Displaying publications 41 - 60 of 85 in total

Abstract:
Sort:
  1. Basuni M, Mohamed Z, Ahmad M, Zakaria NZ, Noordin R
    Trop Biomed, 2012 Sep;29(3):434-42.
    PMID: 23018507
    Intestinal parasites are the causative agents of a number of important human infections in developing countries. The objective of this study was to determine the prevalence of selected helminths and protozoan infections among patients admitted with gastrointestinal disorders at Hospital Universiti Sains Malaysia, Kelantan, Malaysia using multiplex real-time PCR. In addition microscopic examination was also performed following direct smear, zinc sulphate concentration and Kato-Katz thick smear techniques; and the presence of protozoan parasites was confirmed using trichrome and acid-fast stains. Of the 225 faecal samples analysed, 26.2% were positive for intestinal parasites by the multiplex real-time PCR, while 5.3% were positive by microscopy. As compared to microscopy, the multiplex real-time PCR detected 5.8 and 4.5 times more positives for the selected helminth and protozoan infections respectively. Among the selected helminths detected in this study, hookworm was the most prevalent by real-time PCR, while Ascaris lumbricoides was detected the most by microscopy. Meanwhile, among the selected protozoa detected in this study, Entamoeba histolytica was the most prevalent by real-time PCR, however microscopy detected equal number of cases with E. histolytica and Giardia lamblia. This study showed that real-time PCR can be used to obtain a more accurate prevalence data on intestinal helminths and protozoa.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  2. Brandon-Mong GJ, Ketzis JK, Choy JS, Boonroumkaew P, Tooba M, Sawangjaroen N, et al.
    Trop Biomed, 2018 Dec 01;35(4):1131-1139.
    PMID: 33601860
    Trichuris trichiura, the whipworm of humans, is one of the most prevalent soiltransmitted helminths (STH) reported worldwide. According to a recent study, out of 289 STH studies in Southeast Asia, only three studies used molecular methods. Hence, the genetic assemblages of Trichuris in Southeast Asia are poorly understood. In this study, we used partial mitochondrial DNA (cytochrome c oxidase subunit 1 or COI) sequences for analysis. Trichuris grouped in a same clade with different hosts indicate the potential of cross infection between hosts. Based on COI, the adult Trichuris isolated from a Malaysian patient was most closely related to Trichuris isolated from Papio anubis (olive baboons) from the USA. The Trichuris isolated from the dog from Malaysia was genetically similar to a Trichuris species isolated from Macaca silenus (lion-tailed macaque) from Czech Republic. Both the human and dog isolated Trichuris grouped in clades with different hosts indicating the potential of cross infection between hosts. Specific PCR primers based on the partial COI of T. trichiura isolated from African green monkey and T. serrata were designed and successfully amplified using multiplex PCR of the pooled DNA samples. Our results suggest a complex parasite-host relationship, and support the theory of cross infection of Trichuris between humans and non-human primates as suggested in previous publications.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  3. Cheah, Y.K., Tay, L.W., Aida, A.A., Son, R., Nakaguchi, T., Nishibuchi, M.
    MyJurnal
    Escherichia coli and Escherichia coli O157 were identified from “selom” (Oenanthe stolonifera), “pegaga” (Centella asiatica), beef, chicken, lamb, buffalo, “ulam Raja” (Cosmos caudatus) and “tenggek burung” (Euodia redlevi). The bacteria were recovered using chromagenic agar. Isolated Escherichia coli and Escherichia coli 0157 were further characterized by plasmid profiling and enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR). The virulence genes of the isolates (VT1, VT2, LT, ST, eaeA, inV) that produces pathogenic Escherichia coli and 16S rRNA gene were screened by a multiplex PCR assay. The plasmid profiling analysis showed that out of 176 isolates, only 103 isolates contained plasmids. ERIC-PCR analysis generated amplified products in the range of ~150 bp to > 1000 bp categorizing isolates into a total of 52 different profiles. Multiplex PCR showed that 20 (32.3%) of the isolates carried eaeA gene, 6 (9.7%) isolates possessed inV genes, only 1 (1.6%) have VT2 genes and 1 (1.6%) as well carried VT1 genes, 2 (3.2%) of the isolates harboured LT genes, and only 1 (1.6%) isolate possessed ST genes. There were no correlation between plasmid, ERIC-PCR and virulence genes profiles.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  4. Mustafa MI, Al-Marzooq F, How SH, Kuan YC, Ng TH
    Trop Biomed, 2011 Dec;28(3):531-44.
    PMID: 22433882 MyJurnal
    Community-acquired pneumonia (CAP) is still a major cause of morbidity and mortality especially to children and compromised hosts, such as the old and those with underlying chronic diseases. Knowledge of pathogens causing CAP constitutes the basis for selection of antimicrobial treatment. Previous data have shown that etiological agents can be identified in only up to 50% of patients, but this figure can be improved by using polymerase chain reaction (PCR). This study was designed to evaluate multiplex real-time PCR as a method for rapid differential detection of five bacterial causes of CAP (Streptococcus pneumoniae, Burkholderia pseudomallei and atypical bacterial pathogens namely Mycoplasma pneumoniae, Chlamydophila pneumoniae and Legionella pneumophila) in CAP patients attending Hospital Tengku Ampuan Afzan (HTAA)/ Kuantan, Pahang, Malaysia. Two previously developed multiplex real-time PCR assays, duplex for the differential detection of S. pneumoniae and B. pseudomallei and triplex for the atypical bacterial pathogens, were used to detect a bacterial cause of CAP in blood and respiratory samples. Thus, 46 blood and 45 respiratory samples collected from 46 adult CAP patients admitted to HTAA were analysed by multiplex real-time PCR assays and conventional methods. The microbial etiology of CAP could be established for 39.1% (18/46) of CAP patients by conventional methods and this was increased to 65.2% (30/46) with the additional use of real-time PCR. The most frequently detected pathogens were S. pneumoniae (21.7% - all by PCR alone), Klebsiella pneumoniae (17.3%), B. pseudomallei (13% - 83% of them positive by PCR alone and 17% by both culture and PCR), Pseudomonas aeruginosa (6.5%), M. pneumoniae (6.5% - all by serology), C. pneumoniae (4.3% - all positive by both PCR and serology), L. pneumophila (2.1% - all by PCR alone), Escherichia coli (4.3%). Haemophilus infuenzae, Acinetobacter lwoffii and Acinetobacter baumannii were detected by conventional methods (2.1% for each).
    Matched MeSH terms: Multiplex Polymerase Chain Reaction/methods*
  5. Kuan CS, Yew SM, Hooi PS, Lee LM, Ng KP
    Malays J Med Sci, 2017 Oct;24(5):33-43.
    PMID: 29386970 MyJurnal DOI: 10.21315/mjms2017.24.5.4
    Introduction: Acute respiratory tract infections (ARTIs) are a major cause of morbidity and mortality in paediatric patients. Therefore, early detection of the viral aetiologies of ARTIs is essential for patient management and infection control. In this study, we evaluated the performance of a new multiplex polymerase chain reaction (PCR) assay (xTAG Respiratory Viral Panel [RVP] Fast v2) in the detection of respiratory viruses by comparing it with that of viral culture and direct immunofluorescence (IF) staining.

    Methods: Nasopharyngeal swab and aspirate samples were collected prospectively from 199 patients who presented with ARTIs at the University Malaya Medical Centre (UMMC) in Kuala Lumpur, Malaysia during a 10-month period. The PCR assay was conducted in parallel with conventional culture and direct IF staining methods.

    Results: The positive rate of the xTAG RVP Fast v2 assay (78.4%) in detecting respiratory viruses was higher than that of the viral isolation (7.5%) and direct IF (23.1%) methods. Using the xTAG RVP Fast v2 assay, human enterovirus/human rhinovirus (HEV/HRV) was the most frequently detected (46.2%). The xTAG RVP Fast v2 assay revealed mixed infection caused by two or three respiratory viruses in 40 specimens, and these were undetected by the viral isolation and direct IF methods.

    Conclusion: The xTAG RVP Fast v2 assay was superior to conventional methods in the identification of common respiratory viruses, with higher sensitivity and shorter turnaround times for laboratory results.

    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  6. Philip N, Affendy NB, Masri SN, Yuhana MY, Than LTL, Sekawi Z, et al.
    PLoS One, 2020;15(9):e0239069.
    PMID: 32915919 DOI: 10.1371/journal.pone.0239069
    The diagnosis of leptospirosis remains a challenge due to its non-specific symptoms and the biphasic nature of the illness. A comprehensive diagnosis that includes both molecular (polymerase chain reaction (PCR)) and serology is vital for early detection of leptospirosis and to avoid misdiagnosis. However, not all samples could be subjected to both tests (serology and molecular) due to budget limitation, infrastructure, and technical expertise at least in resource-limited countries. We evaluated the usefulness of testing the clinically suspected leptospirosis cases with both techniques on all samples collected from the patients on the day of admission. Among the 165 patient's blood/serum samples tested (from three hospitals in Central Malaysia), 43 (26%) showed positivity by microscopic agglutination test (MAT), 63 (38%) by PCR, while 14 (8%) were positive by both MAT and PCR. For PCR, we tested two molecular targets (lipL32 by qPCR and 16S rDNA or rrs by nested PCR) and detected lipL32 in 47 (29%) and rrs gene in 63 (38%) patients. The use of more than one target gene for PCR increased the detection rates. Hence, a highly sensitive multiplex PCR targeting more than one diagnostic marker is recommended for the early detection of Leptospira in suspected patients. When the frequencies for positivity detected either by MAT or PCR combined, leptospirosis was diagnosed in a total of 92 (56%) patients, a higher frequency compared to when samples were only tested by a single method (MAT or PCR). The results from this study suggest the inclusion of both serology and molecular methods for every first sample irrespective of the days post-onset of symptoms (DPO) collected from patients for early diagnosis of leptospirosis.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  7. Hanapi UK, Desa MN, Ismail A, Mustafa S
    J Food Sci Technol, 2015 Jul;52(7):4166-75.
    PMID: 26139881 DOI: 10.1007/s13197-014-1459-7
    A Common Primer Multiplex PCR (CP-M-PCR) was developed to detect meat origin of four groups of animal (pig, ruminant, avian and rabbit). This method demonstrated higher sensitivity and efficiency than the conventional multiplex PCR. In this approach, a common forward primer was designed in the 5' end of a homologous region of mitochondrial NADH dehyrogenase subunit 4 (Nad 4) gene sequences of all the animal groups. Specific adapter reverse primers were designed by adding an adapter sequence at the 5' end. The same adapter sequence was used as the common adapter reverse primer. The primers generated specific fragments of 267, 370, 504, and 548 bp lengths for pig, ruminant, avian and rabbit meats, respectively. The use of adapter sequence at the 5' end of the common adapter reverse primers increased the efficiency of the amplification and the application of a common forward primer solved the complexity in multiplex PCR system. Bands of specific amplification can be detected in the PCR assays containing as low as 10(-6) μM of adapter reverse primer. This result indicated that the sensitivity was tremendously increased as compared to the conventional multiplex PCR (10(-3) μM). CP-M-PCR detection limit of the DNA samples was 0.1 ng for the four groups of meats. CP-M-PCR has greatly improved the sensitivity and efficiency of the PCR system for a more reliable and accurate outcome than conventional multiplex PCR system.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  8. Rahman NA, Sharudin A, Diah S, Muharram SH
    Microb Pathog, 2017 Sep;110:352-358.
    PMID: 28711510 DOI: 10.1016/j.micpath.2017.07.021
    INTRODUCTION: Pneumococcal infections have caused morbidity and mortality globally. Streptococcus pneumoniae (pneumococci) are commensal bacteria that colonize the nasopharynx, asymptomatically. From there, pneumococci can spread in the lungs causing pneumonia and disseminate in the bloodstream causing bacteremia (sepsis) and reach the brain leading to meningitis. Endothelial cells are one of the most important components of the blood-brain barrier that separates the blood from the brain and plays the first protective role against pneumococcal entry. Thus this study aimed to investigate on the ability of non-meningitis pneumococcal clinical strains to adhere and invade a brain endothelium model.

    METHODS: Two pneumococcal Brunei clinical strains were serotyped by multiplex PCR method using oligonucleotide sequences derived from Centers for Disease Control and Prevention. A validated immortalised mouse brain endothelial cell line (bEnd.3) was used as a brain endothelium model for the study of the pneumococcal breach of the blood-brain barrier using an adherence and invasion assay.

    RESULTS: Both of the pneumococcal clinical strains were found to be serotype 19F, a common circulating serotype in Southeast Asia and globally and possess the ability to adhere and invade the brain endothelial cells.

    CONCLUSION: In addition, this is the first report on the serotype identification of pneumococci in Brunei Darussalam and their application on a brain endothelium model. Further studies are required to understand the virulence capabilities of the clinical strains.

    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  9. Al-Talib H, Latif B, Mohd-Zain Z
    J Clin Microbiol, 2014 Sep;52(9):3244-9.
    PMID: 24958797 DOI: 10.1128/JCM.00891-14
    Diarrheal diseases cause illness and death among children younger than 10 years in developing countries. Conventional testing for the detection of hemorrhagic bacteria takes 2 to 5 days to yield complete information on the organism and its antibiotic sensitivity pattern. Hence, in the present study, we developed a molecular-based diagnostic assay that identifies common hemorrhagic bacteria in stool samples. A set of specific primers were designed for the detection of Salmonella spp., Shigella spp., enterohemorrhagic Escherichia coli (EHEC), and Campylobacter spp., suitable for use in a one-tube PCR assay. The assay in the present study simultaneously detected five genes, namely, ompC for the Salmonella genus, virA for the Shigella genus, eaeA for EHEC, 16S rRNA for the Campylobacter genus, and hemA for an internal control. Specific primer pairs were successfully designed and simultaneously amplified the targeted genes. Validation with 20 Gram-negative and 17 Gram-positive strains yielded 100% specificity. The limit of detection of the multiplex PCR assay was 1 × 10(3) CFU at the bacterial cell level and 100 pg at the genomic DNA level. Further evaluation of the multiplex PCR with 223 bacterium-spiked stool specimens revealed 100% sensitivity and specificity. We conclude that the developed multiplex PCR assay was rapid, giving results within 4 h, which is essential for the identification of hemorrhagic bacteria, and it might be useful as an additional diagnostic tool whenever time is important in the diagnosis of hemorrhagic bacteria that cause diarrhea. In addition, the presence of an internal control in the multiplex PCR assay is important for excluding false-negative cases.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction/methods*
  10. Zarizal S, Yeo CC, Faizal GM, Chew CH, Zakaria ZA, Jamil Al-Obaidi MM, et al.
    Trop Med Int Health, 2018 08;23(8):905-913.
    PMID: 29873865 DOI: 10.1111/tmi.13090
    BACKGROUND: This study aimed to profile the antimicrobial susceptibility and presence of resistance and virulence genes of methicillin-susceptible Staphylococcus aureus (MSSA) and MRSA nasal carriage, by means of genotypic analyses, in students of a tertiary institution in the state of Terengganu, east coast of Malaysia.

    METHODS: A total of 370 agricultural biotechnology students from Universiti Sultan Zainal Abidin in Besut, Terengganu, were enrolled in this study. Antimicrobial susceptibility profiles were evaluated by standard methods. PCR detection of resistance and virulence genes was performed on S. aureus that were methicillin-resistant, macrolide-lincosamide-streptogramin B (MLSB )-positive phenotype and/or positive for the leukocidin (pvl) gene followed by staphylococcal cassette chromosome mec (SCCmec), staphylococcal protein A (spa) and accessory gene regulator (agr) typing.

    RESULTS: One hundred and nineteen of 370 students carried S. aureus (32%); 18 of the isolates were MRSA (15%). Erythromycin resistance was detected in 20% (24/119) of which 15% (18/119) were MRSA and 5% (6/119) MSSA. Among the 24 erythromycin-resistant isolates, D-test was positive in 29% (7/24) displaying inducible MLSB , whereas the remaining 71% (17/24) showed constitutive MLSB phenotypes. Nine (7.6%) of 119 isolates were pvl positive: 44% MRSA (4/9) and 56% MSSA (5/9). Staphylococcal surface protein sasX gene was present in 92% of MRSA and 8% of MSSA isolates. The majority of MRSA isolates were agr type I (15/18; 83%). Five spa types identified with spa t037 were predominant, followed by spa types (t304 and t8696) as newly reported Malaysian MRSA in a community setting.

    CONCLUSION: The presence of MRSA with SCCmec of hospital-associated features and globally recognised spa types in community setting is worrisome. Furthermore, the presence of MLSB strains among multidrug-resistant (MDR) S. aureus with sasX as well as pvl-positive isolates highlights the potential risk of a community setting in facilitating the dissemination of both virulence and resistance determinants.

    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  11. Khazani NA, Noor NZ, Yean Yean C, Hasan H, Suraiya S, Mohamad S
    J Trop Med, 2017;2017:7210849.
    PMID: 28386286 DOI: 10.1155/2017/7210849
    Klebsiella pneumoniae and Haemophilus influenzae are two common pathogens associated with respiratory tract infections. The identification of these pathogens using conventional molecular diagnostic tests requires trained personnel, cold-chain transportation, and storage-dependance, which does not render them user-friendly. The aim of this study was to develop a thermostabilized, cold-chain-free, one-step multiplex PCR for simultaneous detection of K. pneumoniae and H. influenzae. The multiplex PCR assay was designed to amplify the php gene of K. pneumoniae (202 bp) and p6 gene of H. influenzae (582 bp). In addition, the specific primer to amplify glm gene of Helicobacter pylori (105 bp) was included as an internal amplification control. Subsequently, the designed primers and all PCR reagents were thermostabilized by lyophilization. The stability of the thermostabilized PCR was evaluated using the Q(10) method. The sensitivity and specificity of performances for thermostabilized PCR were evaluated using 127 clinical isolates and were found to be 100% sensitive and specific. The thermostabilized PCR mix was found to be stable for 30 days and the Q10 accelerated stability was found to be 3.02 months. A cold-chain-free, PCR assay for easy, rapid, and simultaneous detection of K. pneumoniae and H. influenzae was successfully developed in this study.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  12. Akhter A, Mughal MK, Elyamany G, Sinclair G, Azma RZ, Masir N, et al.
    Diagn Pathol, 2016 Sep 15;11(1):89.
    PMID: 27632978 DOI: 10.1186/s13000-016-0541-z
    The World Health Organization (WHO) classification system defines recurrent chromosomal translocations as the sole diagnostic and prognostic criteria for acute leukemia (AL). These fusion transcripts are pivotal in the pathogenesis of AL. Clinical laboratories universally employ conventional karyotype/FISH to detect these chromosomal translocations, which is complex, labour intensive and lacks multiplexing capacity. Hence, it is imperative to explore and evaluate some newer automated, cost-efficient multiplexed technologies to accommodate the expanding genetic landscape in AL.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction*
  13. Lau YL, Lai MY, Anthony CN, Chang PY, Palaeya V, Fong MY, et al.
    Am J Trop Med Hyg, 2015 Jan;92(1):28-33.
    PMID: 25385862 DOI: 10.4269/ajtmh.14-0309
    In this study, three molecular assays (real-time multiplex polymerase chain reaction [PCR], merozoite surface antigen gene [MSP]-multiplex PCR, and the PlasmoNex Multiplex PCR Kit) have been developed for diagnosis of Plasmodium species. In total, 52 microscopy-positive and 20 malaria-negative samples were used in this study. We found that real-time multiplex PCR was the most sensitive for detecting P. falciparum and P. knowlesi. The MSP-multiplex PCR assay and the PlasmoNex Multiplex PCR Kit were equally sensitive for diagnosing P. knowlesi infection, whereas the PlasmoNex Multiplex PCR Kit and real-time multiplex PCR showed similar sensitivity for detecting P. vivax. The three molecular assays displayed 100% specificity for detecting malaria samples. We observed no significant differences between MSP-multiplex PCR and the PlasmoNex multiplex PCR kit (McNemar's test: P = 0.1489). However, significant differences were observed comparing real-time multiplex PCR with the PlasmoNex Multiplex PCR Kit (McNemar's test: P = 0.0044) or real-time multiplex PCR with MSP-multiplex PCR (McNemar's test: P = 0.0012).
    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  14. Law JW, Ab Mutalib NS, Chan KG, Lee LH
    Front Microbiol, 2015;6:1227.
    PMID: 26579116 DOI: 10.3389/fmicb.2015.01227
    Listeria monocytogenes, a foodborne pathogen that can cause listeriosis through the consumption of food contaminated with this pathogen. The ability of L. monocytogenes to survive in extreme conditions and cause food contaminations have become a major concern. Hence, routine microbiological food testing is necessary to prevent food contamination and outbreaks of foodborne illness. This review provides insight into the methods for cultural detection, enumeration, and molecular identification of L. monocytogenes in various food samples. There are a number of enrichment and plating media that can be used for the isolation of L. monocytogenes from food samples. Enrichment media such as buffered Listeria enrichment broth, Fraser broth, and University of Vermont Medium (UVM) Listeria enrichment broth are recommended by regulatory agencies such as Food and Drug Administration-bacteriological and analytical method (FDA-BAM), US Department of Agriculture-Food and Safety (USDA-FSIS), and International Organization for Standardization (ISO). Many plating media are available for the isolation of L. monocytogenes, for instance, polymyxin acriflavin lithium-chloride ceftazidime aesculin mannitol, Oxford, and other chromogenic media. Besides, reference methods like FDA-BAM, ISO 11290 method, and USDA-FSIS method are usually applied for the cultural detection or enumeration of L. monocytogenes. most probable number technique is applied for the enumeration of L. monocytogenes in the case of low level contamination. Molecular methods including polymerase chain reaction, multiplex polymerase chain reaction, real-time/quantitative polymerase chain reaction, nucleic acid sequence-based amplification, loop-mediated isothermal amplification, DNA microarray, and next generation sequencing technology for the detection and identification of L. monocytogenes are discussed in this review. Overall, molecular methods are rapid, sensitive, specific, time- and labor-saving. In future, there are chances for the development of new techniques for the detection and identification of foodborne with improved features.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  15. Chua, T.H., Stanis, C.S., Song, B.K., Lau, Y.L., Jelip, P., Lau, T.Y.
    MyJurnal
    Malaria is a major public health problem in tropical and subtropical areas, caused by five
    species of Plasmodium (P. falciparum, P. vivax, P. malariae, P. ovale andP. knowlesi) and is the leading cause of morbidity and mortality worldwide. We have developed molecular markers for three genes viz, Cytb, dhfr and Msp-1 gene and designed a protocol for rapid molecular diagnostics of the four malaria parasites prevalent in Southeast Asia. The new primers were used on the blood
    samples containing Plasmodium parasites by conventional PCR. The result was compared with
    the nested PCR of Singh et al. (2004) and the microscopy method. The result shows that the new
    set of primers had successfully amplified all four human malaria parasite species. These primers
    were 100% sensitive and more specific than microscopy and PCR identification using these
    primers was faster than the nested PCR. These alternative primers should provide powerful and
    rapid molecular diagnostic method for detecting Plasmodium species as well as providing reliable
    data for epidemiology study. These primers have the potential to be combined and used in
    multiplex PCR.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  16. Al-Marzooq F, Imad MA, How SH, Kuan YC
    Trop Biomed, 2011 Dec;28(3):545-56.
    PMID: 22433883 MyJurnal
    Establishing a microbial diagnosis for patients with community-acquired pneumonia (CAP) is still challenging and is often achieved in only 30-50% of cases. Polymerase chain reaction (PCR) has been shown to be more sensitive than conventional microbiological methods and it could help to increase the microbial yield for CAP patients. This study was designed to develop, optimize and evaluate multiplex real-time PCR as a method for rapid differential detection of five bacterial causes of CAP namely Streptococcus pneumoniae, Burkholderia pseudomallei and atypical bacterial pathogens, Mycoplasma pneumoniae, Chlamydophila pneumoniae and Legionella pneumophila. Duplex and triplex real-time PCR assays were developed using five sets of primers and probes that were designed based on an appropriate specific gene for each of the above CAP pathogens. The performance of primers for each organism was tested using SYBR Green melt curve analysis following monoplex realtime PCR amplification. Monoplex real-time PCR assays were also used to optimize each primers-probe set before combining them in multiplex assays. Two multiplex real-time PCR assays were then optimized; duplex assay for the differential detection of S. pneumoniae and B. pseudomallei, and triplex assay for the atypical bacterial pathogens. Both duplex and triplex real-time PCR assays were tested for specificity by using DNA extracted from 26 related microorganisms and sensitivity by running serial dilutions of positive control DNAs. The developed multiplex real-time PCR assays shall be used later for directly identifying CAP causative agents in clinical samples.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction/methods*
  17. Balraj P, Lim PG, Sidek H, Wu LL, Khoo AS
    J. Endocrinol. Invest., 2013 Jun;36(6):366-74.
    PMID: 23027774 DOI: 10.3275/8648
    Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is a common autosomal recessive disorder. Our objective was to identify the 21-hydroxylase active gene, CYP21A2 mutations in Malaysian 21-OHD patients using different techniques.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  18. Abdul Rahman NA, Mohd Desa MN, Masri SN, Taib NM, Sulaiman N, Hazman H, et al.
    Pol J Microbiol, 2023 Jun 01;72(2):103-115.
    PMID: 37314355 DOI: 10.33073/pjm-2023-023
    Streptococcus pneumoniae (pneumococcus) belongs to the Gram-positive cocci. This bacterium typically colonizes the nasopharyngeal region of healthy individuals. It has a distinct polysaccharide capsule - a virulence factor allowing the bacteria to elude the immune defense mechanisms. Consequently, it might trigger aggressive conditions like septicemia and meningitis in immunocompromised or older individuals. Moreover, children below five years of age are at risk of morbidity and mortality. Studies have found 101 S. pneumoniae capsular serotypes, of which several correlate with clinical and carriage isolates with distinct disease aggressiveness. Introducing pneumococcal conjugate vaccines (PCV) targets the most common disease-associated serotypes. Nevertheless, vaccine selection pressure leads to replacing the formerly dominant vaccine serotypes (VTs) by non-vaccine types (NVTs). Therefore, serotyping must be conducted for epidemiological surveillance and vaccine assessment. Serotyping can be performed using numerous techniques, either by the conventional antisera-based (Quellung and latex agglutination) or molecular-based approaches (sequetyping, multiplex PCR, real-time PCR, and PCR-RFLP). A cost-effective and practical approach must be used to enhance serotyping accuracy to monitor the prevalence of VTs and NVTs. Therefore, dependable pneumococcal serotyping techniques are essential to precisely monitor virulent lineages, NVT emergence, and genetic associations of isolates. This review discusses the principles, associated benefits, and drawbacks of the respective available conventional and molecular approaches, and potentially the whole genome sequencing (WGS) to be directed for future exploration.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  19. Uddin SMK, Hossain MAM, Chowdhury ZZ, Johan MRB
    PMID: 34077338 DOI: 10.1080/19440049.2021.1925748
    Food fraud is a global problem raising increased concerns during the past decades and food authenticity is now a burning issue. Beef, buffalo, chicken, duck, goat, sheep, and pork are heavily consumed meats bearing nutritional, economic and cultural/religious importance and are often found to be adulterated in raw and processed states. To authenticate these species, we developed and validated a highly specific multiplex (heptaplex) PCR assay targeting short length amplicons (73-263 bp) using seven pairs of species-specific primer sets targeting mitochondrial cytochrome b (cytb) and NADH dehydrogenase subunit 5 (ND5) genes. Specificity checking (in silico and in vitro) against 25 non-target species revealed no cross-species amplification. The developed multiplex assay was validated with various adulterated and heat-treated (boiled, microwaved and autoclaved) meatball products and were found to show high sensitivity and stability under all processing conditions. The assay was sensitive enough to detect 0.01-0.005 ng of DNA from raw meat and 0.5% (w/w) adulterated meat in mixed matrices. A market survey revealed mislabelling of 95% beef and 15% chicken products while pork products were found pure. Given some advantageous features including short sizes of amplicons, exceptional stability and superior sensitivity, the developed assay could be conveniently used for discriminatory detection of target species with a variety of raw meat as well as processed meat products undergoing extreme processing treatments.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction/methods*
  20. Stanis CS, Song BK, Chua TH, Lau YL, Jelip J
    Turk J Med Sci, 2016 Jan 05;46(1):207-18.
    PMID: 27511356 DOI: 10.3906/sag-1411-114
    BACKGROUND/AIM: Malaria is a major public health problem, especially in the Southeast Asia region, caused by 5 species of Plasmodium (P. falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi). The aim of this study was to compare parasite species identification methods using the new multiplex polymerase chain reaction (PCR) against nested PCR and microscopy.

    MATERIALS AND METHODS: Blood samples on filter papers were subject to conventional PCR methods using primers designed by us in multiplex PCR and previously designed primers of nested PCR. Both sets of results were compared with microscopic identification.

    RESULTS: Of the 129 samples identified as malaria-positive by microscopy, 15 samples were positive for P. falciparum, 14 for P. vivax, 6 for P. knowlesi, 72 for P. malariae, and 2 for mixed infection of P. falciparum/P. malariae. Both multiplex and nested PCR identified 12 P. falciparum single infections. For P. vivax, 9 were identified by multiplex and 12 by nested PCR. For 72 P. malariae cases, multiplex PCR identified 58 as P. knowlesi and 10 as P. malariae compared to nested PCR, which identified 59 as P. knowlesi and 7 as P. malariae.

    CONCLUSION: Multiplex PCR could be used as alternative molecular diagnosis for the identification of all Plasmodium species as it requires a shorter time to screen a large number of samples.

    Matched MeSH terms: Multiplex Polymerase Chain Reaction
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links