limited information is available on cellular and molecular mechanism of toxicity caused by PEs present in Jatropha meal. Thus, the present study was conducted to determine the cytotoxic and mode of action of PEs isolated from Jatropha meal using human hepatocyte (Chang) and African green monkey kidney (Vero) cell lines. The results showed that isolated PEs inhibited cell proliferation in a dose-dependent manner in both cell lines with the CC(50) of 125.9 and 110.3 μg/mL, respectively. These values were compatible to that of phorbol 12-myristate 13-acetate (PMA) values as positive control i.e., 124.5 and 106.3 μg/mL respectively. Microscopic examination, flow cytometry and DNA fragmentation results confirmed cell death due to apoptosis upon treatment with PEs and PMA at CC(50) concentration for 24 h in both cell lines. The Western blot analysis revealed the overexpression of PKC-δ and activation of caspase-3 proteins which could be involved in the mechanism of action of PEs and PMA. Consequently, the PEs isolated form Jatropha meal caused toxicity and induced apoptosis-mediated proliferation inhibition toward Chang and Vero cell lines involving over-expression of PKC-δ and caspase-3 as their mode of actions.
    Matched MeSH terms: Jatropha/chemistry*
  7. Iqbal MO, Yahya EB
    Tissue Cell, 2021 Oct;72:101525.
    PMID: 33780659 DOI: 10.1016/j.tice.2021.101525
    Aminoglycoside antibiotics are widely employed clinically due to their powerful bactericidal activities, less bacterial resistance compared to beta lactam group and low cost. However, their use has been limited in recent years due to their potential induction of nephrotoxicity. Here we investigate the possibility of reversing nephrotoxicity caused by gentamicin in rat models by using ethanolic crude extract of the medicinal plant Jatropha Mollissima. Nephrotoxic male Wistar rats was obtained by gentamicin antibiotic, which then treated with two doses of J. mollissima crude extract for 3 weeks with monitoring their parameter in weekly base. Our results indicate that J. mollissima crude extract at both doses has strong protection ability against gentamicin nephrotoxicity, most of tested parameters backed to normal values after few days from the administration of the crude extract, which could be due to the antagonized the biochemical action of gentamicin on the proximal tubules of the kidney. The results of histopathologic analysis showed observable improvement in J. mollissima treated groups compared with untreated groups. Our findings suggests the J. mollissima has exceptional nephron protection potentials able to reverse the nephrotoxicity caused by gentamicin antibiotic.
    Matched MeSH terms: Jatropha/chemistry*
  8. Othman AR, Abdullah N, Ahmad S, Ismail IS, Zakaria MP
    PMID: 25652309 DOI: 10.1186/s12906-015-0528-4
    BACKGROUND: The Jatropha curcas plant or locally known as "Pokok Jarak" has been widely used in traditional medical applications. This plant is used to treat various conditions such as arthritis, gout, jaundice, wound and inflammation. However, the nature of compounds involved has not been well documented. Hence, this study was conducted to investigate the anti-inflammatory activity of different parts of J. curcas plant and to identify the active compounds involved.

    METHODS: In this study, methanol (80%) extraction of four different parts (leaves, fruits, stem and root) of J. curcas plant was carried out. Phenolic content of each part was determined by using Folin-Ciocalteau reagent. Gallic acid was used as the phenol standard. Each plant part was screened for anti-inflammatory activity using cultured macrophage RAW 264.7 cells. The active plant part was then partitioned with hexane, chloroform, ethyl acetate and water. Each partition was again screened for anti-inflammatory activity. The active partition was then fractionated using an open column chromatography system. Single spots isolated from column chromatography were assayed for anti-inflammatory and cytotoxicity activities. Spots that showed activity were subjected to gas chromatography mass spectrophotometry (GC-MS) analysis for identification of active metabolites.

    RESULTS: The hexane partition from root extract showed the highest anti-inflammatory activity. However, it also showed high cytotoxicity towards RAW 264.7 cells at 1 mg/mL. Fractionation process using column chromatography showed five spots. Two spots labeled as H-4 and H-5 possessed anti-inflammatory activity, without cytotoxicity activity. Analysis of both spots by GC-MS showed the presence of hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid.

    CONCLUSION: This finding suggests that hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid could be responsible for the anti-inflammatory activity of the J. curcas root extract.

    Matched MeSH terms: Jatropha/chemistry*
  9. Wu Q, Patocka J, Nepovimova E, Kuca K
    J Ethnopharmacol, 2019 Apr 24;234:197-203.
    PMID: 30695706 DOI: 10.1016/j.jep.2019.01.022
    ETHNOPHARMACOLOGICAL RELEVANCE: Jatropha gossypiifolia L. (Euphorbiaceae) is popularly known as bellyache bush or black physic nut and is widely used in local / traditional medicine due to the various biological activities attributed to its different parts, including its leaves, roots, and latex.

    AIM OF THE STUDY: In this review, we aim to update and discuss the chemistry, specific pharmacology, and toxicological activities of Jatropha gossypiifolia and its bioactive metabolites.

    MATERIALS AND METHODS: The Web of Science, PubMed, Google Scholar, SciFinder, Cochrane Library, Scopus, and Science Direct databases were searched with the name "Jatropha gossypiifolia" and the term "bioactive metabolites". All studies on the chemistry, pharmacology, and toxicology of the plant up to December 2018 were included in this review.

    RESULTS: Jatropha gossypiifolia leaves are considered to have anti-inflammatory, antimicrobial and insecticidal properties. The root and stem have anti-inflammatory and antimicrobial properties. The seeds and fruits can be used against influenza and as a sedative, analgesic or anti-diarrheal agents. The latex is bactericidal and molluscicidal. Topical application of latex is used to treat wounds and bites of venomous animals. The diluted form is usually used for the treatment of diarrhoea by indigenous peoples.

    CONCLUSIONS: The main pharmacological activities of Jatropha gossypiifolia include anti-inflammatory, antineoplastic, antimicrobial, antioxidant, and anticholinesterase, and antihypertensive activities. Species of Jatropha are notably known for their toxic potential, and their toxicity is primarily related to the latex and seed contents. However, the potential mechanisms of these pharmacological activities have not been fully explored. We hope this review will help to further inform the potential utilization of Jatropha gossypiifolia in complementary and alternative medicine.

    Matched MeSH terms: Jatropha
  10. Ul Haq MN, Wazir SM, Ullah F, Khan RA, Shah MS, Khatak A
    Sains Malaysiana, 2016;45:1435-1442.
    In this study, the antimicrobial, antioxidant, phytotoxic and phytochemical properties of defatted seeds of Jatropha curcas were evaluated. A crude methanolic extract of defatted seeds was tested against three fungal strains - Aspergillus niger, Aspergillus flavus and Aspergillus fumigatus - and five bacteria: Escherichia coli and Klebsiella pneumoniae (Gram negative) and Micrococcus luteus, Bacillus subtilis and Staphylococcus aureus (Gram positive). The methanolic extract was diluted in dimethylsulfoxide to final concentrations of 1, 2, 3, 4 and 5 mg/10 mL. The largest zones of inhibition against K. pneumoniae, M. luteus and B. subtilis were achieved using the concentration of 5 mg/10 mL. The concentration of 1 mg/10 mL was most effective against S. aureus and E. coli. In a 1, 1-diphenyl-2-picrylahydrazyl (DPPH) radical scavenging assay, the 5 mg/10 mL concentration of the Jatropha seed extract showed the strongest activity. Higher concentrations of the Jatropha seed extract (10 mg/50 mL and 5 mg/50 mL) significantly inhibited the germination of radish seeds and had negative effects on radish seedling relative water content, shoot length, root length, seedling fresh weight and seedling dry weight (p<0.05). Phytochemical analyses of the defatted seeds detected alkaloids (7.3%), flavonoids (0.39%) and soluble phenolics (mg gallic acid equivalents/g extract). Based on these results, it was inferred that J. curcas seeds contain active ingredients that are effective against pathogenic microbes and therefore could be used to formulate drugs to treat various diseases.
    Matched MeSH terms: Jatropha
  11. Oskoueian E, Abdullah N, Ahmad S
    Molecules, 2012 Sep 10;17(9):10816-30.
    PMID: 22964499 DOI: 10.3390/molecules170910816
    Jatropha meal produced from the kernel of Jatropha curcas Linn. grown in Malaysia contains phorbol esters (PEs). The potential benefits of PEs present in the meal as anticancer agent are still not well understood. Hence, this study was conducted to evaluate the cytotoxic effects and mode of actions of PEs isolated from Jatropha meal against breast (MCF-7) and cervical (HeLa) cancer cell lines. Isolated PEs inhibited cells proliferation in a dose-dependent manner of both MCF-7 and HeLa cell lines with the IC₅₀ of 128.6 ± 2.51 and 133.0 ± 1.96 µg PMA equivalents/mL respectively, while the values for the phorbol 12-myristate 13-acetate (PMA) as positive control were 114.7 ± 1.73 and 119.6 ± 3.73 µg/mL, respectively. Microscopic examination showed significant morphological changes that resemble apoptosis in both cell lines when treated with PEs and PMA at IC₅₀ concentration after 24 h. Flow cytometry analysis and DNA fragmentation results confirmed the apoptosis induction of PEs and PMA in both cell lines. The PEs isolated from Jatropha meal activated the PKC-δ and down-regulated the proto-oncogenes (c-Myc, c-Fos and c-Jun). These changes probably led to the activation of Caspase-3 protein and apoptosis cell death occurred in MCF-7 and HeLa cell lines upon 24 h treatment with PEs and PMA. Phorbol esters of Jatropha meal were found to be promising as an alternative to replace the chemotherapeutic drugs for cancer therapy.
    Matched MeSH terms: Jatropha/chemistry*
  12. Oskoueian E, Abdullah N, Ahmad S, Saad WZ, Omar AR, Ho YW
    Int J Mol Sci, 2011;12(9):5955-70.
    PMID: 22016638 DOI: 10.3390/ijms12095955
    Defatted Jatropha curcas L. (J. curcas) seed kernels contained a high percentage of crude protein (61.8%) and relatively little acid detergent fiber (4.8%) and neutral detergent fiber (9.7%). Spectrophotometric analysis of the methanolic extract showed the presence of phenolics, flavonoids and saponins with values of 3.9, 0.4 and 19.0 mg/g DM, respectively. High performance liquid chromatography (HPLC) analyses showed the presence of gallic acid and pyrogallol (phenolics), rutin and myricetin (flavonoids) and daidzein (isoflavonoid). The amount of phorbol esters in the methanolic extract estimated by HPLC was 3.0 ± 0.1 mg/g DM. Other metabolites detected by GC-MS include: 2-(hydroxymethyl)-2 nitro-1,3-propanediol, β-sitosterol, 2-furancarboxaldehyde, 5-(hydroxymethy) and acetic acid in the methanolic extract; 2-furancarboxaldehyde, 5-(hydroxymethy), acetic acid and furfural (2-furancarboxaldehyde) in the hot water extract. Methanolic and hot water extracts of kernel meal showed antimicrobial activity against both Gram positive and Gram negative pathogenic bacteria (inhibition range: 0-1.63 cm) at the concentrations of 1 and 1.5 mg/disc. Methanolic extract exhibited antioxidant activities that are higher than hot water extract and comparable to β-carotene. The extracts tended to scavenge the free radicals in the reduction of ferric ion (Fe(3+)) to ferrous ion (Fe(2+)). Cytotoxicity assay results indicated the potential of methanolic extract as a source of anticancer therapeutic agents toward breast cancer cells.
    Matched MeSH terms: Jatropha/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links