Displaying publications 41 - 60 of 176 in total

Abstract:
Sort:
  1. Davidson G, Chua TH, Cook A, Speldewinde P, Weinstein P
    Malar J, 2019 Mar 08;18(1):66.
    PMID: 30849978 DOI: 10.1186/s12936-019-2693-2
    Plasmodium knowlesi is a zoonotic malaria parasite normally residing in long-tailed and pig-tailed macaques (Macaca fascicularis and Macaca nemestrina, respectively) found throughout Southeast Asia. Recently, knowlesi malaria has become the predominant malaria affecting humans in Malaysian Borneo, being responsible for approximately 70% of reported cases. Largely as a result of anthropogenic land use changes in Borneo, vectors which transmit the parasite, along with macaque hosts, are both now frequently found in disturbed forest habitats, or at the forest fringes, thus having more frequent contact with humans. Having access to human hosts provides the parasite with the opportunity to further its adaption to the human immune system. The ecological drivers of the transmission and spread of P. knowlesi are operating over many different spatial (and, therefore, temporal) scales, from the molecular to the continental. Strategies to prevent and manage zoonoses, such as P. knowlesi malaria require interdisciplinary research exploring the impact of land use change and biodiversity loss on the evolving relationship between parasite, reservoir hosts, vectors, and humans over multiple spatial scales.
    Matched MeSH terms: Malaria/parasitology
  2. Rao M, Atiqah N, Dasiman M, Amran F
    J Med Microbiol, 2020 Mar;69(3):451-456.
    PMID: 31846413 DOI: 10.1099/jmm.0.001127
    Introduction. Co-infection of leptospirosis-malaria is not uncommon due to their overlapping geographical distribution in the tropics.Aim. This study aimed to describe and compare the demographic, clinical and laboratory features of leptospirosis-malaria co-infection (LMCI) against leptospirosis mono-infection (LMI) in Peninsular Malaysia.Methodology. Data of patients admitted to various hospitals in Peninsular Malaysia from 2011 to 2014 diagnosed with leptospirosis in our laboratory were obtained from their admission records. Co-infections with malaria were identified via blood film for malaria parasites (BFMP). Description with inferential statistics analysis and multiple logistic regressions were used to distinguish features between dual and mono-infections.Results. Of 111 leptospirosis-positive patients, 26 (23.4 %) tested positive for malaria. Co-infections were predominant among male patients with a mean age of 33 years and were prevalent among immigrant populations who had settled in high-density suburban areas. Chills and rigor with splenomegaly were the only significant distinguishing clinical features of LMCI while leukocytosis and raised transaminases were significant laboratory parameters. Only chills and rigor demonstrated a predictive value for LMCI from analysis of multiple logistic regressions. No death was attributed to co-infection in this study, in contrast to LMI (11.8 %, n=10).Conclusion. The significant prevalence of LMCI found in this study with overlapping demographic, clinical and laboratory parameters makes diagnosis of co-infection challenging. It is essential to evaluate co-infection in endemic areas. Strengthened awareness of LMCI, comprehensive diagnostic services and further prospective studies are warranted.
    Matched MeSH terms: Malaria/parasitology
  3. Piera KA, Aziz A, William T, Bell D, González IJ, Barber BE, et al.
    Malar J, 2017 01 13;16(1):29.
    PMID: 28086789 DOI: 10.1186/s12936-016-1676-9
    BACKGROUND: Plasmodium knowlesi is the most common cause of malaria in Malaysia. However, microscopic diagnosis is inaccurate and rapid diagnostic tests (RDTs) are insufficiently sensitive. PCR is sensitive and specific but not feasible at a district level. Loop-mediated isothermal amplification (LAMP) shows potential with only basic requirements. A commercially available LAMP assay, the Eiken Loopamp™ MALARIA Pan Detection kit, is sensitive for Plasmodium falciparum and Plasmodium vivax, but has not previously been evaluated for P. knowlesi. This study aims to determine the sensitivity of this LAMP assay for detecting P. knowlesi infection.

    METHODS: Study participants included 73 uncomplicated malaria patients with PCR species confirmation: 50 P. knowlesi, 20 P. falciparum and 3 P. vivax. Nineteen malaria-negative, non-endemic area controls were also included. The sensitivity of the Eiken Loopamp™ MALARIA Pan Detection kit (Pan LAMP) for detecting each Plasmodium species was evaluated. Sensitivity and specificity of the Eiken Loopamp™ MALARIA Pf Detection kit (Pf LAMP) for P. falciparum were also determined. The limit of detection for each LAMP assay was evaluated, with results compared to PCR. All P. knowlesi patients were also tested by CareStart™ (Pf/VOM) and OptiMAL-IT™ (Pan/Pf) RDTs.

    RESULTS: The sensitivity of the Pan LAMP assay was 100% for P. knowlesi (95% CI 92.9-100), P. falciparum (95% CI 83.2-100), and P. vivax (95% CI 29.2-100). The Pf LAMP was 100% sensitive and specific for P. falciparum detection, with all P. knowlesi samples having a negative reaction. LAMP sensitivity was superior to both RDTs, with only 10 and 28% of P. knowlesi samples testing positive to CareStart™ and OptiMAL-IT™, respectively. Limit of detection using the Pan LAMP for both P. knowlesi and P. vivax was 2 parasites/μL, comparable to PCR. For P. falciparum both the Pan LAMP and Pf LAMP demonstrated a limit of detection of 20 parasites/μL.

    CONCLUSIONS: The Eiken Loopamp™ MALARIA Pan Detection kit is sensitive for detection of P. knowlesi in low parasitaemia clinical infections, as well as P. falciparum and P. vivax. However, a P. knowlesi-specific field assay in a simpler format would assist correct species identification and initiation of optimal treatment for all malaria patients.

    Matched MeSH terms: Malaria/parasitology
  4. Sonaimuthu P, Cheong FW, Chin LC, Mahmud R, Fong MY, Lau YL
    Exp Parasitol, 2015 Jun;153:118-22.
    PMID: 25812552 DOI: 10.1016/j.exppara.2015.03.010
    Malaria remains one of the world's most important infectious diseases and is responsible for enormous mortality and morbidity. Human infection with Plasmodium knowlesi is widely distributed in Southeast Asia. Merozoite surface protein-1₁₉ (MSP-1₁₉), which plays an important role in protective immunity against asexual blood stage malaria parasites, appears as a leading immunogenic antigen of Plasmodium sp. We evaluated the sensitivity and specificity of recombinant P. knowlesi MSP-1₁₉ (rMSP-1₁₉) for detection of malarial infection. rMSP-1₁₉ was expressed in Escherichia coli expression system and the purified rMSP-1₁₉ was evaluated with malaria, non-malaria and healthy human serum samples (n = 215) in immunoblots. The sensitivity of rMSP-1₁₉ for detection of P. knowlesi, Plasmodium falciparum, Plasmodium  vivax and Plasmodium  ovale infection was 95.5%, 75.0%, 85.7% and 100%, respectively. rMSP-1₁₉ did not react with all the non-malaria and healthy donor sera, which represents 100% specificity. The rMSP-1₁₉ could be used as a potential antigen in serodiagnosis of malarial infection in humans.
    Matched MeSH terms: Malaria/parasitology
  5. Singh B, Cox-Singh J, Miller AO, Abdullah MS, Snounou G, Rahman HA
    Trans R Soc Trop Med Hyg, 1996 9 1;90(5):519-21.
    PMID: 8944260
    A modified nested polymerase chain reaction (PCR) method for detection of Plasmodium falciparum, P. vivax and P. malariae was combined with a simple blood collection and deoxyribonucleic acid (DNA) extraction method and evaluated in Malaysia. Finger-prick blood samples from 46 hospital patients and 120 individuals living in malaria endemic areas were spotted on filter papers and dried. The simple Chelex method was used to prepare DNA templates for the nested PCR assay. Higher malaria prevalence rates for both clinical (78.2%) and field samples (30.8%) were obtained with the nested PCR method than by microscopy (76.1% and 27.5%, respectively). Nested PCR was more sensitive than microscopy in detecting mixed P. falciparum and P. vivax infections, detected 5 more malaria samples than microscopy on the first round of microscopical examination, and detected malaria in 3 microscopically negative samples. Nested PCR failed to detect parasite DNA in 2 microscopically positive samples, an overall sensitivity of 97.4% compared to microscopy. The nested PCR method, when coupled with simple dried blood spot sampling, is a useful tool for collecting accurate malaria epidemiological data, particularly in remote regions of the world.
    Matched MeSH terms: Malaria/parasitology
  6. Mallepaddi PC, Lai MY, Podha S, Ooi CH, Liew JW, Polavarapu R, et al.
    Am J Trop Med Hyg, 2018 09;99(3):704-708.
    PMID: 29943720 DOI: 10.4269/ajtmh.18-0177
    The present study aims to develop a method for rapid diagnosis of malaria using loop-mediated isothermal amplification (LAMP) combined with a lateral flow device (LFD). By adding the biotin-labeled and fluorescein amidite-labeled loop primers to the LAMP reaction solution, the end product can be visualized on a LFD. The entire procedure takes approximately 42 minutes to complete, LAMP assay exhibited high sensitivity, as the detection limit was 0.01 pg/μL for all five Plasmodium species. It was demonstrated that all Plasmodium knowlesi (N = 90) and Plasmodium vivax (N = 56) were positively amplified by LAMP-LFD assay, whereas healthy donor samples (N = 8) were negative. However, not all mixed infections were positive, and other infected nonmalaria samples were negative. Loop-mediated isothermal amplification-LFD represents a robust approach with potential suitability for use in resource-constrained laboratories. We believe that LAMP-LFD has a potential to be developed as point-of-care diagnostic tool in future.
    Matched MeSH terms: Malaria/parasitology*
  7. Theint HT, Walsh JE, Wong ST, Voon K, Shitan M
    Spectrochim Acta A Mol Biomol Spectrosc, 2019 Jul 05;218:348-358.
    PMID: 31026712 DOI: 10.1016/j.saa.2019.04.008
    A laboratory prototype system that correlates murine blood absorbance with degree of infection for Plasmodium berghei and Trypanosoma avensi has been designed, constructed and tested. A population (n = 6) of control uninfected, Plasmodium infected and Trypanosoma infected BALB/c mice were developed and spectral absorption measurements pre and post infection were made every 3 days. A fibre optic spectrometer set-up was used as the basis of a laboratory prototype biosensor that uses the Beer Lambert Law to relate Ultraviolet-Visible-Near-infrared absorbance data to changes in murine blood chemistry post infection. Spectral absorption results indicate a statistically relevant correlation at a 650 nm with infection for Plasmodium from between 4 and 7 sampling days' post infection, in spite of significant standard deviations among the sample populations for control and infected mice. No significant spectral absorption change for Trypanosoma infection was been detected from the current data. Corresponding stained slides of control and infected blood at each sampling date were taken with related infected cell counts determined and these correlate well for Plasmodium absorbance at 650 nm.
    Matched MeSH terms: Malaria/parasitology
  8. Dewanee Ranaweera A, Danansuriya MN, Pahalagedera K, de A W Gunasekera WM, Dharmawardena P, Mak KW, et al.
    Malar J, 2017 03 21;16(1):126.
    PMID: 28327145 DOI: 10.1186/s12936-017-1776-1
    BACKGROUND: Sri Lanka has achieved 'malaria-free' status and is now in the phase of prevention of re-introduction of malaria. Imported malaria remains a challenge to resurgence of the disease. The diagnostic challenges encountered and the rapid response initiated to manage a Plasmodium infection, which was later confirmed as Plasmodium knowlesi, the first reported case from Sri Lanka, is discussed.

    CASE PRESENTATION: An army officer who returned from Malaysia in October 2016 was found to be positive for Plasmodium both by microscopy and rapid diagnostic test (RDT) by the Anti Malaria Campaign Sri Lanka (AMC) during his third visit to a health care provider. Microscopy findings were suspicious of P. knowlesi infection as the smears showed parasite stages similar to both Plasmodium malariae and Plasmodium falciparum. Nested PCR at AMC confirmed Plasmodium genus, but not the species. In the absence of species confirmation, the patient was treated as a case of P. falciparum. The presence of P. knowlesi was later confirmed by a semi-nested PCR assay performed at the Environmental Health Institute, National Environmental Agency in Singapore. The parasite strain was also characterized by sequencing the circumsporozoite gene. Extensive case investigation including parasitological and entomological surveillance was carried out.

    CONCLUSIONS: Plasmodium knowlesi should be suspected in patients returning from countries in the South Asian region where the parasite is prevalent and when blood smear results are inconclusive.

    Matched MeSH terms: Malaria/parasitology
  9. Amir A, Cheong FW, De Silva JR, Lau YL
    Parasit Vectors, 2018 01 23;11(1):53.
    PMID: 29361963 DOI: 10.1186/s13071-018-2617-y
    Every year, millions of people are burdened with malaria. An estimated 429,000 casualties were reported in 2015, with the majority made up of children under five years old. Early and accurate diagnosis of malaria is of paramount importance to ensure appropriate administration of treatment. This minimizes the risk of parasite resistance development, reduces drug wastage and unnecessary adverse reaction to antimalarial drugs. Malaria diagnostic tools have expanded beyond the conventional microscopic examination of Giemsa-stained blood films. Contemporary and innovative techniques have emerged, mainly the rapid diagnostic tests (RDT) and other molecular diagnostic methods such as PCR, qPCR and loop-mediated isothermal amplification (LAMP). Even microscopic diagnosis has gone through a paradigm shift with the development of new techniques such as the quantitative buffy coat (QBC) method and the Partec rapid malaria test. This review explores the different diagnostic tools available for childhood malaria, each with their characteristic strengths and limitations. These tools play an important role in making an accurate malaria diagnosis to ensure that the use of anti-malaria are rationalized and that presumptive diagnosis would only be a thing of the past.
    Matched MeSH terms: Malaria/parasitology
  10. Putaporntip C, Hongsrimuang T, Seethamchai S, Kobasa T, Limkittikul K, Cui L, et al.
    J Infect Dis, 2009 Apr 15;199(8):1143-50.
    PMID: 19284284 DOI: 10.1086/597414
    BACKGROUND: A case of human infection with Plasmodium knowlesi has been recently discovered in Thailand. To investigate the prevalence of this malaria species, a molecular-based survey was performed.

    METHODS: Blood samples from 1874 patients were tested for Plasmodium species by microscopy and nested polymerase chain reaction. P. knowlesi was characterized by sequencing the merozoite surface protein 1 gene (msp-1).

    RESULTS: Of all Plasmodium species identified, P. falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi contributed 43.52%, 68.08%, 1.37%, 1.03%, and 0.57%, respectively. Mixed-species infections were more common in northwestern and southwestern regions bordering Myanmar (23%-24%) than in eastern and southern areas (3%-5%). In northwestern and southwestern regions, mixed-species infections had a significantly higher prevalence in dry than in rainy seasons (P < .001). P. knowlesi was found in 10 patients, mostly from southern and southwestern areas-9 were coinfected with either P. falciparum or P. vivax. Most of the P. knowlesi Thai isolates were more closely related to isolates from macaques than to isolates from Sarawak patients. The msp-1 sequences of isolates from the same area of endemicity differed and possessed novel sequences, indicating genetic polymorphism in P. knowlesi infecting humans.

    CONCLUSIONS: This survey highlights the widespread distribution of P. knowlesi in Thailand, albeit at low prevalence and mostly occurring as cryptic infections.

    Matched MeSH terms: Malaria/parasitology*
  11. Grigg MJ, Barber BE, Marfurt J, Imwong M, William T, Bird E, et al.
    PLoS One, 2016;11(3):e0149519.
    PMID: 26930493 DOI: 10.1371/journal.pone.0149519
    BACKGROUND: Malaria caused by zoonotic Plasmodium knowlesi is an emerging threat in Eastern Malaysia. Despite demonstrated vector competency, it is unknown whether human-to-human (H-H) transmission is occurring naturally. We sought evidence of drug selection pressure from the antimalarial sulfadoxine-pyrimethamine (SP) as a potential marker of H-H transmission.

    METHODS: The P. knowlesi dihdyrofolate-reductase (pkdhfr) gene was sequenced from 449 P. knowlesi malaria cases from Sabah (Malaysian Borneo) and genotypes evaluated for association with clinical and epidemiological factors. Homology modelling using the pvdhfr template was used to assess the effect of pkdhfr mutations on the pyrimethamine binding pocket.

    RESULTS: Fourteen non-synonymous mutations were detected, with the most common being at codon T91P (10.2%) and R34L (10.0%), resulting in 21 different genotypes, including the wild-type, 14 single mutants, and six double mutants. One third of the P. knowlesi infections were with pkdhfr mutants; 145 (32%) patients had single mutants and 14 (3%) had double-mutants. In contrast, among the 47 P. falciparum isolates sequenced, three pfdhfr genotypes were found, with the double mutant 108N+59R being fixed and the triple mutants 108N+59R+51I and 108N+59R+164L occurring with frequencies of 4% and 8%, respectively. Two non-random spatio-temporal clusters were identified with pkdhfr genotypes. There was no association between pkdhfr mutations and hyperparasitaemia or malaria severity, both hypothesized to be indicators of H-H transmission. The orthologous loci associated with resistance in P. falciparum were not mutated in pkdhfr. Subsequent homology modelling of pkdhfr revealed gene loci 13, 53, 120, and 173 as being critical for pyrimethamine binding, however, there were no mutations at these sites among the 449 P. knowlesi isolates.

    CONCLUSION: Although moderate diversity was observed in pkdhfr in Sabah, there was no evidence this reflected selective antifolate drug pressure in humans.

    Matched MeSH terms: Malaria/parasitology*
  12. Zhang X, Kadir KA, Quintanilla-Zariñan LF, Villano J, Houghton P, Du H, et al.
    Malar J, 2016 09 02;15(1):450.
    PMID: 27590474 DOI: 10.1186/s12936-016-1494-0
    BACKGROUND: Plasmodium knowlesi and Plasmodium cynomolgi are two malaria parasites naturally transmissible between humans and wild macaque through mosquito vectors, while Plasmodium inui can be experimentally transmitted from macaques to humans. One of their major natural hosts, the long-tailed macaque (Macaca fascicularis), is host to two other species of Plasmodium (Plasmodium fieldi and Plasmodium coatneyi) and is widely distributed in Southeast Asia. This study aims to determine the distribution of wild macaques infected with malarial parasites by examining samples derived from seven populations in five countries across Southeast Asia.

    METHODS: Plasmodium knowlesi, P. cynomolgi, P. coatneyi, P. inui and P. fieldi, were detected using nested PCR assays in DNA samples from 276 wild-caught long-tailed macaques. These samples had been derived from macaques captured at seven locations, two each in the Philippines (n = 68) and Indonesia (n = 70), and one each in Cambodia (n = 54), Singapore (n = 40) and Laos (n = 44). The results were compared with previous studies of malaria parasites in long-tailed macaques from other locations in Southeast Asia. Fisher exact test and Chi square test were used to examine the geographic bias of the distribution of Plasmodium species in the macaque populations.

    RESULTS: Out of 276 samples tested, 177 were Plasmodium-positive, with P. cynomolgi being the most common and widely distributed among all long-tailed macaque populations (53.3 %) and occurring in all populations examined, followed by P. coatneyi (20.4 %), P. inui (12.3 %), P. fieldi (3.4 %) and P. knowlesi (0.4 %). One P. knowlesi infection was detected in a macaque from Laos, representing the first documented case of P. knowlesi in wildlife in Laos. Chi square test showed three of the five parasites (P. knowlesi, P. coatneyi, P. cynomolgi) with significant bias in prevalence towards macaques from Malaysian Borneo, Cambodia, and Southern Sumatra, respectively.

    CONCLUSIONS: The prevalence of malaria parasites, including those that are transmissible to humans, varied among all sampled regional populations of long-tailed macaques in Southeast Asia. The new discovery of P. knowlesi infection in Laos, and the high prevalence of P. cynomolgi infections in wild macaques in general, indicate the strong need of public advocacy in related countries.

    Matched MeSH terms: Malaria/parasitology
  13. de Silva JR, Amir A, Lau YL, Ooi CH, Fong MY
    PLoS One, 2019;14(9):e0222681.
    PMID: 31536563 DOI: 10.1371/journal.pone.0222681
    The Duffy blood group plays a key role in Plasmodium knowlesi and Plasmodium vivax invasion into human erythrocytes. The geographical distribution of the Duffy alleles differs between regions with the FY*A allele having high frequencies in many Asian populations, the FY*B allele is found predominately in European populations and the FY*Bes allele found predominantly in African regions. A previous study in Peninsular Malaysia indicated high homogeneity of the dominant FY*A/FY*A genotype. However, the distribution of the Duffy genotypes in Malaysian Borneo is currently unknown. In the present study, the distribution of Duffy blood group genotypes and allelic frequencies among P. knowlesi infected patients as well as healthy individuals in Malaysian Borneo were determined. A total of 79 P. knowlesi patient blood samples and 76 healthy donor samples were genotyped using allele specific polymerase chain reaction (ASP-PCR). Subsequently a P. knowlesi invasion assay was carried out on FY*AB/ FY*A and FY*A/ FY*A Duffy genotype blood to investigate if either genotype conferred increased susceptibility to P. knowlesi invasion. Our results show almost equal distribution between the homozygous FY*A/FY*A and heterozygous FY*A/FY*B genotypes. This is in stark contrast to the Duffy distribution in Peninsular Malaysia and the surrounding Southeast Asian region which is dominantly FY*A/FY*A. The mean percent invasion of FY*A/FY*A and FY*A/FY*B blood was not significantly different indicating that neither blood group confers increased susceptibility to P. knowlesi invasion.
    Matched MeSH terms: Malaria/parasitology
  14. Goh XT, Lim YAL, Lee PC, Nissapatorn V, Chua KH
    Mol Biochem Parasitol, 2021 07;244:111390.
    PMID: 34087264 DOI: 10.1016/j.molbiopara.2021.111390
    The present study aimed to examine the genetic diversity of human malaria parasites (i.e., P. falciparum, P. vivax and P. knowlesi) in Malaysia and southern Thailand targeting the 19-kDa C-terminal region of Merozoite Surface Protein-1 (MSP-119). This region is essential for the recognition and invasion of erythrocytes and it is considered one of the leading candidates for asexual blood stage vaccines. However, the genetic data of MSP-119 among human malaria parasites in Malaysia is limited and there is also a need to update the current sequence diversity of this gene region among the Thailand isolates. In this study, genomic DNA was extracted from 384 microscopy-positive blood samples collected from patients who attended the hospitals or clinics in Malaysia and malaria clinics in Thailand from the year 2008 to 2016. The MSP-119 was amplified using PCR followed by bidirectional sequencing. DNA sequences identified in the present study were subjected to Median-joining network analysis with sequences of MSP-119 obtained from GenBank. DNA sequence analysis revealed that PfMSP-119 of Malaysian and Thailand isolates was not genetically conserved as high number of haplotypes were detected and positive selection was prevalent in PfMSP-119, hence questioning its suitability to be used as a vaccine candidate. A novel haplotype (Q/TNG/L) was also detected in Thailand P. falciparum isolate. In contrast, PvMSP-119 was highly conserved, however for the first time, a non-synonymous substitution (A1657S) was reported among Malaysian isolates. As for PkMSP-119, the presence of purifying selection and low nucleotide diversity indicated that it might be a potential vaccine target for P. knowlesi.
    Matched MeSH terms: Malaria/parasitology*
  15. Jaganathan A, Murugan K, Panneerselvam C, Madhiyazhagan P, Dinesh D, Vadivalagan C, et al.
    Parasitol Int, 2016 Jun;65(3):276-84.
    PMID: 26873539 DOI: 10.1016/j.parint.2016.02.003
    The development of parasites and pathogens resistant to synthetic drugs highlighted the needing of novel, eco-friendly and effective control approaches. Recently, metal nanoparticles have been proposed as highly effective tools towards cancer cells and Plasmodium parasites. In this study, we synthesized silver nanoparticles (EW-AgNP) using Eudrilus eugeniae earthworms as reducing and stabilizing agents. EW-AgNP showed plasmon resonance reduction in UV-vis spectrophotometry, the functional groups involved in the reduction were studied by FTIR spectroscopy, while particle size and shape was analyzed by FESEM. The effect of EW-AgNP on in vitro HepG2 cell proliferation was measured using MTT assays. Apoptosis assessed by flow cytometry showed diminished endurance of HepG2 cells and cytotoxicity in a dose-dependent manner. EW-AgNP were toxic to Anopheles stephensi larvae and pupae, LC(50) were 4.8 ppm (I), 5.8 ppm (II), 6.9 ppm (III), 8.5 ppm (IV), and 15.5 ppm (pupae). The antiplasmodial activity of EW-AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. EW-AgNP IC(50) were 49.3 μg/ml (CQ-s) and 55.5 μg/ml (CQ-r), while chloroquine IC(50) were 81.5 μg/ml (CQ-s) and 86.5 μg/ml (CQ-r). EW-AgNP showed a valuable antibiotic potential against important pathogenic bacteria and fungi. Concerning non-target effects of EW-AgNP against mosquito natural enemies, the predation efficiency of the mosquitofish Gambusia affinis towards the II and II instar larvae of A. stephensi was 68.50% (II) and 47.00% (III), respectively. In EW-AgNP-contaminated environments, predation was boosted to 89.25% (II) and 70.75% (III), respectively. Overall, this research highlighted the EW-AgNP potential against hepatocellular carcinoma, Plasmodium parasites and mosquito vectors, with little detrimental effects on mosquito natural enemies.
    Matched MeSH terms: Malaria/parasitology
  16. Junaid OQ, Vythilingam I, Khaw LT, Sivanandam S, Mahmud R
    Parasitol Res, 2020 Apr;119(4):1301-1315.
    PMID: 32179986 DOI: 10.1007/s00436-020-06632-4
    Malaria and lymphatic filariasis (LF) are two leading and common mosquito-borne parasitic diseases worldwide. These two diseases are co-endemic in many tropical and sub-tropical regions and are known to share vectors. The interactions between malaria and filarial parasites are poorly understood. Thus, this study aimed at establishing the interactions that occur between Brugia pahangi and Plasmodium berghei ANKA (PbA) co-infection in gerbils. Briefly, the gerbils were matched according to age, sex, and weight and grouped into filarial-only infection, PbA-only infection, co-infection, and control group. The parasitemia, survival and clinical assessment of the gerbils were monitored for a period of 30 days post Plasmodium infection. The immune responses of gerbils to both mono and co-infection were monitored. Findings show that co-infected gerbils have higher survival rate than PbA-infected gerbils. Food and water consumption were significantly reduced in both PbA-infected and co-infected gerbils, although loss of body weight, hypothermia, and anemia were less severe in co-infected gerbils. Plasmodium-infected gerbils also suffered hypoglycemia, which was not observed in co-infected gerbils. Furthermore, gerbil cytokine responses to co-infection were significantly higher than PbA-only-infected gerbils, which is being suggested as a factor for their increased longevity. Co-infected gerbils had significantly elicited interleukin-4, interferon-gamma, and tumor necrotic factor at early stage of infection than PbA-infected gerbils. Findings from this study suggest that B. pahangi infection protect against severe anemia and hypoglycemia, which are manifestations of PbA infection.
    Matched MeSH terms: Malaria/parasitology
  17. Mohd Abd Razak MR, Afzan A, Ali R, Amir Jalaluddin NF, Wasiman MI, Shiekh Zahari SH, et al.
    PMID: 25510573 DOI: 10.1186/1472-6882-14-492
    The development of resistant to current antimalarial drugs is a major challenge in achieving malaria elimination status in many countries. Therefore there is a need for new antimalarial drugs. Medicinal plants have always been the major source for the search of new antimalarial drugs. The aim of this study was to screen selected Malaysian medicinal plants for their antiplasmodial properties.
    Matched MeSH terms: Malaria/parasitology*
  18. Barber BE, Grigg MJ, William T, Piera KA, Boyle MJ, Yeo TW, et al.
    J Infect Dis, 2017 06 15;215(12):1908-1917.
    PMID: 28863470 DOI: 10.1093/infdis/jix193
    Background: In populations pauci-immune to malaria, risk of severe malaria increases with age. This is particularly apparent in Plasmodium knowlesi malaria. However, pathophysiological mechanisms underlying knowlesi malaria, and of the age-related increase in risk of severe malaria in general, are poorly understood.

    Methods: In Malaysian patients aged ≥12 years with severe (n = 47) and nonsevere (n = 99) knowlesi malaria, severe (n = 21) and nonsevere (n = 109) falciparum malaria, and healthy controls (n = 50), we measured parasite biomass, systemic inflammation (interleukin 6 [IL-6]), endothelial activation (angiopoietin-2), and microvascular function, and evaluated the effects of age.

    Results: Plasmodium knowlesi parasitemia correlated with age (Spearman's correlation coefficient [rs] = 0.36; P < .0001). In knowlesi malaria, IL-6, angiopoietin-2, and microvascular dysfunction were increased in severe compared to nonsevere disease, and all correlated with age, independent of parasitemia. In falciparum malaria, angiopoietin-2 increased with age, independent of parasite biomass (histidine-rich protein 2 [HRP2]). Independent risk factors for severe malaria included parasitemia and angiopoietin-2 in knowlesi malaria, and HRP2, angiopoietin-2, and microvascular dysfunction in falciparum malaria.

    Conclusions: Parasite biomass, endothelial activation, and microvascular dysfunction are associated with severe disease in knowlesi malaria and likely contribute to pathogenesis. The association of each of these processes with aging may account for the greater severity of malaria observed in older adults in low-endemic regions.

    Matched MeSH terms: Malaria/parasitology*
  19. Byrne I, Aure W, Manin BO, Vythilingam I, Ferguson HM, Drakeley CJ, et al.
    Sci Rep, 2021 Jun 03;11(1):11810.
    PMID: 34083582 DOI: 10.1038/s41598-021-90893-1
    Land-use changes, such as deforestation and agriculture, can influence mosquito vector populations and malaria transmission. These land-use changes have been linked to increased incidence in human cases of the zoonotic malaria Plasmodium knowlesi in Sabah, Malaysian Borneo. This study investigates whether these associations are partially driven by fine-scale land-use changes creating more favourable aquatic breeding habitats for P. knowlesi anopheline vectors. Using aerial remote sensing data, we developed a sampling frame representative of all land use types within a major focus of P. knowlesi transmission. From 2015 to 2016 monthly longitudinal surveys of larval habitats were collected in randomly selected areas stratified by land use type. Additional remote sensing data on environmental variables, land cover and landscape configuration were assembled for the study site. Risk factor analyses were performed over multiple spatial scales to determine associations between environmental and spatial variables and anopheline larval presence. Habitat fragmentation (300 m), aspect (350 m), distance to rubber plantations (100 m) and Culex larval presence were identified as risk factors for Anopheles breeding. Additionally, models were fit to determine the presence of potential larval habitats within the areas surveyed and used to generate a time-series of monthly predictive maps. These results indicate that land-use change and topography influence the suitability of larval habitats, and may partially explain the link between P. knowlesi incidence and deforestation. The predictive maps, and identification of the spatial scales at which risk factors are most influential may aid spatio-temporally targeted vector control interventions.
    Matched MeSH terms: Malaria/parasitology*
  20. Fornace KM, Brock PM, Abidin TR, Grignard L, Herman LS, Chua TH, et al.
    Lancet Planet Health, 2019 04;3(4):e179-e186.
    PMID: 31029229 DOI: 10.1016/S2542-5196(19)30045-2
    BACKGROUND: Land use changes disrupt ecosystems, altering the transmission of vector-borne diseases. These changes have been associated with increasing incidence of zoonotic malaria caused by Plasmodium knowlesi; however, the population-level distributions of infection and exposure remain unknown. We aimed to measure prevalence of serological exposure to P knowlesi and assess associated risk factors.

    METHODS: We did an environmentally stratified, population-based, cross-sectional survey across households in the Kudat, Kota Marudu, Pitas, and Ranau districts in northern Sabah, Malaysia, encompassing a range of ecologies. Using blood samples, the transmission intensity of P knowlesi and other malaria species was measured by specific antibody prevalence and infection detected using molecular methods. Proportions and configurations of land types were extracted from maps derived from satellite images; a data-mining approach was used to select variables. A Bayesian hierarchical model for P knowlesi seropositivity was developed, incorporating questionnaire data about individual and household-level risk factors with selected landscape factors.

    FINDINGS: Between Sept 17, 2015, and Dec 12, 2015, 10 100 individuals with a median age of 25 years (range 3 months to 105 years) were sampled from 2849 households in 180 villages. 5·1% (95% CI 4·8-5·4) were seropositive for P knowlesi, and marked historical decreases were observed in the transmission of Plasmodium falciparum and Plasmodium vivax. Nine Plasmodium spp infections were detected. Age, male sex, contact with macaques, forest use, and raised house construction were positively associated with P knowlesi exposure, whereas residing at higher geographical elevations and use of insecticide were protective. Agricultural and forest variables, such as proportions and fragmentation of land cover types, predicted exposure at different spatial scales from households.

    INTERPRETATION: Although few infections were detected, P knowlesi exposure was observed in all demographic groups and was associated with occupational factors. Results suggest that agricultural expansion and forest fragmentation affect P knowlesi exposure, supporting linkages between land use change and P knowlesi transmission.

    FUNDING: UK Medical Research Council, Natural Environment Research Council, Economic and Social Research Council, and Biotechnology and Biosciences Research Council.

    Matched MeSH terms: Malaria/parasitology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links