Displaying publications 41 - 60 of 67 in total

Abstract:
Sort:
  1. Hameed S, Kanwal, Seraj F, Rafique R, Chigurupati S, Wadood A, et al.
    Eur J Med Chem, 2019 Dec 01;183:111677.
    PMID: 31514061 DOI: 10.1016/j.ejmech.2019.111677
    Benzotriazoles (4-6) were synthesized which were further reacted with different substituted benzoic acids and phenacyl bromides to synthesize benzotriazole derivatives (7-40). The synthetic compounds (7-40) were characterized via different spectroscopic techniques including EI-MS, HREI-MS, 1H-, and 13C NMR. These molecules were examined for their anti-hyperglycemic potential hence were evaluated for α-glucosidase and α-amylase inhibitory activities. All benzotriazoles displayed moderate to good inhibitory activity in the range of IC50 values of 2.00-5.6 and 2.04-5.72 μM against α-glucosidase and α-amylase enzymes, respectively. The synthetic compounds were divided into two categories "A" and "B", in order to understand the structure-activity relationship. Compounds 25 (IC50 = 2.41 ± 1.31 μM), (IC50 = 2.5 ± 1.21 μM), 36 (IC50 = 2.12 ± 1.35 μM), (IC50 = 2.21 ± 1.08 μM), and 37 (IC50 = 2.00 ± 1.22 μM), (IC50 = 2.04 ± 1.4 μM) with chloro substitution/s at aryl ring were found to be most active against α-glucosidase and α-amylase enzymes. Molecular docking studies on all compounds were performed which revealed that chloro substitutions are playing a pivotal role in the binding interactions. The enzyme inhibition mode was also studied and the kinetic studies revealed that the synthetic molecules have shown competitive mode of inhibition against α-amylase and non-competitive mode of inhibition against α-glucosidase enzyme.
    Matched MeSH terms: Molecular Targeted Therapy
  2. Islam R, Lam KW
    Eur J Med Chem, 2020 Dec 01;207:112812.
    PMID: 32937283 DOI: 10.1016/j.ejmech.2020.112812
    Triple-negative breast cancer (TNBC) is the most aggressive type of cancer, with a high risk of death on recurrence. To date, there is a lack of approved targeted agents for the treatment of the disease. Patients with TNBC continue to depend on surgery, chemotherapy, and radiotherapy, all of which have a wide side effect profile. In the present review, we highlight the current progress and exciting developments in the small-molecule targeted therapy for the treatment of TNBC. Finally, we also discuss the prospect of combining targeted therapy and immunotherapy for the effective treatment of TNBC.
    Matched MeSH terms: Molecular Targeted Therapy
  3. Hassan MZ, Osman H, Ali MA, Ahsan MJ
    Eur J Med Chem, 2016 Nov 10;123:236-255.
    PMID: 27484512 DOI: 10.1016/j.ejmech.2016.07.056
    Coumarins have received a considerable attention in the last three decades as a lead structures for the discovery of orally bioavailable non-peptidic antiviral agents. A lot of structurally diverse coumarins analogues were found to display remarkable array of affinity with the different molecular targets for antiviral agents and slight modifications around the central motif result in pronounced changes in its antiviral spectrum. This manuscript thoroughly reviews the design, discovery and structure-activity relationship studies of the coumarin analogues as antiviral agents focusing mainly on lead optimization and its development into clinical candidates.
    Matched MeSH terms: Molecular Targeted Therapy
  4. Shahnaz Syed Abd Kadir S, Christopeit M, Wulf G, Wagner E, Bornhauser M, Schroeder T, et al.
    Eur. J. Haematol., 2018 Sep;101(3):305-317.
    PMID: 29791053 DOI: 10.1111/ejh.13099
    INTRODUCTION: Ruxolitinib is the first approved drug for treatment of myelofibrosis, but its impact of outcome after allogeneic stem cell transplantation (ASCT) is unknown.
    PATIENTS AND METHODS: We reported on 159 myelofibrosis patients (pts) with a median age of 59 years (r: 28-74) who received reduced intensity ASCT between 2000 and 2015 in eight German centers from related (n = 23), matched (n = 86) or mismatched (n = 50) unrelated donors. Forty-six (29%) patients received ruxolitinib at any time point prior to ASCT. The median daily dose of ruxolitinib was 30 mg (range 10-40 mg) and the median duration of treatment was 4.9 months (range 0.4-39.1 months).
    RESULTS: Primary graft failure was seen in 2 pts (4%) in the ruxolitinib and 3 (2%) in the non-ruxolitinib group. Engraftment and incidence of acute GVHD grade II to IV and III/IV did not differ between groups (37% vs 39% and 19% vs 28%, respectively), nor did the non-relapse mortality at 2 years (23% vs 23%). A trend for lower risk of relapse was seen in the ruxolitinib group (9% vs 17%, P = .2), resulting in a similar 2 year DFS and OS (68% vs 60% and 73% vs 70%, respectively). No difference in any outcome variable could be seen between ruxolitinib responders and those who failed or lost response to ruxolitinib.
    CONCLUSIONS: These results suggest that ruxolitinib pretreatment in myelofibrosis patient does not negatively influence outcome after allogeneic stem cell transplantation.
    Study site: 8 health clinics in Germany
    Matched MeSH terms: Molecular Targeted Therapy
  5. Hasan WNW, Chin KY, Jolly JJ, Ghafar NA, Soelaiman IN
    PMID: 29683099 DOI: 10.2174/1871530318666180423122409
    BACKGROUND: Osteoporosis is a silent skeletal disease characterized by low bone mass and destruction of skeletal microarchitecture, leading to an increased fracture risk. This occurs due to an imbalance in bone remodelling, whereby the rate of bone resorption is greater than bone formation. Mevalonate pathway, previously known to involve in cholesterol synthesis, is an important regulatory pathway for bone remodelling.

    OBJECTIVE: This review aimed to provide an overview of the relationship between mevalonate pathway and bone metabolism, as well as agents which act through this pathway to achieve their therapeutic potential.

    DISCUSSION: Mevalonate pathway produces farnesyl pyrophosphate and geranylgeranyl pyrophosphate essential in protein prenylation. An increase in protein prenylation favours bone resorption over bone formation. Non-nitrogen containing bisphosphonates inhibit farnesyl diphosphate synthase which produces farnesyl pyrophosphate. They are used as the first line therapy for osteoporosis. Statins, a well-known class of cholesterol-lowering agents, inhibit 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, the rate-determining enzyme in the mevalonate pathway. It was shown to increase bone mineral density and prevent fracture in humans. Tocotrienol is a group of vitamin E commonly found in palm oil, rice bran and annatto bean. It causes degradation of HMG-CoA reductase. Many studies demonstrated that tocotrienol prevented bone loss in animal studies but its efficacy has not been tested in humans.

    CONCLUSION: Mevalonate pathway can be exploited to develop effective antiosteoporosis agents.

    Matched MeSH terms: Molecular Targeted Therapy
  6. Aggarwal T, Wadhwa R, Gupta R, Paudel KR, Collet T, Chellappan DK, et al.
    PMID: 32342824 DOI: 10.2174/1871530320666200428113051
    Regardless of advances in detection and treatment, breast cancer affects about 1.5 million women all over the world. Since the last decade, genome-wide association studies (GWAS) have been extensively conducted for breast cancer to define the role of miRNA as a tool for diagnosis, prognosis and therapeutics. MicroRNAs are small, non-coding RNAs that are associated with the regulation of key cellular processes such as cell multiplication, differentiation, and death. They cause a disturbance in the cell physiology by interfering directly with the translation and stability of a targeted gene transcript. MicroRNAs (miRNAs) constitute a large family of non-coding RNAs, which regulate target gene expression and protein levels that affect several human diseases and are suggested as the novel markers or therapeutic targets, including breast cancer. MicroRNA (miRNA) alterations are not only associated with metastasis, tumor genesis but also used as biomarkers for breast cancer diagnosis or prognosis. These are explained in detail in the following review. This review will also provide an impetus to study the role of microRNAs in breast cancer.
    Matched MeSH terms: Molecular Targeted Therapy
  7. Singh Y, Ali H, Alharbi KS, Almalki WH, Kazmi I, Al-Abbasi FA, et al.
    Drug Dev Res, 2021 09;82(6):784-788.
    PMID: 33687087 DOI: 10.1002/ddr.21810
    Over the recent decades, a number of new pathogens have emerged within specific and diverse populations across the globe, namely, the Nipah virus, the Ebola virus, the Zika virus, and coronaviruses (CoVs) to name a few. Recently, a new form of coronavirus was identified in the city of Wuhan, China. Interestingly, the genomic architecture of the virus did not match with any of the existing genomic sequencing data of previously sequenced CoVs. This had led scientists to confirm the emergence of a new CoV strain. Originally, named as 2019-nCoV, the strain is now called as SARS-CoV-2. High serum levels of proinflammatory mediators, namely, interleukin-12 (IL-12), IL-1β, IL-6, interferon-gamma (IFNγ), chemoattractant protein-1, and IFN-inducible protein, have been repeatedly observed in subjects who were infected with this virus. In addition, the virus demonstrated strong coagulation activation properties, leading to further the understanding on the SARS-CoV2. To our understanding, these findings are unique to the published literature. Numerous studies have reported anomalies, namely, decline in the number of lymphocytes, platelets and albumins; and a rise in neutrophil count, aspartate transaminase, alanine aminotransaminase, lactate dehydrogenase, troponins, creatinine, complete bilirubin, D-dimers, and procalcitonin. Supplementation of calcium during the SARS CoV-2 associated hyperactive stage of calcium-sensing receptors (CaSR) may be harmful to the cardio-renal system. Thus, pharmacological inhibition of CaSR may prevent the increase in the levels of intracellular calcium, oxidative, inflammatory stress, and cardio-renal cellular apoptosis induced by high cytokines level in COVID-19 infection.
    Matched MeSH terms: Molecular Targeted Therapy
  8. Ha ZY, Mathew S, Yeong KY
    Curr Protein Pept Sci, 2020;21(1):99-109.
    PMID: 31702488 DOI: 10.2174/1389203720666191107094949
    Butyrylcholinesterase is a serine hydrolase that catalyzes the hydrolysis of esters in the body. Unlike its sister enzyme acetylcholinesterase, butyrylcholinesterase has a broad substrate scope and lower acetylcholine catalytic efficiency. The difference in tissue distribution and inhibitor sensitivity also points to its involvement external to cholinergic neurotransmission. Initial studies on butyrylcholinesterase showed that the inhibition of the enzyme led to the increment of brain acetylcholine levels. Further gene knockout studies suggested its involvement in the regulation of amyloid-beta, a brain pathogenic protein. Thus, it is an interesting target for neurological disorders such as Alzheimer's disease. The substrate scope of butyrylcholinesterase was recently found to include cocaine, as well as ghrelin, the "hunger hormone". These findings led to the development of recombinant butyrylcholinesterase mutants and viral gene therapy to combat cocaine addiction, along with in-depth studies on the significance of butyrylcholinesterase in obesity. It is observed that the pharmacological impact of butyrylcholinesterase increased in tandem with each reported finding. Not only is the enzyme now considered an important pharmacological target, it is also becoming an important tool to study the biological pathways in various diseases. Here, we review and summarize the biochemical properties of butyrylcholinesterase and its roles, as a cholinergic neurotransmitter, in various diseases, particularly neurodegenerative disorders.
    Matched MeSH terms: Molecular Targeted Therapy/methods*
  9. Baharuddin A, Hassan AA, Sheng GC, Nasir SB, Othman S, Yusof R, et al.
    Curr Pharm Des, 2014;20(21):3428-44.
    PMID: 24001228
    Viruses belonging to the Flaviviridae family primarily spread through arthropod vectors, and are the major causes of illness and death around the globe. The Flaviviridae family consists of 3 genera which include the Flavivirus genus (type species, yellow fever virus) as the largest genus, the Hepacivirus (type species, hepatitis C virus) and the Pestivirus (type species, bovine virus diarrhea). The flaviviruses (Flavivirus genus) are small RNA viruses transmitted by mosquitoes and ticks that take over host cell machinery in order to propagate. However, hepaciviruses and pestiviruses are not antropod-borne. Despite the extensive research and public health concern associated with flavivirus diseases, to date, there is no specific treatment available for any flavivirus infections, though commercially available vaccines for yellow fever, Japanese encephalitis and tick-born encephalitis exist. Due to the global threat of viral pandemics, there is an urgent need for new drugs. In many countries, patients with severe cases of flavivirus infections are treated only by supportive care, which includes intravenous fluids, hospitalization, respiratory support, and prevention of secondary infections. This review discusses the strategies used towards the discovery of antiviral drugs, focusing on rational drug design against Dengue virus (DENV), West Nile virus (WNV), Japanese encephalitis virus (JEV), Yellow Fever virus (YFV) and Hepatitis C virus (HCV). Only modified peptidic, nonpeptidic, natural compounds and fragment-based inhibitors (typically of mass less than 300 Da) against structural and non-structural proteins are discussed.
    Matched MeSH terms: Molecular Targeted Therapy/methods
  10. Sulaiman AH, Musa R
    Curr Drug Targets, 2019;20(2):145.
    PMID: 30648501 DOI: 10.2174/138945012002181203145147
    Matched MeSH terms: Molecular Targeted Therapy
  11. Sulaiman AH, Musa R
    Curr Drug Targets, 2018;19(8):855.
    PMID: 29792134 DOI: 10.2174/138945011908180518113546
    Matched MeSH terms: Molecular Targeted Therapy*
  12. Mohamed RMP, Kumar J, Yap E, Mohamed IN, Sidi H, Adam RL, et al.
    Curr Drug Targets, 2019;20(2):158-165.
    PMID: 28641520 DOI: 10.2174/1389450118666170622092824
    Memories associated with substance use disorders, or substance-associated cues increase the likelihood of craving and relapse during abstinence. There is a growing consensus that manipulation of synaptic plasticity may reduce the strength of substance abuse-related memories. On the biological front, there are new insights that suggest memories associated with substance use disorder may follow unique neurobiological pathways that render them more accessible to pharmacological intervention. In parallel to this, research in neurochemistry has identified several potential candidate molecules that could influence the formation and maintenance of long-term memory. Drugs that target these molecules (blebbistatin, isradipine and zeta inhibitory peptide) have shown promise at the preclinical stage. In this review, we shall provide an overview of the evolving understanding on the biochemical mechanisms involved in memory formation and expound on the premise that substance use disorder is a learning disorder.
    Matched MeSH terms: Molecular Targeted Therapy
  13. Mai CW, Chung FF, Leong CO
    Curr Drug Targets, 2017;18(11):1259-1268.
    PMID: 27993111 DOI: 10.2174/1389450117666161216125344
    BACKGROUND: Recent reports indicate that the tumor microenvironment plays a pivotal role in cancer development and progression, leading to a paradigm shift in the way cancer is studied and targeted. In contrast to traditional approaches, where only tumor cells are targeted for the treatment, an emerging approach is to develop therapeutics which target the tumor microenvironment while complementing or enhancing current treatments. Legumain (LGMN) is a newly identified target which is highly expressed in the tumor microenvironment and in tumor cells, and holds potential both as a biomarker and as a therapeutic target.

    CONCLUSION: This review will be the first to summarize the expression of LGMN in common cancers, as well as its roles in tumorigenesis and metastasis. This review also discusses the current developments and future prospects of targeting LGMN through the development of DNA vaccines, azopeptides, small molecule inhibitors and LGMN activated prodrugs, highlighting the potential of LGMN as a target for cancer therapeutics.

    Matched MeSH terms: Molecular Targeted Therapy
  14. Fatemian T, Chowdhury EH
    Curr Cancer Drug Targets, 2014;14(7):599-609.
    PMID: 25308718
    Malfunctions in membrane transporters or disruptions in signaling cascades induce resistance to chemotherapy in cancer cells resulting in treatment failure. To adjust the genetic alterations leading to these cellular protective measures, dissection and verification of the contributing routes would be required. In justification of knockdown of the key genes, RNA interference provides a reliable probing tool, enabling exploration of phenotypic manifestation of targeted genes. Investigation of the non-transporter targets, predominantly oncogenes and tumor suppressor genes, by means of small interfering RNA with the aim to re-sensitize cancer cells to therapeutics will be discussed in this review.
    Matched MeSH terms: Molecular Targeted Therapy*
  15. Wong MS, Sidik SM, Mahmud R, Stanslas J
    Clin Exp Pharmacol Physiol, 2013 May;40(5):307-19.
    PMID: 23534409 DOI: 10.1111/1440-1681.12083
    Tumour invasion and metastasis have been recognized as major causal factors in the morbidity and mortality among cancer patients. Many advances in the knowledge of cancer metastasis have yielded an impressive array of attractive drug targets, including enzymes, receptors and multiple signalling pathways. The present review summarizes the molecular pathogenesis of metastasis and the identification of novel molecular targets used in the discovery of antimetastatic agents. Several promising targets have been highlighted, including receptor tyrosine kinases, effector molecules involved in angiogenesis, matrix metalloproteinases (MMPs), urokinase plasminogen activator, adhesion molecules and their receptors, signalling pathways (e.g. phosphatidylinositol 3-kinase, phospholipase Cγ1, mitogen-activated protein kinases, c-Src kinase, c-Met kinases and heat shock protein. The discovery and development of potential novel therapeutics for each of the targets are also discussed in this review. Among these, the most promising agents that have shown remarkable clinical outcome are anti-angiogenic agents (e.g. bevacizumab). Newer agents, such as c-Met kinase inhibitors, are still undergoing preclinical studies and are yet to have their clinical efficacy proven. Some therapeutics, such as first-generation MMP inhibitors (MMPIs; e.g. marimastat) and more selective versions of them (e.g. prinomastat, tanomastat), have undergone clinical trials. Unfortunately, these drugs produced serious adverse effects that led to the premature termination of their development. In the future, third-generation MMPIs and inhibitors of signalling pathways and adhesion molecules could form valuable novel classes of drugs in the anticancer armamentarium to combat metastasis.
    Matched MeSH terms: Molecular Targeted Therapy/trends
  16. Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NB, Hamid M
    Clin. Dev. Immunol., 2012;2012:980250.
    PMID: 22474489 DOI: 10.1155/2012/980250
    To date, generation of single-chain fragment variable (scFv) has become an established technique used to produce a completely functional antigen-binding fragment in bacterial systems. The advances in antibody engineering have now facilitated a more efficient and generally applicable method to produce Fv fragments. Basically, scFv antibodies produced from phage display can be genetically fused to the marker proteins, such as fluorescent proteins or alkaline phosphatase. These bifunctional proteins having both antigen-binding capacity and marker activity can be obtained from transformed bacteria and used for one-step immunodetection of biological agents. Alternatively, antibody fragments could also be applied in the construction of immunotoxins, therapeutic gene delivery, and anticancer intrabodies for therapeutic purposes. This paper provides an overview of the current studies on the principle, generation, and application of scFv. The potential of scFv in breast cancer research is also discussed in this paper.
    Matched MeSH terms: Molecular Targeted Therapy
  17. Prasher P, Sharma M, Mehta M, Paudel KR, Satija S, Chellappan DK, et al.
    Chem Biol Interact, 2020 Jul 01;325:109125.
    PMID: 32376238 DOI: 10.1016/j.cbi.2020.109125
    The apparent predicament of the representative chemotherapy for managing respiratory distress calls for an obligatory deliberation for identifying the pharmaceuticals that effectively counter the contemporary intricacies associated with target disease. Multiple, complex regulatory pathways manifest chronic pulmonary disorders, which require chemotherapeutics that produce composite inhibitory effect. The cost effective natural product based molecules hold a high fervor to meet the prospects posed by current respiratory-distress therapy by sparing the tedious drug design and development archetypes, present a robust standing for the possible replacement of the fading practice of poly-pharmacology, and ensure the subversion of a potential disease relapse. This study summarizes the experimental evidences on natural products moieties and their components that illustrates therapeutic efficacy on respiratory disorders.
    Matched MeSH terms: Molecular Targeted Therapy/methods*
  18. Wong KK
    Cell Oncol (Dordr), 2020 Oct;43(5):779-792.
    PMID: 32504382 DOI: 10.1007/s13402-020-00526-4
    BACKGROUND: Pancreatic cancer or pancreatic ductal adenocarcinoma (PDAC) is one of the most devastating cancer types with a 5-year survival rate of only 9%. PDAC is one of the leading causes of cancer-related deaths in both genders. Epigenetic alterations may lead to the suppression of tumor suppressor genes, and DNA methylation is a predominant epigenetic modification. DNA methyltransferase 1 (DNMT1) is required for maintaining patterns of DNA methylation during cellular replication. Accumulating evidence has implicated the oncogenic roles of DNMT1 in various malignancies including PDACs.

    CONCLUSIONS: Herein, the expression profiles, oncogenic roles, regulators and inhibitors of DNMT1 in PDACs are presented and discussed. DNMT1 is overexpressed in PDAC cases compared with non-cancerous pancreatic ducts, and its expression gradually increases from pre-neoplastic lesions to PDACs. DNMT1 plays oncogenic roles in suppressing PDAC cell differentiation and in promoting their proliferation, migration and invasion, as well as in induction of the self-renewal capacity of PDAC cancer stem cells. These effects are achieved via promoter hypermethylation of tumor suppressor genes, including cyclin-dependent kinase inhibitors (e.g., p14, p15, p16, p21 and p27), suppressors of epithelial-mesenchymal transition (e.g., E-cadherin) and tumor suppressor miRNAs (e.g., miR-148a, miR-152 and miR-17-92 cluster). Pre-clinical investigations have shown the potency of novel non-nucleoside DNMT1 inhibitors against PDAC cells. Finally, phase I/II clinical trials of DNMT1 inhibitors (azacitidine, decitabine and guadecitabine) in PDAC patients are currently underway, where these inhibitors have the potential to sensitize PDACs to chemotherapy and immune checkpoint blockade therapy.

    Matched MeSH terms: Molecular Targeted Therapy*
  19. Paudel YN, Angelopoulou E, Piperi C, Othman I, Aamir K, Shaikh MF
    Cells, 2020 02 07;9(2).
    PMID: 32046119 DOI: 10.3390/cells9020383
    Alzheimer's disease (AD) is a devastating neurodegenerative disorder and a leading cause of dementia, with accumulation of amyloid-beta (Aβ) and neurofibrillary tangles (NFTs) as defining pathological features. AD presents a serious global health concern with no cure to date, reflecting the complexity of its pathogenesis. Recent evidence indicates that neuroinflammation serves as the link between amyloid deposition, Tau pathology, and neurodegeneration. The high mobility group box 1 (HMGB1) protein, an initiator and activator of neuroinflammatory responses, has been involved in the pathogenesis of neurodegenerative diseases, including AD. HMGB1 is a typical damage-associated molecular pattern (DAMP) protein that exerts its biological activity mainly through binding to the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4). RAGE and TLR4 are key components of the innate immune system that both bind to HMGB1. Targeting of HMGB1, RAGE, and TLR4 in experimental AD models has demonstrated beneficial effects in halting AD progression by suppressing neuroinflammation, reducing Aβ load and production, improving spatial learning, and inhibiting microglial stimulation. Herein, we discuss the contribution of HMGB1 and its receptor signaling in neuroinflammation and AD pathogenesis, providing evidence of its beneficial effects upon therapeutic targeting.
    Matched MeSH terms: Molecular Targeted Therapy*
  20. Rapalli VK, Singhvi G, Dubey SK, Gupta G, Chellappan DK, Dua K
    Biomed Pharmacother, 2018 Oct;106:707-713.
    PMID: 29990862 DOI: 10.1016/j.biopha.2018.06.136
    Psoriasis is a chronic autoimmune skin disorder affecting 2-3% of the world population. It has characteristic features such as increased keratinocyte proliferation and production of inflammatory mediators. The treatment involves various strategies including topical, systemic, phototherapy and biologics. Topical therapies are preferred for mild to moderate psoriasis conditions over the systemic therapies which are ideal in severe disease conditions. The systemic therapies include immunosuppressants, biological agents and recently approved phosphodiesterase-4 (PDE4) inhibitors. There are various limitations associated with the existing therapies where the new findings in the pathogenesis of psoriasis are paving a path for newer therapeutics to target at the molecular level. Various small molecules, PDE-4 inhibitors, biologics, and immunomodulator proved efficacious including the new molecules targeting Janus kinases (JAK) inhibitors that are under investigation. Furthermore, the role of genetic and miRNAs in psoriasis is still not completely explored and may further help in improving the treatment efficacy. This review provides an insight into various emerging therapies along with currently approved treatments for psoriasis.
    Matched MeSH terms: Molecular Targeted Therapy/adverse effects; Molecular Targeted Therapy/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links