Displaying publications 41 - 60 of 1293 in total

Abstract:
Sort:
  1. Yusof Abdullah, Mohd Reusmaazran Yusof, Nadira Kamarudin, Paulus, Wilfred Sylvester, Rusnah Mustaffa, Nurazila Mat Zali, et al.
    MyJurnal
    Al/B4C composites with 0 wt.%, 5 wt.% and 10 wt.% of B4C were prepared by powder metallurgy and their properties were characterised successfully. Investigation of the effect of milling times (4, 8, 12, 16 hours) on microstructure, phase identification, hardness and neutron attenuation coefficient of composites has been studied. The results showed that hardness increased with increased of milling time, with maximum hardness obtained at 16 hours milling time. The increment is slower as the composition of B4C increased. The hardness of Al/10%B4C, Al/5%B4C and Al/0%B4C were 81.7, 78.7 and 61.2 HRB respectively. Morphology of scanning electron microscopy (SEM) showed that microstructures play important role in controlling the hardness. Meanwhile, x-ray diffraction (XRD) analysis showed the phases and crystalline present in composites with an indication that crystalline of the grain increased as the milling time increased. Neutron absorption of Al/10%B4C composites showed that this composite has the highest attenuation coefficient, thus indicating that it is the best composites for neutron shielding.
    Matched MeSH terms: Microscopy, Electron, Scanning
  2. Yusof AM, Kumar S
    Exp Parasitol, 2012 Jul;131(3):267-73.
    PMID: 22525014 DOI: 10.1016/j.exppara.2012.03.015
    The protozoan Trichomonas vaginalis a sexually transmitted protozoan parasite causes vaginitis, urethritis and cervicitis in humans. The present study highlights phenotypic 'variant' forms of trophozoites isolated from patients suffering from cervical neoplasia condition. The growth curve of 10 isolates i.e., four non-cervical neoplasia (NCN) isolates (NCN1-NCN4) and six cervical neoplasia (CN) isolates (CN1-CN6) showed two distinct and different in vitro growth profiles. The parasite count and growth rates were significantly higher in trophozoites from CN isolates in cultures of day 2 up to day 8 (p<0.05, Mann-Whitney test). The average generation time was 1.84±0.40 and 3.38±0.55h for NCN and CN isolates respectively. The nucleus of trophozoites in CN isolates using acridine orange and DAPI showed more intense staining revealing higher nuclear content. The FITC-labeled Concanavalin A stained stronger green fluorescence with surface of trophozoites in CN isolates showing more rough and creased surface with numerous deep micropores. Transmission electron microscopy studies revealed that there was higher numbers of vacuoles and hydrogenosomes in these forms. The study mounted staining techniques, growth profiles, morphology, morphometry studies using scanning and transmission electron microscopy and confirms that the trophozoites from cervical neoplasia proliferates at a higher rate, shows higher FITC-labeled Concanavalin A binding with rough and creased surface implying that these are virulent forms which can aggravate or exacerbate cervical neoplasia conditions. The large numbers of hyrogenosomes and vacuoles implies that these forms are active and implicates a possible role in such conditions.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  3. Yung LC, Fei CC, Mandeep J, Binti Abdullah H, Wee LK
    PLoS One, 2014;9(5):e97484.
    PMID: 24830317 DOI: 10.1371/journal.pone.0097484
    The success of printing technology in the electronics industry primarily depends on the availability of metal printing ink. Various types of commercially available metal ink are widely used in different industries such as the solar cell, radio frequency identification (RFID) and light emitting diode (LED) industries, with limited usage in semiconductor packaging. The use of printed ink in semiconductor IC packaging is limited by several factors such as poor electrical performance and mechanical strength. Poor adhesion of the printed metal track to the epoxy molding compound is another critical factor that has caused a decline in interest in the application of printing technology to the semiconductor industry. In this study, two different groups of adhesion promoters, based on metal and polymer groups, were used to promote adhesion between the printed ink and the epoxy molding substrate. The experimental data show that silver ink with a metal oxide adhesion promoter adheres better than silver ink with a polymer adhesion promoter. This result can be explained by the hydroxyl bonding between the metal oxide promoter and the silane grouping agent on the epoxy substrate, which contributes a greater adhesion strength compared to the polymer adhesion promoter. Hypotheses of the physical and chemical functions of both adhesion promoters are described in detail.
    Matched MeSH terms: Microscopy, Electron, Scanning
  4. Yuen CW, Ong EB, Mohamad S, Manaf UA, Najimudin N
    J Microbiol Biotechnol, 2012 Oct;22(10):1336-42.
    PMID: 23075783
    In Burkholderia pseudomallei, the pathogen that causes melioidosis, the gene cluster encoding the capsular polysaccharide, is located on chromosome 1. Among the 19 capsular genes in this cluster, wzm has not been thoroughly studied. To study the function of wzm, we generated a deletion mutant and compared it with the wild-type strain. The mutant produced less biofilm in minimal media and was more sensitive to desiccation and oxidative stress compared with the wild-type strain, indicating that wzm is involved in biofilm formation and membrane integrity. Scanning electron microscopy showed that the bacterial cells of the mutant strain have more defined surfaces with indentations, whereas cells of the wild-type strain do not.
    Matched MeSH terms: Microscopy, Electron, Scanning
  5. Yousif, Emad, Ahmed, Dina S., Ahmed, Ahmed A., Hameed, Ayad S., Yusop, Rahimi M., Redwan, Amamer, et al.
    Science Letters, 2018;12(2):19-27.
    MyJurnal
    The photodegradation rate constant and surface morphology of poly(vinyl chloride), upon irradiation with ultraviolet light was investigated in the presence of polyphosphates as photostabilizers. Poly(vinyl chloride) photodegradation rate constant was lower for the films containing polyphosphates compared to the blank film. In addition, the surface morphology of the irradiated poly(vinyl chloride) containing polyphosphates, examined by scanning electron microscopy, indicates that the surface was much smoother compared to the blank film.
    Matched MeSH terms: Microscopy, Electron, Scanning
  6. Yousif E, Ahmed DS, Ahmed A, Abdallh M, Yusop RM, Mohammed SA
    Environ Sci Pollut Res Int, 2019 Sep;26(25):26381-26388.
    PMID: 31290046 DOI: 10.1007/s11356-019-05784-w
    A new Schiff base containing 1,2,4-triazole ring system (L) was synthesized and confirmed by 1HNMR, FTIR spectroscopy. The chemical modification of PVC with a new Schiff base (L) was synthesized to produce a homogenous blend (PVC-L). A homogenous blend (PVC-L) was added to copper chloride to produce PVC-L-Cu (II). The PVC films had been irradiated with ultraviolet light for a long period and confirmed by FTIR spectroscopy and weight loss; the surface morphology was inspected by scanning electron microscopy.
    Matched MeSH terms: Microscopy, Electron, Scanning
  7. Yoon LW, Ngoh GC, Chua AS
    Enzyme Microb Technol, 2013 Sep 10;53(4):250-6.
    PMID: 23931690 DOI: 10.1016/j.enzmictec.2013.05.005
    This study examined the potential of untreated and alkali-pretreated sugarcane bagasse (SCB) in cellulase, reducing sugar (RS) and fungal biomass production via solid state fermentation (SSF) using Pycnoporus sanguineus. The impact of the composition, structure and cellulase adsorption ability of SCB on the production of cellulase, RS and fungal biomass was investigated. From the morphological and compositional analyses, untreated SCB has relatively more structural changes with a higher percentage of depolymerisation on the cellulose, hemicellulose and lignin content compared to alkali-pretreated SCB. Thus, untreated SCB favoured the production of cellulase and fungal biomass whereas alkali-pretreated SCB yielded a higher amount of RS. The composition and morphology of untreated SCB did not encourage RS production and this suggested that RS produced during SSF might be consumed in a faster rate by the more abundantly grown fungus. Besides that, alkali-pretreated SCB with higher cellulase adsorption ability could have adsorbed the cellulase produced and resulted in a lower cellulase titre. In short, the production of specific bioproducts via SSF is dependent on the structure and composition of the substrate applied.
    Matched MeSH terms: Microscopy, Electron, Scanning
  8. Yong KL, Chan KW
    Med J Malaysia, 1982 Sep;37(3):231-4.
    PMID: 6960229
    A 38 year old patient unth. chronic granulocytes leukaemia, subsequently presented untli blast transformation. nineteen. months later. Conventional light microscopy and cytochemistry were not helpful in elucidating the type of blast cell. Electron microscopy however identifies the blasts to be of megakaryocytic series.
    Matched MeSH terms: Microscopy, Electron, Scanning
  9. Yong CY, Yeap SK, Goh ZH, Ho KL, Omar AR, Tan WS
    Appl Environ Microbiol, 2015 Feb;81(3):882-9.
    PMID: 25416760 DOI: 10.1128/AEM.03695-14
    Hepatitis B virus (HBV) is a deadly pathogen that has killed countless people worldwide. Saccharomyces cerevisiae-derived HBV vaccines based upon hepatitis B surface antigen (HBsAg) is highly effective. However, the emergence of vaccine escape mutants due to mutations on the HBsAg and polymerase genes has produced a continuous need for the development of new HBV vaccines. In this study, the "a" determinant within HBsAg was displayed on the recombinant capsid protein of Macrobrachium rosenbergii nodavirus (MrNV), which can be purified easily in a single step through immobilized metal affinity chromatography (IMAC). The purified protein self-assembled into virus-like particles (VLPs) when observed under a transmission electron microscope (TEM). Immunization of BALB/c mice with this chimeric protein induced specific antibodies against the "a" determinant. In addition, it induced significantly more natural killer and cytotoxic T cells, as well as an increase in interferon gamma (IFN-γ) secretion, which are vital for virus clearance. Collectively, these findings demonstrated that the MrNV capsid protein is a potential carrier for the HBV "a" determinant, which can be further extended to display other foreign epitopes. This paper is the first to report the application of MrNV VLPs as a novel platform to display foreign epitopes.
    Matched MeSH terms: Microscopy, Electron, Transmission
  10. Yong AL, Ooh KF, Ong HC, Chai TT, Wong FC
    Food Chem, 2015 Nov 1;186:32-6.
    PMID: 25976788 DOI: 10.1016/j.foodchem.2014.11.103
    In this paper, we investigated the antibacterial mechanism and potential therapeutic targets of three antibacterial medicinal plants. Upon treatment with the plant extracts, bacterial proteins were extracted and resolved using denaturing gel electrophoresis. Differentially-expressed bacterial proteins were excised from the gels and subjected to sequence analysis by MALDI TOF-TOF mass spectrometry. From our study, seven differentially expressed bacterial proteins (triacylglycerol lipase, N-acetylmuramoyl-L-alanine amidase, flagellin, outer membrane protein A, stringent starvation protein A, 30S ribosomal protein s1 and 60 kDa chaperonin) were identified. Additionally, scanning electron microscope study indicated morphological damages induced on bacterial cell surfaces. To the best of our knowledge, this represents the first time these bacterial proteins are being reported, following treatments with the antibacterial plant extracts. Further studies in this direction could lead to the detailed understanding of their inhibition mechanism and discovery of target-specific antibacterial agents.
    Matched MeSH terms: Microscopy, Electron, Scanning
  11. Yew SE, Lim TJ, Lew LC, Bhat R, Mat-Easa A, Liong MT
    J Food Sci, 2011 Apr;76(3):H108-15.
    PMID: 21535834 DOI: 10.1111/j.1750-3841.2011.02107.x
    Probiotic delivery system was developed via the use of microbial transglutaminase (MTG) cross-linked soy protein isolate (SPI) incorporated with agrowastes such as banana peel (BE), banana pulp (BU), and pomelo rind (PR). Inoculums of Lactobacillus bulgaricus FTDC 1511 were added to the cross-linked protein matrix. The incorporation of agrowastes had significantly (P<0.05) reduced the strength, pH value, and the lightness of the SPI gel carriers, while sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles revealed that the occurring cross-links within the SPI gel carriers were attributed to the addition of MTG. Scanning electron microscope micrographs illustrated that SPI carriers containing agrowastes have exhibited a less-dense protein matrix. All the SPI carriers possessed maximum swelling ratio at 4 to 4.5 within 15 min in simulated gastric fluid (SGF), whereas the maximum swelling ratios of SPI/BE, SPI/BU, and SPI/PR were higher compared to that of control in simulated intestinal fluid (SIF). Additionally, SPI carriers in SGF medium did not show degradation of structure, whereas a major collapse of network was observed in SIF medium, indicating controlled-release in the intestines. The addition of agrowastes into SPI carriers led to a significantly (P<0.0001) lower release of L. bulgaricus FTDC 1511 in SGF medium and a higher release in SIF medium, compared to that of the control. SPI carriers containing agrowastes may be useful transports for living probiotic cells through the stomach prior to delivery in the lower intestines.
    Matched MeSH terms: Microscopy, Electron, Scanning
  12. Yeong YS, Nazni WA, Santana RL, Mohd Noor I, Lee HL, Mohd Sofian A
    Trop Biomed, 2011 Aug;28(2):325-32.
    PMID: 22041752
    In Malaysia, maggot debridement therapy (MDT) utilizes maggots of Lucilia cuprina (Wiedemann) to debride necrotic tissue from wound surface, reduce bacterial infection and therefore, enhance wound healing process. To evaluate the sterility of the sterile maggots produced after sterilization process before delivering onto patient wounds. Sterility of sterile maggots is crucial in ensuring the safe usage of MDT and patient's health. Eggs of L. cuprina collected from a laboratory colony were divided into treated group (sterilized) and control group (non-sterilized). Treated group underwent sterilization while eggs from control group were allowed to hatch without sterilization. Sodium hypochlorite and formaldehyde were the main disinfectants used in this sterilization process. Scanning electron microscope (SEM) was used to examine and ascertain the sterility of sterile maggots. SEM results showed that all sterilized L. cuprina eggs and maggots achieved sterility and all were cleared from bacterial contamination. In contrast, all non-sterilized eggs and maggots were found to be colonized by microorganisms. Sterilization method employed to sterilize eggs and maggots used in Malaysia MDT was proven successful and MDT is safe to be used as wound management tools.
    Matched MeSH terms: Microscopy, Electron, Scanning
  13. Yee MS, Khiew PS, Chiu WS, Tan YF, Kok YY, Leong CO
    Colloids Surf B Biointerfaces, 2016 Dec 01;148:392-401.
    PMID: 27639489 DOI: 10.1016/j.colsurfb.2016.09.011
    Fouling of marine surfaces has been a perpetual problem ever since the days of the early sailors. The tenacious attachment of seaweed and invertebrates to man-made surfaces, notably on ship hulls, has incurred undesirable economic losses. Graphene receives great attention in the materials world for its unique combination of physical and chemical properties. Herein, we present a novel 2-step synthesis method of graphene-silver nanocomposites which bypasses the formation of graphene oxide (GO), and produces silver nanoparticles supported on graphene sheets through a mild hydrothermal reduction process. The graphene-Ag (GAg) nanocomposite combines the antimicrobial property of silver nanoparticles and the unique structure of graphene as a support material, with potent marine antifouling properties. The GAg nanocomposite was composed of micron-scaled graphene flakes with clusters of silver nanoparticles. The silver nanoparticles were estimated to be between 72 and 86nm (SEM observations) while the crystallite size of the silver nanoparticles (AgNPs) was estimated between 1 and 5nm. The nanocomposite also exhibited the SERS effect. GAg was able to inhibit Halomonas pacifica, a model biofilm-causing microbe, from forming biofilms with as little as 1.3wt.% loading of Ag. All GAg samples displayed significant biofilm inhibition property, with the sample recording the highest Ag loading (4.9wt.% Ag) associated with a biofilm inhibition of 99.6%. Moreover, GAg displayed antiproliferative effects on marine microalgae, Dunaliella tertiolecta and Isochrysis sp. and inhibited the growth of the organisms by more than 80% after 96h. The marine antifouling properties of GAg were a synergy of the biocidal AgNPs anchored on the stable yet flexible graphene sheets, providing maximum active contact surface areas to the target organisms.
    Matched MeSH terms: Microscopy, Electron, Scanning; Microscopy, Electron, Transmission
  14. Yap WB, Tey BT, Alitheen NB, Tan WS
    J Chromatogr A, 2010 May 21;1217(21):3473-80.
    PMID: 20388569 DOI: 10.1016/j.chroma.2010.03.012
    Hepatitis B core antigen (HBcAg) is used as a diagnostic reagent for the detection of hepatitis B virus infection. In this study, immobilized metal affinity-expanded bed adsorption chromatography (IMA-EBAC) was employed to purify N-terminally His-tagged HBcAg from unclarified bacterial homogenate. Streamline Chelating was used as the adsorbent and the batch adsorption experiment showed that the optimal binding pH of His-tagged HBcAg was 8.0 with a binding capacity of 1.8 mg per ml of adsorbent. The optimal elution condition for the elution of His-tagged HBcAg from the adsorbent was at pH 7 in the presence of 500 mM imidazole and 1.5 M NaCl. The IMA-EBAC has successfully recovered 56% of His-tagged HBcAg from the unclarified E. coli homogenate with a purification factor of 3.64. Enzyme-linked immunosorbent assay (ELISA) showed that the antigenicity of the recovered His-tagged HBcAg was not affected throughout the IMA-EBAC purification process and electron microscopy revealed that the protein assembled into virus-like particles (VLP).
    Matched MeSH terms: Microscopy, Electron, Transmission
  15. Yap WB, Tey BT, Ng MY, Ong ST, Tan WS
    J Virol Methods, 2009 Sep;160(1-2):125-31.
    PMID: 19433111 DOI: 10.1016/j.jviromet.2009.04.038
    The core antigen of the hepatitis B virus (HBcAg) has been used widely as a diagnostic reagent for the identification of the viral infection. However, purification using the conventional sucrose density gradient ultracentrifugation is time consuming and costly. To overcome this, HBcAg particles displaying His-tag on their surface were constructed and produced in Escherichia coli. The recombinant His-tagged HBcAgs were purified using immobilized metal affinity chromatography. Transmission electron microscopy and enzyme-linked immunosorbent assay (ELISA) revealed that the displayed His-tag did not impair the formation of the core particles and the antigenicity of HBcAg.
    Matched MeSH terms: Microscopy, Electron, Transmission
  16. Yap SK, Zakaria Z, Othman SS, Omar AR
    J Vet Sci, 2018 Mar 31;19(2):207-215.
    PMID: 28693312 DOI: 10.4142/jvs.2018.19.2.207
    Pasteurella multocida serotype B:2 causes hemorrhagic septicemia in cattle and buffalo. The invasion mechanism of the bacterium when invading the bloodstream is unclear. This study aimed to characterize the effects of immunomodulatory molecules, namely dexamethasone and lipopolysaccharide, on the invasion efficiency of P. multocida serotype B:2 toward bovine aortic endothelial cells (BAECs) and the involvement of actin microfilaments in the invasion mechanism. The results imply that treatment of BAECs with lipopolysaccharide at 100 ng/mL for 24 h significantly increases the intracellular bacteria number per cell (p < 0.01) compared with those in untreated and dexamethasone-treated cells. The lipopolysaccharide-treated cells showed a significant decrease in F-actin expression and an increase in G-actin expression (p < 0.001), indicating actin depolymerization of BAECs. However, no significant differences were detected in the invasion efficiency and actin filament reorganization between the dexamethasone-treated and untreated cells. Transmission electron microscopy showed that P. multocida B:2 resided in a vacuolar compartment of dexamethasone-treated and untreated cells, whereas the bacteria resided in cellular membrane of lipopolysaccharide-treated cells. The results suggest that lipopolysaccharide destabilizes the actin filaments of BAECs, which could facilitate the invasion of P. multocida B:2 into BAECs.
    Matched MeSH terms: Microscopy, Electron, Transmission
  17. Yap PS, Krishnan T, Chan KG, Lim SH
    J Microbiol Biotechnol, 2015 Aug;25(8):1299-306.
    PMID: 25381741 DOI: 10.4014/jmb.1407.07054
    This study aimed to investigate the mechanism of action of the cinnamon bark essential oil (CB), when used singly and also in combination with piperacillin, for its antimicrobial and synergistic activity against beta-lactamase TEM-1 plasmid-conferred Escherichia coli J53 R1. Viable count of this combination showed a complete killing profile at 20 h and further confirmed its synergistic effect by reducing the bacteria cell numbers. Analysis on the stability of treated cultures for cell membrane permeability by CB when tested against sodium dodecyl sulfate revealed that the bacterial cell membrane was disrupted by the essential oils. Scanning electron microscopy observation and bacterial surface charge measurement also revealed that CB causes irreversible membrane damage and reduces the bacterial surface charge. In addition, bioluminescence expression of Escherichia coli [pSB1075] and E. coli [pSB401] by CB showed reduction, indicating the possibility of the presence of quorum sensing (QS) inhibitors. Gas-chromatography and mass spectrometry of the essential oil of Cinnamomum verum showed that trans-cinnamaldehyde (72.81%), benzyl alcohol (12.5%), and eugenol (6.57%) were the major components in the essential oil. From this study, CB has the potential to reverse E. coli J53 R1 resistance to piperacillin through two pathways; modification in the permeability of the outer membrane or bacterial QS inhibition.
    Matched MeSH terms: Microscopy, Electron, Scanning
  18. Yap LV, Noor NM, Clyde MM, Chin HF
    Cryo Letters, 2011 May-Jun;32(3):188-96.
    PMID: 21766148
    The effects of sucrose preculture duration and loading treatment on tolerance of Garcinia cowa shoot tips to cryopreservation using the PVS2 vitrification solution were investigated. Ultrastructural changes in meristematic cells at the end of the preculture and loading steps were followed in an attempt to understand the effects of these treatments on structural changes in cell membranes and organelles. Increasing preculture duration on 0.3 M sucrose medium from 0 to 3 days enhanced tolerance to PVS2 solution from 5.6 percent (no preculture) to 49.2 percent (3-day preculture). However, no survival was observed after cryopreservation. Examination of meristematic cells by transmission electron microscopy revealed the progressive accumulation of an electron-dense substance in line with increasing exposure durations to 0.3 M sucrose preculture. Treatment with a loading solution (2 M glycerol + 0.4 M sucrose) decreased tolerance of shoot tips to PVS2 vitrification solution and had a deleterious effect on the ultrastructure of G. cowa meristematic cells. This study suggests that G. cowa meristematic cells may lose their structural integrity due to exposure to glycerol present in the loading solution at a 2 M concentration, either due to its high osmotic potential, or due to its cytotoxicity.
    Matched MeSH terms: Microscopy, Electron, Transmission
  19. Yap FC, Wong WL, Maule AG, Brennan GP, Lim LH
    Arthropod Struct Dev, 2015 May;44(3):253-79.
    PMID: 25770075 DOI: 10.1016/j.asd.2015.02.001
    Detailed studies of larval development of Octolasmis angulata and Octolasmis cor are pivotal in understanding the larval morphological evolution as well as enhancing the functional ecology. Six planktotrophic naupliar stages and one non-feeding cyprid stage are documented in details for the first time for the two species of Octolasmis. Morphologically, the larvae of O. angulata and O. cor are similar in body size, setation patterns on the naupliar appendages, labrum, dorsal setae-pores, frontal horns, cyprid carapace, fronto-lateral gland pores, and lattice organs. Numbers of peculiarities were observed on the gnathobases of the antennae and mandible throughout the naupliar life-cycle. The setation pattern on the naupliar appendages are classified based on the segmentation on the naupliar appendages. The nauplius VI of both species undergoes a conspicuous change before metamorphosis into cyprid stage. The cyprid structures begin to form and modify beneath the naupliar body towards the end of stage VI. This study emphasises the importance of the pedunculate barnacle larval developmental studies not only to comprehend the larval morphological evolution but also to fill in the gaps in understanding the modification of the naupliar structures to adapt into the cyprid life-style.
    Matched MeSH terms: Microscopy, Electron, Scanning
  20. Yap CY, Mohamed N
    Chemosphere, 2007 Apr;67(8):1502-10.
    PMID: 17296217
    Traditional methods for the recovery of gold from electronic scrap by hydrometallurgy were cyanidation followed by adsorption on activated carbon or cementation onto zinc dust and by electrowinning. In our studies, a static batch electrochemical reactor operating in an electrogenerative mode was used in gold recovery from cyanide solutions. A spontaneous chemical reaction will take place in the reactor and generate an external flow of current. In this present work, a static batch cell with an improved design using three-dimensional cathodes namely porous graphite and reticulated vitreous carbon (RVC) and two-dimensional cathode materials, copper and stainless steel plates were coupled with a zinc anode. The electrogenerative system was demonstrated and the performance of the system using various cathode materials for gold recovery was evaluated. The system resulted in more than 90% gold being recovered within 3h of operation. Activated RVC serves as a superior cathode material having the highest recovery rate with more than 99% of gold being recovered in 1h of operation. The morphology of gold deposits on various cathode materials was also investigated.
    Matched MeSH terms: Microscopy, Electron, Scanning
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links