Displaying publications 41 - 60 of 106 in total

Abstract:
Sort:
  1. Jafari SF, Khadeer Ahamed MB, Iqbal MA, Al Suede FS, Khalid SH, Haque RA, et al.
    J Pharm Pharmacol, 2014 Oct;66(10):1394-409.
    PMID: 25039905 DOI: 10.1111/jphp.12272
    Recently, we have isolated koetjapic acid (KA) from Sandoricum koetjape and identified its selective anticancer potentiality against colorectal carcinoma. KA is quite likely to be useful as a systemic anticancer agent against colorectal malignancy. However, with extremely low solubility, KA has to be converted into a biocompatible solubilized form without compromising the bioefficacy. Objective of this study is to enhance solubility of KA and to evaluate anticancer efficacy of potassium koetjapate in human colorectal cancer cells.
    Matched MeSH terms: Membrane Potential, Mitochondrial/drug effects
  2. Al-Khayal K, Alafeefy A, Vaali-Mohammed MA, Mahmood A, Zubaidi A, Al-Obeed O, et al.
    BMC Cancer, 2017 01 03;17(1):4.
    PMID: 28049506 DOI: 10.1186/s12885-016-3005-7
    BACKGROUND: Colorectal cancer (CRC) is the 3(rd) most common type of cancer worldwide. New anti-cancer agents are needed for treating late stage colorectal cancer as most of the deaths occur due to cancer metastasis. A recently developed compound, 3c has shown to have potent antitumor effect; however the mechanism underlying the antitumor effect remains unknown.

    METHODS: 3c-induced inhibition of proliferation was measured in the absence and presence NAC using MTT in HT-29 and SW620 cells and xCELLigence RTCA DP instrument. 3c-induced apoptotic studies were performed using flow cytometry. 3c-induced redox alterations were measured by ROS production using fluorescence plate reader and flow cytometry and mitochondrial membrane potential by flow cytometry; NADPH and GSH levels were determined by colorimetric assays. Bcl2 family protein expression and cytochrome c release and PARP activation was done by western blotting. Caspase activation was measured by ELISA. Cell migration assay was done using the real time xCELLigence RTCA DP system in SW620 cells and wound healing assay in HT-29.

    RESULTS: Many anticancer therapeutics exert their effects by inducing reactive oxygen species (ROS). In this study, we demonstrate that 3c-induced inhibition of cell proliferation is reversed by the antioxidant, N-acetylcysteine, suggesting that 3c acts via increased production of ROS in HT-29 cells. This was confirmed by the direct measurement of ROS in 3c-treated colorectal cancer cells. Additionally, treatment with 3c resulted in decreased NADPH and glutathione levels in HT-29 cells. Further, investigation of the apoptotic pathway showed increased release of cytochrome c resulting in the activation of caspase-9, which in turn activated caspase-3 and -6. 3c also (i) increased p53 and Bax expression, (ii) decreased Bcl2 and BclxL expression and (iii) induced PARP cleavage in human colorectal cancer cells. Confirming our observations, NAC significantly inhibited induction of apoptosis, ROS production, cytochrome c release and PARP cleavage. The results further demonstrate that 3c inhibits cell migration by modulating EMT markers and inhibiting TGFβ-induced phosphorylation of Smad2 and Samd3.

    CONCLUSIONS: Our findings thus demonstrate that 3c disrupts redox balance in colorectal cancer cells and support the notion that this agent may be effective for the treatment of colorectal cancer.

    Matched MeSH terms: Membrane Potential, Mitochondrial/drug effects
  3. Sheikh BY, Sarker MMR, Kamarudin MNA, Mohan G
    Biomed Pharmacother, 2017 Dec;96:834-846.
    PMID: 29078261 DOI: 10.1016/j.biopha.2017.10.038
    Despite various anticancer reports, antiproliferative and apoptosis inducing activity of citral in HCT116 and HT29 cells have never been reported. This study aimed to evaluate the cytotoxic and apoptosis inducing effects of citral in colorectal cancer cell lines. The citral-treated cells were subjected to MTT assay followed by flow cytometric Annexin V-FITC/PI, mitochondrial membrane potential and intracellular reactive oxygen species (ROS) determination. The apoptotic proteins expression was investigated by Western blot analysis. Citral inhibited the growth of HCT116 and HT29 cells by dose- and time-dependent manner without inducing cytotoxicity in CCD841-CoN normal colon cells. Flow cytometric analysis showed that citral (50-200μM; 24-48h) induced the externalization of phoshpotidylserine and reduced the mitochondrial membrane potential in HCT116 and HT29 cells. Citral elevated intracellular ROS level while attenuating GSH levels in HCT116 and HT29 cells which were reversed with N-acetycysteine (2mM) pre-treatment indicating that citral induced mitochondrial-mediated apoptosis via augmentation of intracellular ROS. Citral induced the phosphorylation of p53 protein and the expression of Bax while decreasing Bc-2 and Bcl-xL expression which promoted the cleavage of caspase-3. Collectively, our data suggest that citral induced p53 and ROS-mediated mitochondrial-mediated apoptosis in human colorectal cancer HCT116 and HT29 cells.
    Matched MeSH terms: Membrane Potential, Mitochondrial/drug effects*
  4. Vasantharaja R, Stanley Abraham L, Gopinath V, Hariharan D, Smita KM
    Int J Biol Macromol, 2019 Mar 01;124:50-59.
    PMID: 30445094 DOI: 10.1016/j.ijbiomac.2018.11.104
    In this present study, isolation, characterization and protective effect of sulfated polysaccharide (SP) isolated from the brown algae Padina gymnospora was investigated. SP was isolated and characterized through FT-IR, 1H NMR, TGA, GC-MS and CHN analysis. The molecular weight of SP was found to be 16 kDa. The isolated SP contains 29.4 ± 0.35% of sulfate, 27 ± 0.11% of fucose, 0.05 ± 0.12% of protein, respectively. Furthermore, SP exhibits its excellent radical scavenging effects were evaluated by DPPH, ABTS radical scavenging and reducing power assays. Moreover, pretreatment with SP significantly mitigates H2O2 induced cytotoxicity in L-929 cells in a dose dependent manner. Furthermore, SP pretreatment ameliorates oxidative stress induced apoptosis and DNA damage, alleviates the generation of intracellular reactive oxygen species (ROS) and restores mitochondrial membrane potential (MMP) in L-929 cells through its antioxidant potential. Together, these results suggest that SP can be exploited as a natural antioxidant in the food and pharmaceutical industries.
    Matched MeSH terms: Membrane Potential, Mitochondrial/drug effects
  5. Narayani SS, Saravanan S, Ravindran J, Ramasamy MS, Chitra J
    Int J Biol Macromol, 2019 Oct 01;138:618-628.
    PMID: 31344415 DOI: 10.1016/j.ijbiomac.2019.07.127
    Fucoidan is a marine sulfated polysaccharide, which is extracted from brown seaweed that has a wide range of bioactivities including anti-cancer properties. However, the underlying mechanism of fucoidan on its anti-cancer and apoptotic activity against colon cancer cell line Caco-2 remains to be elucidated. Hence, the present study evaluated the cytotoxicity, apoptotic and anti-cancer activity of fucoidan extracted from brown seaweed Sargassum cinereum against Caco-2 cell line. Cytotoxicity, morphological examination of nuclei, mitochondrial membrane potential, flow cytometry, reactive oxygen species (ROS) formation and detection of apoptotic efficacy of fucoidan were assessed by different assay protocols. Fucoidan inhibited growth of Caco-2 cells in a dose-dependent manner. IC50 concentration of fucoidan was found to be 250 μg/ml. AO/EB, Hoechst and Annexin V/PI staining confirmed the apoptosis induced by fucoidan in Caco-2 cells. Fucoidan was also found to increase ROS production and augment mitochondrial membrane permeability. The findings of the study suggest that fucoidan exerts potent anti-cancer and apoptotic effect on Caco-2 cells by enhancing ROS production. Thus, fucoidan may be used as a promising therapeutic regimen against various cancer cell types.
    Matched MeSH terms: Membrane Potential, Mitochondrial/drug effects
  6. Ahmed Hassan LE, Khadeer Ahamed MB, Abdul Majid AS, Iqbal MA, Al Suede FS, Haque RA, et al.
    PLoS One, 2014;9(6):e90806.
    PMID: 24608571 DOI: 10.1371/journal.pone.0090806
    Tephrosia apollinea is a perennial shrublet widely distributed in Africa and is known to have medicinal properties. The current study describes the bio-assay (cytotoxicity) guided isolation of (-)-pseudosemiglabrin from the aerial parts of T. apollinea. The structural and stereochemical features have been described using spectral and x-ray crystallographic techniques. The cytotoxicity of isolated compound was evaluated against nine cancer cell lines. In addition, human fibroblast was used as a model cell line for normal cells. The results showed that (-)-pseudosemiglabrin exhibited dose-dependent antiproliferative effect on most of the tested cancer cell lines. Selectively, the compound showed significant inhibitory effect on the proliferation of leukemia, prostate and breast cancer cell lines. Further studies revealed that, the compound exhibited proapoptotic phenomenon of cytotoxicity. Interestingly, the compound did not display toxicity against the normal human fibroblast. It can be concluded that (-)-pseudosemiglabrin is worthy for further investigation as a potential chemotherapeutic agent.
    Matched MeSH terms: Membrane Potential, Mitochondrial/drug effects
  7. Samie N, Haerian BS, Muniandy S, Marlina A, Kanthimathi MS, Abdullah NB, et al.
    Front Pharmacol, 2015;6:313.
    PMID: 26858642 DOI: 10.3389/fphar.2015.00313
    The aim of this study was to evaluate the cytotoxic potential of a novel nickel(II) complex (NTC) against WiDr and HT-29 human colon cancer cells by determining the IC50 using the standard MTT assay. The NTC displayed a strong suppressive effect on colon cancer cells with an IC50 value of 6.07 ± 0.22 μM and 6.26 ± 0.13 μM against WiDr and HT-29 respectively, after 24 h of treatment. Substantial reduction in the mitochondrial membrane potential and increase in the release of cytochrome c from the mitochondria directed the induction of the intrinsic apoptosis pathway by the NTC. Activation of this pathway was further evidenced by significant activation of caspase 3/7 and 9. The NTC was also shown to activate the extrinsic pathway of apoptosis via activation of caspase-8 which is linked to the suppression of NF-κB translocation to the nucleus. Cell cycle arrest in the G1 phase was confirmed by flow cytometry and up-regulation of glutathione reductase expression was quantified by qPCR. Results of the current work indicates that NTC possess a potent cancer cell abolishing activity by simultaneous induction of intrinsic and extrinsic pathways of apoptosis in colon cancer cell lines.
    Matched MeSH terms: Membrane Potential, Mitochondrial
  8. Buskaran K, Bullo S, Hussein MZ, Masarudin MJ, Mohd Moklas MA, Fakurazi S
    Materials (Basel), 2021 Feb 09;14(4).
    PMID: 33572054 DOI: 10.3390/ma14040817
    Liver cancer is listed as the fifth-ranked cancer, responsible for 9.1% of all cancer deaths globally due to its assertive nature and poor survival rate. To overcome this obstacle, efforts have been made to ensure effective cancer therapy via nanotechnology utilization. Recent studies have shown that functionalized graphene oxide (GO)-loaded protocatechuic acid has shown some anticancer activities in both passive and active targeting. The nanocomposites' physicochemical characterizations were conducted. A lactate dehydrogenase experiment was conducted to estimate the severity of cell damage. Subsequently, a clonogenic assay was carried out to examine the colony-forming ability during long-term exposure of the nanocomposites. The Annexin V/ propidium iodide analysis showed that nanocomposites induced late apoptosis in HepG2 cells. Following the intervention of nanocomposites, cell cycle arrest was ascertained at G2/M phase. There was depolarization of mitochondrial membrane potential and an upregulation of reactive oxygen species when HepG2 cells were induced by nanocomposites. Finally, the proteomic profiling array and quantitative reverse transcription polymerase chain reaction revealed the expression of pro-apoptotic and anti-apoptotic proteins induced by graphene oxide conjugated PEG loaded with protocatechuic acid drug folic acid coated nanocomposite (GOP-PCA-FA) in HepG2 cells. In conclusion, GOP-PCA-FA nanocomposites treated HepG2 cells exhibited significant anticancer activities with less toxicity compared to pristine protocatechuic acid and GOP-PCA nanocomposites, due to the utilization of a folic acid-targeting nanodrug delivery system.
    Matched MeSH terms: Membrane Potential, Mitochondrial
  9. Subramanian AP, Jaganathan SK, Mandal M, Supriyanto E, Muhamad II
    World J Gastroenterol, 2016 Apr 21;22(15):3952-61.
    PMID: 27099438 DOI: 10.3748/wjg.v22.i15.3952
    AIM: To investigate the inhibitory action of diet-derived phenolic compound gallic acid (GA) against HCT-15 colon cancer cells.
    METHODS: The antiproliferative effect of GA against colon cancer cells was determined by performing thiazolyl blue tetrazolium bromide (MTT) assay. The colony forming ability of GA treated colon cancer cells was evaluated using the colony forming assay. The cell cycle changes induced by GA in HCT-15 cells were analyzed by propidium iodide staining. Levels of reactive oxygen species (ROS) and mitochondrial membrane potential of HCT-15 exposed to GA was assessed using 2',7'-dichlorfluorescein-diacetate and rhodamine-123 respectively, with the help of flow cytometry. Morphological changes caused by GA treatment in the colon cancer cells were identified by scanning electron microscope and photomicrograph examination. Apoptosis was confirmed using flow cytometric analysis of GA treated HCT-15 cells after staining with Yo-Pro-1.
    RESULTS: MTT assay results illustrated that GA has an inhibitory effect on HCT-15 cells with IC50 value of 740 μmol/L. A time-dependent inhibition of colony formation was evident with GA treatment. Cell cycle arrest was evident from the accumulation of GA treated HCT-15 cells at sub-G1 phase (0.98 ± 1.03 vs 58.01 ± 2.05) with increasing exposure time. Flow cytometric analysis of GA treated HCT-15 cells depicted early events associated with apoptosis like lipid layer breakage and fall in mitochondrial membrane potential apart from an increase in the generation of ROS which were in a time dependent manner. SEM and photomicrograph images of the GA-treated cells displayed membrane blebbing and cell shrinking characteristics of apoptosis. Further apoptosis confirmation by Yo-Pro-1 staining also showed the time-dependent increase of apoptotic cells after treatment.
    CONCLUSION: These results show that GA induced ROS dependent apoptosis and inhibited the growth of colon cancer cells.
    KEYWORDS: Apoptosis; Cell cycle; Colon cancer; Gallic acid; Lipid layer break; Reactive oxygen species
    Matched MeSH terms: Membrane Potential, Mitochondrial
  10. Fani S, Dehghan F, Karimian H, Mun Lo K, Ebrahimi Nigjeh S, Swee Keong Y, et al.
    PLoS One, 2016 Aug 16;11(8):e0160836.
    PMID: 27529753 DOI: 10.1371/journal.pone.0160836
    Monobenzyltin Schiff base complex, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, C1, is an organotin non-platinum metal-based agent. The present study was conducted to investigate its effects on MCF-7 cells with respect to the induction of apoptosis and its inhibitory effect against MCF-7 breast cancer stem cells. As determined in a previous study, compound C1 revealed strong antiproliferative activity on MCF-7 cells with an IC50 value of 2.5 μg/mL. Annexin V/propidium iodide staining coupled with flow cytometry indicated the induction of apoptosis in treated cells. Compound C1 induced apoptosis in MCF-7 cells and was mediated through the intrinsic pathway with a reduction in mitochondrial membrane potential and mitochondrial cytochrome c release to cytosol. Complex C1 activated caspase 9 as a result of cytochrome c release. Subsequently, western blot and real time PCR revealed a significant increase in Bax and Bad expression and a significant decrease in the expression levels of Bcl2 and HSP70. Furthermore, a flow cytometric analysis showed that treatment with compound C1 caused a significant arrest of MCF-7 cells in G0/G1 phase. The inhibitory analysis of compound C1 against derived MCF-7 stem cells showed a significant reduction in the aldehyde dehydrogenase-positive cell population and a significant reduction in the population of MCF-7 cancer stem cells in primary, secondary, and tertiary mammospheres. Moreover, treatment with C1 down-regulated the Wnt/β-catenin self-renewal pathway. These findings indicate that complex C1 is a suppressive agent of MCF-7 cells that functions through the induction of apoptosis, cell cycle arrest, and the targeting of MCF-7-derived cancer stem cells. This work may lead to a better treatment strategy for the reduction of breast cancer recurrence.
    Matched MeSH terms: Membrane Potential, Mitochondrial
  11. Nassir AM, Shahzad N, Ibrahim IAA, Ahmad I, Md S, Ain MR
    Saudi Pharm J, 2018 Sep;26(6):876-885.
    PMID: 30202231 DOI: 10.1016/j.jsps.2018.03.009
    Resveratrol (RL), a natural polyphenol, is known for its diverse biological effects against various human cancer cell lines. But low aqueous solubility, poor bioavailability, and stability limit its efficacy against prostate cancer. In this study polymeric nanoparticles encapsulating resveratrol (RLPLGA) were designed and their cytotoxic and mode of apoptotic cells death against prostate cancer cell line (LNCaP) was determined. Nanoparticles were prepared by solvent displacement method and characterized for particle size, TEM, entrapment efficiency, DSC and drug release study. RLPLGA exhibited a significant decrease in cell viability with 50% and 90% inhibitory concentration (IC50 and IC90) of 15.6 ± 1.49 and 41.1 ± 2.19 μM respectively against the LNCaP cells. This effect was mediated by apoptosis as confirmed by cell cycle arrest at G1-S transition phase, externalization of phosphatidylserine, DNA nicking, loss of mitochondrial membrane potential and reactive oxygen species generation in LNCaP cells. Furthermore, significantly greater cytotoxicity to LNCaP cells was observed with nanoparticles as compared to that of free RL at all tested concentrations. RLPLGA nanoparticles presented no adverse cytotoxic effects on murine macrophages even at 200 μM. Our findings support the potential use of developed resveratrol loaded nanoparticle for the prostate cancer chemoprevention/ chemotherapy with no adverse effect on normal cells.
    Matched MeSH terms: Membrane Potential, Mitochondrial
  12. Subermaniam K, Yow YY, Lim SH, Koh OH, Wong KH
    Saudi J Biol Sci, 2020 Jun;27(6):1435-1445.
    PMID: 32489279 DOI: 10.1016/j.sjbs.2020.04.042
    Oxidative damage has been associated with the pathophysiology of depression. Macroalgae are equipped with antioxidant defense system to counteract the effects of free radicals. We explored the use of Malaysian Padina australis to attenuate high dose corticosterone-mediated oxidative damage in a cellular model mimicking depression. Fresh specimen of P. australis was freeze-dried and extracted sequentially with hexanes, ethyl acetate and ethanol. The extracts were screened for their phytochemical contents and antioxidant activities. Ethanol extract demonstrated the most potent antioxidant capacity and was selected for subsequent assays against high dose corticosterone of 600 µM-mediated oxidative damage in the rat pheochromocytoma (PC12) cells. The corticosterone reduced the cell viability, glutathione (GSH) level, aconitase activity, and mitochondrial membrane potential (MMP); and increased the lactate dehydrogenase (LDH) release, intracellular reactive oxygen species (ROS) level and apoptosis. However, the extent of oxidative damage was reversed by 0.25-0.5 mg/mL ethanol extract suggesting a possible role of P. australis-based antioxidants in the mitochondrial defense against constant ROS generation and regulation of antioxidant pathway. The effects were similar to that of desipramine, a tricyclic antidepressant. Our findings indicate that P. australis can be developed as a mitochondria-targeted antioxidant to mitigate antidepressant-like effects.
    Matched MeSH terms: Membrane Potential, Mitochondrial
  13. Leong LM, Chan KM, Hamid A, Latip J, Rajab NF
    PMID: 26884792 DOI: 10.1155/2016/2091085
    The use of herbal formulations has gained scientific interest, particularly in cancer treatment. In this study, the herbal formulation of interest, denoted as C168, is a mixture of eight genera of plants. This study aims to investigate the antiproliferative effect of C168 methanol extract (CME) on various cancer cells and its underlying mechanism of action on the most responsive cell line, namely, HCT 116 cells. CME exerted antiproliferative activities on HCT 116 colorectal carcinoma cells and HepG2 hepatocellular carcinoma cells but not on CCD-841-CoN normal colon epithelial cells, Jurkat E6.1 lymphoblastic leukemic cells, and V79-4 Chinese hamster lung fibroblasts. Further investigation on HCT 116 cells showed that CME induced G2/M cell-cycle arrest and apoptosis. Treatment of CME induced oxidative stress in HCT 116 cells by increasing the superoxide anion level and decreasing the intracellular glutathione. CME also increased tail moment value and H2AX phosphorylation in HCT 116 cells, suggesting DNA damage as an early signal of CME induced apoptosis. Loss of mitochondrial membrane potential in CME-treated cells also indicated the involvement of mitochondria in CME induced apoptosis. This study indicated the selectivity of CME toward colon cancer cells with the involvement of oxidative damage as its possible mechanism of action.
    Matched MeSH terms: Membrane Potential, Mitochondrial
  14. Wong YH, Abdul Kadir H
    PMID: 22203877 DOI: 10.1155/2012/684740
    Leea indica is a medicinal plant traditionally used to treat cancer. Through bioassay-guided approach, we isolated mollic acid arabinoside (MAA), for the first time from Leea indica. Here, we present the apoptosis-inducing effect of MAA on Ca Ski cervical cancer cells. Based on DAPI staining, MAA-treated cells manifested nuclear shrinkage, condensation, and fragmentation. We further confirmed the fragmentation of DNA using TUNEL assay. During early apoptosis, MAA caused the perturbation of plasma membrane through externalization of PS, followed by the formation of apoptotic blebs. Prior to these events, MAA triggered rapid dissipation of the mitochondrial membrane potential. In the upstream, MAA increased the expression of Bax, decreased the expression of Bcl-2, and augmented the Bax/Bcl-2 ratio. These findings suggested that MAA induced mitochondrial-mediated apoptosis in Ca Ski cells and thus provide the scientific explanation for the traditional application of this herbal medicine in cancer treatment.
    Matched MeSH terms: Membrane Potential, Mitochondrial
  15. Yau Hsiung W, Abdul Kadir H
    PMID: 21423690 DOI: 10.1155/2011/293060
    The anticancer potential of Leea indica, a Chinese medicinal plant was investigated for the first time. The crude ethanol extract and fractions (ethyl acetate, hexane, and water) of Leea indica were evaluated their cytotoxicity on various cell lines (Ca Ski, MCF 7, MDA-MB-435, KB, HEP G2, WRL 68, and Vero) by MTT assay. Leea indica ethyl acetate fraction (LIEAF) was found showing the greatest cytotoxic effect against Ca Ski cervical cancer cells. Typical apoptotic morphological changes such as DNA fragmentation and chromatin condensation were observed in LIEAF-treated cells. Early signs of apoptosis such as externalization of phosphatidylserine and disruption of mitochondrial membrane potential indicated apoptosis induction. This was further substantiated by dose- and time-dependent accumulation of sub-G(1) cells, depletion of intracellular glutathione, and activation of caspase-3. In conclusion, these results suggested that LIEAF inhibited cervical cancer cells growth by inducing apoptosis and could be developed as potential anticancer drugs.
    Matched MeSH terms: Membrane Potential, Mitochondrial
  16. Tan BL, Norhaizan ME, Chan LC
    PMID: 29977314 DOI: 10.1155/2018/6578648
    Manilkara zapota (L.) P. Royen (family: Sapotaceae) is commonly called sapodilla, or locally known as ciku. The detailed mechanisms underlying Manilkara zapota leaf methanol extract against HeLa human cervical cancer cells have yet to be investigated. Therefore, our present study is designed to investigate the ability to induce apoptosis and the underlying mechanisms of Manilkara zapota leaf methanol extract inducing cytotoxicity in HeLa cells. The apoptotic cell death was assessed using Annexin V-propidium iodide staining. Intracellular reactive oxygen species (ROS) and mitochondrial membrane potential activities were measured using dichlorodihydrofluorescein diacetate and MitoLite Orange, respectively, by NovoCyte Flow Cytometer. Bax and Bcl-2 expression were evaluated using Enzyme-Linked Immunosorbent Assay. Caspase-3 activity was determined using a colorimetric assay. The associated biological interaction pathways were evaluated using quantitative real-time PCR. Our data showed that HeLa cells were relatively more sensitive to Manilkara zapota leaf methanol extract than other cancer cell lines studied. Overall analyses revealed that Manilkara zapota leaf methanol extract can inhibit the viability of HeLa cells, induce mitochondrial ROS generation, and inhibit nuclear factor-kappa B (NF-κB) and epidermal growth factor receptor (EGFR) transcriptional activities. Our results suggested that Manilkara zapota leaf methanol extract might represent a potential anticervical cancer agent.
    Matched MeSH terms: Membrane Potential, Mitochondrial
  17. Al-Suede FS, Khadeer Ahamed MB, Abdul Majid AS, Baharetha HM, Hassan LE, Kadir MO, et al.
    PMID: 25276215 DOI: 10.1155/2014/396016
    Cat's whiskers (Orthosiphon stamineus) leaves extracts were prepared using supercritical CO2 (SC-CO2) with full factorial design to determine the optimum extraction parameters. Nine extracts were obtained by varying pressure, temperature, and time. The extracts were analysed using FTIR, UV-Vis, and GC-MS. Cytotoxicity of the extracts was evaluated on human (colorectal, breast, and prostate) cancer and normal fibroblast cells. Moderate pressure (31.1 MPa) and temperature (60°C) were recorded as optimum extraction conditions with high yield (1.74%) of the extract (B2) at 60 min extraction time. The optimized extract (B2) displayed selective cytotoxicity against prostate cancer (PC3) cells (IC50 28 µg/mL) and significant antioxidant activity (IC50 42.8 µg/mL). Elevated levels of caspases 3/7 and 9 in B2-treated PC3 cells suggest the induction of apoptosis through nuclear and mitochondrial pathways. Hoechst and rhodamine assays confirmed the nuclear condensation and disruption of mitochondrial membrane potential in the cells. B2 also demonstrated inhibitory effects on motility and colonies of PC3 cells at its subcytotoxic concentrations. It is noteworthy that B2 displayed negligible toxicity against the normal cells. Chemometric analysis revealed high content of essential oils, hydrocarbon, fatty acids, esters, and aromatic sesquiterpenes in B2. This study highlights the therapeutic potentials of SC-CO2 extract of cat's whiskers in targeting prostate carcinoma.
    Matched MeSH terms: Membrane Potential, Mitochondrial
  18. Narrima P, Paydar M, Looi CY, Wong YL, Taha H, Wong WF, et al.
    PMID: 24808916 DOI: 10.1155/2014/248103
    Persea declinata (Bl.) Kosterm is a member of the Lauraceae family, widely distributed in Southeast Asia. It is from the same genus with avocado (Persea americana Mill), which is widely consumed as food and for medicinal purposes. In the present study, we examined the anticancer properties of Persea declinata (Bl.) Kosterm bark methanolic crude extract (PDM). PDM exhibited a potent antiproliferative effect in MCF-7 human breast cancer cells, with an IC50 value of 16.68 µg/mL after 48 h of treatment. We observed that PDM caused cell cycle arrest and subsequent apoptosis in MCF-7 cells, as exhibited by increased population at G0/G1 phase, higher lactate dehydrogenase (LDH) release, and DNA fragmentation. Mechanistic studies showed that PDM caused significant elevation in ROS production, leading to perturbation of mitochondrial membrane potential, cell permeability, and activation of caspases-3/7. On the other hand, real-time PCR and Western blot analysis showed that PDM treatment increased the expression of the proapoptotic molecule, Bax, but decreased the expression of prosurvival proteins, Bcl-2 and Bcl-xL, in a dose-dependent manner. These findings imply that PDM could inhibit proliferation in MCF-7 cells via cell cycle arrest and apoptosis induction, indicating its potential as a therapeutic agent worthy of further development.
    Matched MeSH terms: Membrane Potential, Mitochondrial
  19. Arbab IA, Looi CY, Abdul AB, Cheah FK, Wong WF, Sukari MA, et al.
    PMID: 23091559 DOI: 10.1155/2012/856029
    This study was set to investigate antiproliferative potential of dentatin (a natural coumarin isolated from Clausena excavata Burm. F) against prostate cancer and to delineate the underlying mechanism of action. Treatment with dentatin dose-dependently inhibited cell growth of PC-3 and LNCaP prostate cancer cell lines, whereas it showed less cytotoxic effects on normal prostate epithelial cell line (RWPE-1). The inhibitory effect of dentatin on prostate cancer cell growth was due to induction of apoptosis as evidenced by Annexin V staining and cell shrinkage. We found that dentatin-mediated accumulation of reactive oxygen species (ROS) and downregulated expression levels of antiapoptotic molecules (Bcl-2, Bcl-xL, and Survivin), leading to disruption of mitochondrial membrane potential (MMP), cell membrane permeability, and release of cytochrome c from the mitochondria into the cytosol. These effects were associated with induction of caspase-9, -3/7 activities, and subsequent DNA fragmentation. In addition, we found that dentatin inhibited TNF-α-induced nuclear translocation of p65, suggesting dentatin as a potential NF-κB inhibitor. Thus, we suggest that dentatin may have therapeutic value in prostate cancer treatment worthy of further development.
    Matched MeSH terms: Membrane Potential, Mitochondrial
  20. Mohan S, Abdelwahab SI, Cheah SC, Sukari MA, Syam S, Shamsuddin N, et al.
    PMID: 23573145 DOI: 10.1155/2013/689865
    Murraya koenigii Spreng has been traditionally claimed as a remedy for cancer. The current study investigated the anticancer effects of girinimbine, a carbazole alkaloid isolated from Murraya koenigii Spreng, on A549 lung cancer cells in relation to apoptotic mechanistic pathway. Girinimbine was isolated from Murraya koenigii Spreng. The antiproliferative activity was assayed using MTT and the apoptosis detection was done by annexin V and lysosomal stability assays. Multiparameter cytotoxicity assays were performed to investigate the change in mitochondrial membrane potential and cytochrome c translocation. ROS, caspase, and human apoptosis proteome profiler assays were done to investigate the apoptotic mechanism of cell death. The MTT assay revealed that the girinimbine induces cell death with an IC50 of 19.01  μ M. A significant induction of early phase of apoptosis was shown by annexin V and lysosomal stability assays. After 24 h treatment with 19.01  μ M of girinimbine, decrease in the nuclear area and increase in mitochondrial membrane potential and plasma membrane permeability were readily visible. Moreover the translocation of cytochrome c also was observed. Girinimbine mediates its antiproliferative and apoptotic effects through up- and downregulation of apoptotic and antiapoptotic proteins. There was a significant involvement of both intrinsic and extrinsic pathways. Moreover, the upregulation of p53 as well as the cell proliferation repressor proteins, p27 and p21, and the significant role of insulin/IGF-1 signaling were also identified. Moreover the caspases 3 and 8 were found to be significantly activated. Our results taken together indicated that girinimbine may be a potential agent for anticancer drug development.
    Matched MeSH terms: Membrane Potential, Mitochondrial
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links