Displaying publications 41 - 60 of 336 in total

Abstract:
Sort:
  1. Hajeb P, Jinap S
    J Agric Food Chem, 2012 Jun 13;60(23):6069-76.
    PMID: 22515475 DOI: 10.1021/jf300582j
    An acidic solution containing mercury chelating agents to eliminate mercury in raw fish (mackerel) fillet was developed. The solution contained hydrochloric acid, sodium hydroxide, cysteine, EDTA, and NaCl. The optimum conditions for mercury reduction were achieved using response surface methodology (RSM) at cysteine concentration of 1.25%, EDTA of 275 mg/L, NaCl of 0.5%, pH of 3.75, and exposure time of 18 min. The optimized conditions produced a solution which can remove up to 91% mercury from raw fish fillet. Cysteine and EDTA were identified as potential chelating agents with the greatest potential for use. The solution can be employed in fish industries to reduce mercury in highly contaminated fish.
    Matched MeSH terms: Limit of Detection
  2. Foo Wong Y, Makahleh A, Al Azzam KM, Yahaya N, Saad B, Sulaiman SA
    Talanta, 2012 Aug 15;97:23-31.
    PMID: 22841043 DOI: 10.1016/j.talanta.2012.03.056
    A simple micellar electrokinetic chromatography (MEKC) method for the simultaneous determination of 2-furfural (2-F), 3-furfural (3-F), 5-methylfurfural (5-MF), 5-hydroxymethylfurfural (5-HMF), 2-furoic acid (2-FA) and 3-furoic acid (3-FA) in honey and vegetable oils is described. Parameters affecting the separation such as pH, buffer and surfactant concentrations, applied voltage, capillary temperature, injection time and capillary length were studied and optimized. The separation was carried out in normal polarity mode at 20 °C, 22 kV and using hydrodynamic injection (17 s). The separation was achieved in a bare fused-silica capillary (46 cm × 50 μm i.d.) with a background electrolyte of 75 mM phosphoric acid (pH 7.3), containing 200 mM of sodium dodecyl sulphate (SDS). The detection wavelengths were at 200 nm (2-FA and 3-FA) and 280 nm (2-F, 3-F, 5-MF, 5-HMF). The furfurals were well separated in less than 20 min. The method was validated in terms of linearity, limit of detection and quantitation, precision and recoveries. Calibration curves of the six furfurals were well correlated (r(2)>0.991) within the range 1-25 μg mL(-1). Relative standard deviations of intra- and inter-day migration times and corrected peak areas ≤9.96% were achieved. The limit of detection (signal:noise, 3) was 0.33-0.70 μg mL(-1) whereas the limit of quantitation (signal:noise, 10) was 1.00-2.12 μg mL(-1). The method was applied to the determination of furanic compounds in honeys and vegetable oils (palm, walnut, grape seed and rapeseed). The effects of thermal treatment and gamma irradiation on the formation of the furanic compounds in honey were also investigated.
    Matched MeSH terms: Limit of Detection
  3. Zare D, Muhammad K, Bejo MH, Ghazali HM
    J Chromatogr A, 2012 Sep 21;1256:144-9.
    PMID: 22885043 DOI: 10.1016/j.chroma.2012.07.083
    Urocanic acid (UCA) has been reported to be a mast cell degranulator and has also been suggested as a complementary agent in implicated scombroid fish poisoning. In this research, a new method is described to extract, clean up and perform simultaneous ion-pair chromatographic analysis of trans- and cis-urocanic acid (UCA) in fish samples. UCA was extracted using 0.05 M HCl and protein was removed from the extract by precipitation with 10% trisodium citrate and 10% citric acid. The HPLC method that is developed showed a rapid, precise and sensitive method with short retention time for simultaneous separation of UCA isomers in fish samples. Estimation of trans- and cis-UCA in the muscle of Indian mackerel, tuna and sardine showed that, as expected, no cis-UCA existed in fish muscles and the highest concentration of trans-UCA was found in Indian mackerel with 118.8 mg kg(-1) while the highest concentrations of trans-UCA in tuna and sardine were 12.1 and 17.5 mg kg(-1), respectively.
    Matched MeSH terms: Limit of Detection
  4. Mohd Zain Z, Ab Ghani S, O'Neill RD
    Amino Acids, 2012 Nov;43(5):1887-94.
    PMID: 22865247 DOI: 10.1007/s00726-012-1365-0
    This paper discusses the application of a reagentless, selective microbiosensor as a useful alternative tool for monitoring D-serine in neural samples. The main components of the 125-μm-diameter disk biosensor were D-amino acid oxidase for D-serine sensitivity (linear region slope, 61 ± 7 μA cm(-2) mM(-1); limit of detection, 20 nM), and poly-phenylenediamine for rejection of electroactive interference. The response time of the biosensor was of the order of 1 s, ideal for 'real-time' monitoring, and detection of systemically administered D-serine in brain extracellular fluid is demonstrated. Exploitation of this probe might resolve queries involving regulation of D-serine in excitotoxicity, and modulation of N-methyl-D-aspartate receptor function by D-serine and glycine in the central nervous system.
    Matched MeSH terms: Limit of Detection
  5. Sanagi MM, Loh SH, Wan Ibrahim WA, Hasan MN
    J Chromatogr A, 2012 Nov 2;1262:43-8.
    PMID: 23021646 DOI: 10.1016/j.chroma.2012.09.007
    Agarose film liquid phase microextraction (AF-LPME) procedure for the extraction and preconcentration of polycyclic aromatic hydrocarbons (PAHs) in water has been investigated. Agarose film was used for the first time as an interface between donor and acceptor phases in liquid phase microextraction which allowed for selective extraction of the analytes prior to gas chromatography-mass spectrometry. Using 1-octanol as acceptor phase, high enrichment factors in the range of 57-106 for the targeted analytes (fluorene, phenanthrene, fluoranthene and pyrene) were achieved. Under the optimum extraction conditions, the method showed good linearity in the range of 0.1-200 μgL(-1), good correlation coefficients in the range of 0.9963-0.9999, acceptable reproducibility (RSD 6.1-9.2%, n=3), low limits of detection (0.01-0.04 μgL(-1)) and satisfactory relative recoveries (92.9-104.7%). As the AF-LPME device was non-expensive, reuse or recycle of the film was not required, thus eliminating the possibility of analytes carry-over between runs. The AF-LPME technique is environment-friendly and compatible with the green chemistry concept as agarose is biodegradable polysaccharide extracted from seaweed and the procedure requires small volume of organic solvent and generates little waste. The validated method was successfully applied to the analysis of the four analytes in river water samples.
    Matched MeSH terms: Limit of Detection
  6. Jalili M, Jinap S
    PMID: 22971039 DOI: 10.1080/19440049.2012.719640
    A simple method for the reduction of aflatoxins B₁ (AFB₁), B₂ (AFB₂), G₁ (AFG₁), G₂ (AFG₂) and ochratoxin A (OTA) in white pepper was studied. Response surface methodology (RSM) was applied to determine the effect of four variables, which included time (20-60 min), temperature (30-70°C), calcium hydroxide (Ca(OH)₂) (0-1%) and hydrogen peroxide (H₂O₂) (1-3%) during the washing step of white pepper. The efficacy of the method was evaluated by the determination of mycotoxins by HPLC with fluorescence detection (FD). Statistical analysis showed that the experimental data could be adequately fitted into a second-order polynomial model, with a multiple regression coefficient (R²) in the range of 0.805-0.907 for AFG₂ and AFG₁, respectively. The optimal condition was 57.8 min, 62.0°C, of 0.6% (w/v) and 2.8% (v/v) for time, temperature, Ca(OH)₂ and H₂O₂ respectively. By applying the optimum condition, the mycotoxins reduction was found to be in the range of 68.5-100% for AFB₂ and AFG₁ respectively.
    Matched MeSH terms: Limit of Detection
  7. Ang GY, Yu CY, Yean CY
    Biosens Bioelectron, 2012 Oct-Dec;38(1):151-6.
    PMID: 22705404 DOI: 10.1016/j.bios.2012.05.019
    In the field of diagnostics, molecular amplification targeting unique genetic signature sequences has been widely used for rapid identification of infectious agents, which significantly aids physicians in determining the choice of treatment as well as providing important epidemiological data for surveillance and disease control assessment. We report the development of a rapid nucleic acid lateral flow biosensor (NALFB) in a dry-reagent strip format for the sequence-specific detection of single-stranded polymerase chain reaction (PCR) amplicons at ambient temperature (22-25°C). The NALFB was developed in combination with a linear-after-the-exponential PCR assay and the applicability of this biosensor was demonstrated through detection of the cholera toxin gene from diarrheal-causing toxigenic Vibrio cholerae. Amplification using the advanced asymmetric PCR boosts the production of fluorescein-labeled single-stranded amplicons, allowing capture probes immobilized on the NALFB to hybridize specifically with complementary targets in situ on the strip. Subsequent visual formation of red lines is achieved through the binding of conjugated gold nanoparticles to the fluorescein label of the captured amplicons. The visual detection limit observed with synthetic target DNA was 0.3 ng and 1 pg with pure genomic DNA. Evaluation of the NALFB with 164 strains of V. cholerae and non-V. cholerae bacteria recorded 100% for both sensitivity and specificity. The whole procedure of the low-cost NALFB, which is performed at ambient temperature, eliminates the need for preheated buffers or additional equipment, greatly simplifying the protocol for sequence-specific PCR amplicon analysis.
    Matched MeSH terms: Limit of Detection
  8. Monjezi R, Tan SW, Tey BT, Sieo CC, Tan WS
    J Virol Methods, 2013 Jan;187(1):121-6.
    PMID: 23022731 DOI: 10.1016/j.jviromet.2012.09.017
    The core antigen (HBcAg) of hepatitis B virus (HBV) is one of the markers for the identification of the viral infection. The main purpose of this study was to develop a TaqMan real-time detection assay based on the concept of phage display mediated immuno-PCR (PD-IPCR) for the detection of HBcAg. PD-IPCR combines the advantages of immuno-PCR (IPCR) and phage display technology. IPCR integrates the versatility of enzyme-linked immunosorbent assay (ELISA) with the sensitivity and signal generation power of PCR. Whereas, phage display technology exploits the physical association between the displayed peptide and the encoding DNA within the same phage particle. In this study, a constrained peptide displayed on the surface of an M13 recombinant bacteriophage that interacts tightly with HBcAg was applied as a diagnostic reagent in IPCR. The phage displayed peptide and its encoding DNA can be used to replace monoclonal antibody (mAb) and chemically bound DNA, respectively. This method is able to detect as low as 10ng of HBcAg with 10(8)pfu/ml of the recombinant phage which is about 10,000 times more sensitive than the phage-ELISA. The PD-IPCR provides an alternative means for the detection of HBcAg in human serum samples.
    Matched MeSH terms: Limit of Detection
  9. Liew YK, Neela V, Hamat RA, Nordin SA, Chong PP
    Electrophoresis, 2013 Feb;34(3):397-400.
    PMID: 23161123 DOI: 10.1002/elps.201200380
    The typical concentration of protein loaded varies from 0.13 to 1.40 μg/μL for a classical silver staining method in 2DE gel. Here, we present a simple modified classical silver staining method by modifying the silver impregnation and development reaction steps. This modified method detects the protein spots at extremely low loaded concentrations, ranging from 0.0048 to 0.0480 μg/μL. We recommend this modified silver staining as an excellent method for the limited biological samples used for silver-stained 2DE analysis. Altogether, the protocol takes close to two days from first dimension separation to second dimension separation, followed by silver staining, scanning, and analysis.
    Matched MeSH terms: Limit of Detection
  10. Parthasarathy S, Ramanathan S, Murugaiyah V, Hamdan MR, Said MI, Lai CS, et al.
    Forensic Sci Int, 2013 Mar 10;226(1-3):183-7.
    PMID: 23385139 DOI: 10.1016/j.forsciint.2013.01.014
    Mitragyna speciosa, a native plant of Thailand and Malaysia known as 'ketum', is a plant of considerable interest. It exhibits strong antinociceptive effect and yet, acts like a psychostimulant. Due to the affordability and its ease of availability, the abuse of this plant as a substitute for other banned narcotics has become a major concern in many societies. In countries such as Thailand, Myanmar, Australia and Malaysia, the use of ketum is illegal. However, for a person to be charged for possessing or selling ketum, a reliable analytical method is needed in order to detect and identify the plant and its products. Mitragynine is the major alkaloid of ketum. This compound manifests its antinociceptive effects by acting on the opioid receptors. Since M. speciosa contain large quantity of mitragynine and it is exclusive to the species, the present analytical method is developed and validated for the purpose of screening ketum products based on this unique compound as the analytical marker. The method uses a HPLC-DAD system with Inertsil C8 (4.6 mm × 150 mm, 5 μm) as the column and a mixture of acetonitrile and formic acid, 50:50 (v/v), as the mobile phase. This method not only detects mitragynine, it can also be used to quantify the amount of mitragynine in the sample. The limit of detection is 0.25 μg/ml, while the limit of quantification is 0.50 μg/ml. The method is quick, simple and reliable with an accuracy of 97.27-101.74% and coefficient of variations of between 0.91 and 3.96%. The method has been tested and found suitable for the identification and quantification of mitragynine in dried plants, a variety of ketum extracts, as well as ketum drink obtained from the market.
    Matched MeSH terms: Limit of Detection
  11. Wong YF, Saad B, Makahleh A
    J Chromatogr A, 2013 May 17;1290:82-90.
    PMID: 23578483 DOI: 10.1016/j.chroma.2013.03.014
    A capillary electrophoresis (CE)-capacitively coupled contactless conductivity detection (C(4)D) method for the simultaneous separation of eleven underivatized fatty acids (FAs), namely, lauric, myristic, tridecanoic (internal standard), pentadecanoic, palmitic, stearic, oleic, elaidic, linoleic, linolenic and arachidic acids is described. The separation was carried out in normal polarity mode at 20 °C, 30 kV and using hydrodynamic injection (50 mbar for 1 s). The separation was achieved in a bare fused-silica capillary (70 cm × 75 μm i.d.) using a background electrolyte of methyl-β-cyclodextrin (~6 mM) and heptakis-(2,3,6-tri-O-methyl)-β-cyclodextrin (~8 mM) dissolved in a mixture of Na2HPO4/KH2PO4 (5 mM, pH 7.4):ACN:MeOH:n-octanol (3:4:2.5:0.5, v/v/v/v). C(4)D parameters were set at fixed amplitude of 100 V and frequency of 1000 kHz. The developed method was validated. Calibration curves of the ten FAs were well correlated (r(2)>0.99) within the range of 5-250 μg mL(-1) for lauric acid, and 3-250 μg mL(-1) for the other FAs. The method was simple and sensitive with detection limits (S/N=3) of 0.9-1.9 μg mL(-1) and good relative standard deviations of intra- and inter-day for migration times and peak areas (≤9.7%) were achieved. The method was applied to the determination of FAs in margarine samples. The proposed method offers distinct advantages over the GC and HPLC methods, especially in terms of simplicity (without derivatization) and sensitivity.
    Matched MeSH terms: Limit of Detection
  12. Pan Y, Mak JW, Ong CE
    Biomed Chromatogr, 2013 Jul;27(7):859-65.
    PMID: 23386533 DOI: 10.1002/bmc.2872
    In this study, a simple and reliable reverse-phase high-performance liquid chromatography (RP-HPLC) method was established and validated to analyze S-mephenytoin 4-hydroxylase activity of a recombinant CYP2C19 system. This system was obtained by co-expressing CYP2C19 and NADPH-CYP oxidoreductase (OxR) proteins in Escherichia coli (E. coli) cells. In addition to RP-HPLC, the expressed proteins were evaluated by immunoblotting and reduced CO difference spectral scanning. The RP-HPLC assay showed good linearity (r(2) = 1.00) with 4-hydroxymephenytoin concentration from 0.100 to 50.0 μm and the limit of detection was 5.00 × 10(-2) μm. Intraday and interday precisions determined were from 1.90 to 8.19% and from 2.20 to 14.9%, respectively. Recovery and accuracy of the assay were from 83.5 to 85.8% and from 95.0 to 105%. Enzyme kinetic parameters (Km , Vmax and Ki ) were comparable to reported values. The presence of CYP2C19 in bacterial membranes was confirmed by immunoblotting and the characteristic absorbance peak at 450 nm was determined in the reduced CO difference spectral assay. Moreover, the activity level of co-expressed OxR was found to be comparable to that of the literature. As a conclusion, the procedures described here have generated catalytically active CYP2C19 and the RP-HPLC assay developed is able to serve as CYP2C19 activity marker for pharmacokinetic drug interaction study in vitro.
    Matched MeSH terms: Limit of Detection
  13. Shammugasamy B, Ramakrishnan Y, Ghazali HM, Muhammad K
    J Chromatogr A, 2013 Jul 26;1300:31-7.
    PMID: 23587317 DOI: 10.1016/j.chroma.2013.03.036
    A simple sample preparation technique coupled with reversed-phase high-performance liquid chromatography was developed for the determination of tocopherols and tocotrienols in cereals. The sample preparation procedure involved a small-scale hydrolysis of 0.5g cereal sample by saponification, followed by the extraction and concentration of tocopherols and tocotrienols from saponified extract using dispersive liquid-liquid microextraction (DLLME). Parameters affecting the DLLME performance were optimized to achieve the highest extraction efficiency and the performance of the developed DLLME method was evaluated. Good linearity was observed over the range assayed (0.031-4.0μg/mL) with regression coefficients greater than 0.9989 for all tocopherols and tocotrienols. Limits of detection and enrichment factors ranged from 0.01 to 0.11μg/mL and 50 to 73, respectively. Intra- and inter-day precision were lower than 8.9% and the recoveries were around 85.5-116.6% for all tocopherols and tocotrienols. The developed DLLME method was successfully applied to cereals: rice, barley, oat, wheat, corn and millet. This new sample preparation approach represents an inexpensive, rapid, simple and precise sample cleanup and concentration method for the determination of tocopherols and tocotrienols in cereals.
    Matched MeSH terms: Limit of Detection
  14. Shukor MY, Tham LG, Halmi MI, Khalid I, Begum G, Syed MA
    J Environ Biol, 2013 Sep;34(5):967-70.
    PMID: 24558814
    Near-real-ime assay is anassay method that the whole process from sampling until results could be obtained in approximately Iess than one hour. The ElIman assay for acetyl cholinesterase (AChE) has near real-time potential due to its simplicity and fast assay time. The commercial acetylcholinesterase from Electrophorus electricus is well known for its uses in insecticides detection. A lesser known fact is AChE is also sensitive to heavy metals. A near real-time inhibitive assay for heavy metals using AChE from this source showed promising results. Several heavy metals such as copper, silver and mercury could be etected with IC50 values of1.212, 0.1185 and 0.097 mg I-1, respectively. The Limits of Detection (LOD) for copper, silver and mercury were 0.01, 0.015 and 0.01 mg I-1, respectively. TheLimits of quantitation (LOQ) or copper, silver and mercury were 0.196, 0.112 and 0.025 mg I-1, respectively. The LOQvalues for copper, silver and mercury were well below the maximum permissible limit for these metal ions as outlined by Malaysian Department of Environment. A polluted location demonstrated near real-time applicability of the assay with variation oftemporal levels of heavy metals detected. The results show that AChE from Electrophorus electricus has the potential to be used as a near real-time biomonitoring tool for heavy
    Matched MeSH terms: Limit of Detection
  15. Liew KB, Peh KK, Fung Tan YT
    Pak J Pharm Sci, 2013 Sep;26(5):961-6.
    PMID: 24035953
    An easy, fast and validated RV-HPLC method was invented to quantify donepezil hydrochloride in drug solution and orally disintegrating tablet. The separation was carried out using reversed phase C-18 column (Agilent Eclipse Plus C-18) with UV detection at 268 nm. Method optimization was tested using various composition of organic solvent. The mobile phase comprised of phosphate buffer (0.01M), methanol and acetonitrile (50:30:20, v/v) adjusted to pH 2.7 with phosphoric acid (80%) was found as the optimum mobile phase. The method showed intraday precision and accuracy in the range of 0.24% to -1.83% and -1.83% to 1.99% respectively, while interday precision and accuracy ranged between 1.41% to 1.81% and 0.11% to 1.90% respectively. The standard calibration curve was linear from 0.125 μg/mL to 16 μg/mL, with correlation coefficient of 0.9997±0.00016. The drug solution was stable under room temperature at least for 6 hours. System suitability studies were done. The average plate count was > 2000, tailing factor <1, and capacity factor of 3.30. The retention time was 5.6 min. The HPLC method was used to assay donepezil hydrochloride in tablet and dissolution study of in-house manufactured donepezil orally disintegrating tablet and original Aricept.
    Matched MeSH terms: Limit of Detection
  16. Wee SS, Ng YH, Ng SM
    Talanta, 2013 Nov 15;116:71-6.
    PMID: 24148375 DOI: 10.1016/j.talanta.2013.04.081
    Carbon dots have great potential to be utilised as an optical sensing probe due to its unique photoluminescence and less toxic properties. This work reports a simple and novel synthesis method of carbon dots via direct acid hydrolysis of bovine serum albumin protein in a one-pot approach. Optimisation of the important synthetic parameters has been performed which consists of temperature effect, acid to protein ratio and kinetics of reaction. Higher temperature has promoted better yield with shorter reaction time. The carbon dots obtained shows a strong emission at the wavelength of 400 nm with an optimum excitation of 305 nm. The potential of the carbon dots as optical sensing probe has been investigated on with different cations that are of environmental and health concern. The fluorescence of the carbon dots was significantly quenched particularly by lead (II) ions in a selective manner. Further analytical study has been performed to leverage the performance of the carbon dots for lead (II) ions sensing using the standard Stern-Volmer relationship. The sensing probe has a dynamic linear range up to 6.0 mM with a Stern-Volmer constant of 605.99 M(-1) and a limit of detection (LOD) of 5.05 μM. The probe performance was highly repeatable with a standard deviation below 3.0%. The probe suggested in this study demonstrates the potential of a more economical and greener approach that uses protein based carbon dots for sensing of heavy metal ions.
    Matched MeSH terms: Limit of Detection
  17. Arip MN, Heng LY, Ahmad M, Ujang S
    Talanta, 2013 Nov 15;116:776-81.
    PMID: 24148473 DOI: 10.1016/j.talanta.2013.07.065
    The characteristics of a potentiometric biosensor for the determination of permethrin in treated wood based on immobilised cells of the fungus Lentinus sajor-caju on a potentiometric transducer are reported this paper. The potentiometric biosensor was prepared by immobilisation of the fungus in alginate gel deposited on a pH-sensitive transducer employing a photocurable acrylic matrix. The biosensor gave a good response in detecting permethrin over the range of 1.0-100.0 µM. The slope of the calibration curve was 56.10 mV/decade with detection limit of 1.00 µM. The relative standard deviation for the sensor reproducibility was 4.86%. The response time of the sensor was 5 min at optimum pH 8.0 with 1.00 mg/electrode of fungus L. sajor-caju. The permethrin biosensor performance was compared with the conventional method for permethrin analysis using high performance liquid chromatography (HPLC), and the analytical results agreed well with the HPLC method (at 95% confidence limit). There was no interference from commonly used organophosphorus pesticides such as diazinon, parathion, paraoxon, and methyl parathion.
    Matched MeSH terms: Limit of Detection
  18. Kamaruzaman S, Sanagi MM, Endud S, Wan Ibrahim WA, Yahaya N
    PMID: 24140656 DOI: 10.1016/j.jchromb.2013.09.017
    Mesoporous silica material, MCM-41, was utilized for the first time as an adsorbent in solid phase membrane tip extraction (SPMTE) of non-steroidal anti-inflammatory drugs (NSAIDs) in urine prior to high performance liquid chromatography-ultraviolet (HPLC-UV) analysis. The prepared MCM-41 material was enclosed in a polypropylene membrane tip and used as an adsorbent in SPMTE. Four NSAIDs namely ketoprofen, diclofenac, mefenamic acid and naproxen were selected as model analytes. Several important parameters, such as conditioning solvent, sample pH, salting-out effect, sample volume, extraction time, desorption solvent and desorption time were optimized. Under the optimum extraction conditions, the MCM-41-SPMTE method showed good linearity in the range of 0.01-10μg/mL with excellent correlation coefficients (r=0.9977-0.9995), acceptable RSDs (0.4-9.4%, n=3), good limits of detection (5.7-10.6μg/L) and relative recoveries (81.4-108.1%). The developed method showed a good tolerance to biological sample matrices.
    Matched MeSH terms: Limit of Detection
  19. Kuan GC, Sheng LP, Rijiravanich P, Marimuthu K, Ravichandran M, Yin LS, et al.
    Talanta, 2013 Dec 15;117:312-7.
    PMID: 24209346 DOI: 10.1016/j.talanta.2013.09.016
    Epizootic ulcerative syndrome (EUS) is a devastating fish disease caused by the fungus, Aphanomyces invadans. Rapid diagnosis of EUS is needed to control and treat this highly invasive disease. The current diagnostic methods for EUS are labor intensive. We have developed a highly sensitive and specific electrochemical genosensor towards the 18S rRNA and internal transcribed spacer regions of A. invadans. Multiple layers of latex were synthesized with the help of polyelectrolytes, and labeled with gold nanoparticles to enhance sensitivity. The gold-latex spheres were functionalized with specific DNA probes. We describe here the novel application of this improved platform for detection of PCR product from real sample of A. invadans using a premix sandwich hybridization assay. The premix assay was easier, more specific and gave higher sensitivity of one log unit when compared to the conventional method of step-by-step hybridization. The limit of detection was 0.5 fM (4.99 zmol) of linear target DNA and 1 fM (10 amol) of PCR product. The binding positions of the probes to the PCR amplicons were optimized for efficient hybridization. Probes that hybridized close to the 5' or 3' terminus of the PCR amplicons gave the highest signal due to minimal steric hindrance for hybridization. The genosensor is highly suitable as a surveillance and diagnostic tool for EUS in the aquaculture industry.
    Matched MeSH terms: Limit of Detection
  20. Lim KT, Teh CS, Thong KL
    Biomed Res Int, 2013;2013:895816.
    PMID: 23509796 DOI: 10.1155/2013/895816
    Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), is an important human pathogen that produces a variety of toxins and causes a wide range of infections, including soft-tissue infections, bacteremia, and staphylococcal food poisoning. A loop-mediated isothermal amplification (LAMP) assay targeting the arcC gene of S. aureus was developed and evaluated with 119 S. aureus and 25 non-S. aureus strains. The usefulness of the assay was compared with the PCR method that targets spa and arcC genes. The optimal temperature for the LAMP assay was 58.5°C with a detection limit of 2.5 ng/μL and 10(2) CFU/mL when compared to 12.5 ng/μL and 10(3) CFU/mL for PCR (spa and arcC). Both LAMP and PCR assays were 100% specific, 100% sensitive, 100% positive predictive value (PPV), and 100% negative predictive value (NPV). When tested on 30 spiked blood specimens (21 MRSA, eight non-S. aureus and one negative control), the performance of LAMP and PCR was comparable: 100% specific, 100% sensitive, 100% PPV, and 100% NPV. In conclusion, the LAMP assay was equally specific with a shorter detection time when compared to PCR in the identification of S. aureus. The LAMP assay is a promising alternative method for the rapid identification of S. aureus and could be used in resource-limited laboratories and fields.
    Matched MeSH terms: Limit of Detection
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links