Displaying publications 41 - 60 of 94 in total

Abstract:
Sort:
  1. Gan HM, Ibrahim Z, Shahir S, Yahya A
    FEMS Microbiol Lett, 2011 May;318(2):108-14.
    PMID: 21323982 DOI: 10.1111/j.1574-6968.2011.02245.x
    Genes involved in the 4-aminobenzenesulfonate (4-ABS) degradation pathway of Hydrogenophaga sp. PBC were identified using transposon mutagenesis. The screening of 10,000 mutants for incomplete 4-ABS biotransformation identified four mutants with single transposon insertion. Genes with insertions that impaired the ability to utilize 4-ABS for growth included (1) 4-sulfocatechol 1,2-dioxygenase β-subunit (pcaH2) and 3-sulfomuconate cycloisomerase involved in the modified β-ketoadipate pathway; (2) 4-aminobenzenesulfonate 3,4-dioxygenase component (sadA) involved in aromatic ring hydroxylation; and (3) transposase gene homolog with a putative cis-diol dehydrogenase gene located downstream. The pcaH2 mutant strain accumulated brown metabolite during growth on 4-ABS which was identified as 4-sulfocatechol through thin layer chromatography and HPLC analyses. Supplementation of wild-type sadA gene in trans restored the 4-ABS degradation ability of the sadA mutant, thus supporting the annotation of its disrupted gene.
    Matched MeSH terms: Mutagenesis, Insertional
  2. Ong ST, Yusoff K, Kho CL, Abdullah JO, Tan WS
    J Gen Virol, 2009 Feb;90(Pt 2):392-397.
    PMID: 19141448 DOI: 10.1099/vir.0.005710-0
    The nucleocapsid protein of Nipah virus produced in Escherichia coli assembled into herringbone-like particles. The amino- and carboxy-termini of the N protein were shortened progressively to define the minimum contiguous sequence involved in capsid assembly. The first 29 aa residues of the N protein are dispensable for capsid formation. The 128 carboxy-terminal residues do not play a role in the assembly of the herringbone-like particles. A region with amino acid residues 30-32 plays a crucial role in the formation of the capsid particle. Deletion of any of the four conserved hydrophobic regions in the N protein impaired capsid formation. Replacement of the central conserved regions with the respective sequences from the Newcastle disease virus restored capsid formation.
    Matched MeSH terms: Mutagenesis
  3. Addis SN, Lee E, Bettadapura J, Lobigs M
    Virol J, 2015;12:144.
    PMID: 26377679 DOI: 10.1186/s12985-015-0375-4
    Our understanding of the proteolytic processing events at the NS1-2A junction in the flavivirus polyprotein has not markedly progressed since the early work conducted on dengue virus (DENV). This work identified an octapeptide sequence located immediately upstream of the cleavage site thought to be important in substrate recognition by an as yet unknown, endoplasmic reticulum-resident host protease. Of the eight amino acid recognition sequence, the highly conserved residues at positions P1, P3, P5, P7 and P8 (with respect to N-terminus of NS2A) are particularly sensitive to amino acid substitutions in terms of DENV NS1-NS2A cleavage efficiency; however, the role of the octapeptide in efficient NS1 and NS2A production of other flaviviruses has not been experimentally addressed.
    Matched MeSH terms: Mutagenesis, Site-Directed
  4. Vignesvaran K, Alias Z
    Arch Insect Biochem Physiol, 2016 Jul;92(3):210-21.
    PMID: 27075600 DOI: 10.1002/arch.21332
    Drosophila melanogaster glutathione S-transferase D3 (DmGSTD3) has a shorter amino acid sequence as compared to other GSTs known in the fruit flies. This is due to the 15 amino acid N-terminal truncation in which normally active amino acid residue is located. The work has made use of homology modeling to visualize the arrangement of amino acid side chains in the glutathione (GSH) substrate cavity. The identified amino acids were then replaced with amino acids without functional groups in the side chains and the mutants were analyzed kinetically. Homology modeling revealed that the side chains of Y89 and Y97 were shown facing toward the substrate cavity proposing their possible role in catalyzing the conjugation. Y97A and Y89A GSH gave large changes in Km (twofold increase), Vmax (fivefold reduction), and Kcat /Km values for GSH suggesting their significant role in the conjugation reaction. The replacement at either positions has not affected the affinity of the enzyme toward 1-chloro-2,4-dinitrobenzene as no significant change in values of Kmax was observed. The replacement, however, had significantly reduced the catalytic efficiency of both mutants with (Kcat /Km )(GSH) and (Kcat /Km )(CDNB) of eight- and twofold reduction. The recombinant DmGSTD3 has shown no activity toward 1,2-dichloro-4-nitrobenzene, 2,4-hexadienal, 2,4-heptadienal, p-nitrobenzyl chloride, ethacrynic acid, and sulfobromophthalein. Therefore, it was evident that DmGSTD3 has made use of distal amino acids Y97 and Y89 for GSH conjugation.
    Matched MeSH terms: Mutagenesis, Site-Directed
  5. Hamid AA, Hamid TH, Wahab RA, Omar MS, Huyop F
    PLoS One, 2015;10(3):e0121687.
    PMID: 25816329 DOI: 10.1371/journal.pone.0121687
    The non-stereospecific α-haloalkanoic acid dehalogenase E (DehE) degrades many halogenated compounds but is ineffective against β-halogenated compounds such as 3-chloropropionic acid (3CP). Using molecular dynamics (MD) simulations and site-directed mutagenesis we show here that introducing the mutation S188V into DehE improves substrate specificity towards 3CP. MD simulations showed that residues W34, F37, and S188 of DehE were crucial for substrate binding. DehE showed strong binding ability for D-2-chloropropionic acid (D-2CP) and L-2-chloropropionic acid (L-2CP) but less affinity for 3CP. This reduced affinity was attributed to weak hydrogen bonding between 3CP and residue S188, as the carboxylate of 3CP forms rapidly interconverting hydrogen bonds with the backbone amide and side chain hydroxyl group of S188. By replacing S188 with a valine residue, we reduced the inter-molecular distance and stabilised bonding of the carboxylate of 3CP to hydrogens of the substrate-binding residues. Therefore, the S188V can act on 3CP, although its affinity is less strong than for D-2CP and L-2CP as assessed by Km. This successful alteration of DehE substrate specificity may promote the application of protein engineering strategies to other dehalogenases, thereby generating valuable tools for future bioremediation technologies.
    Matched MeSH terms: Mutagenesis, Site-Directed
  6. Shehu D, Alias Z
    Protein J, 2018 06;37(3):261-269.
    PMID: 29779193 DOI: 10.1007/s10930-018-9774-x
    Glutathione S-transferases (GSTs) are a family of enzymes that function in the detoxification of variety of electrophilic substrates. In the present work, we report a novel zeta-like GST (designated as KKSG9) from the biphenyl/polychlorobiphenyl degrading organism Acidovorax sp. KKS102. KKSG9 possessed low sequence similarity but similar biochemical properties to zeta class GSTs. Functional analysis showed that the enzyme exhibits wider substrate specificity compared to most zeta class GSTs by reacting with 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrobenzyl chloride (NBC), ethacrynic acid (EA), hydrogen peroxide, and cumene hydroperoxide. The enzyme also displayed dehalogenation function against dichloroacetate, permethrin, and dieldrin. The functional role of Tyr12 was also investigated by site-directed mutagenesis. The mutant (Y12C) displayed low catalytic activity and dehalogenation function against all the substrates when compared with the wild type. Kinetic analysis using NBC and GSH as substrates showed that the mutant (Y12C) displayed a higher affinity for NBC when compared with the wild type, however, no significant change in GSH affinity was observed. These findings suggest that the presence of tyrosine residue in the motif might represent an evolutionary trend toward improving the catalytic activity of the enzyme. The enzyme as well could be useful in the bioremediation of various types of organochlorine pollutants.
    Matched MeSH terms: Mutagenesis, Site-Directed
  7. Pong LY, Rabu A, Ibrahim N
    Mol Genet Genomics, 2020 Nov;295(6):1501-1516.
    PMID: 32767127 DOI: 10.1007/s00438-020-01716-3
    Encapsidation by nucleocapsid (N) protein is crucial for viral RNA to serve as a functional template for virus replication. However, the potential region that is vital for RNA encapsidation of Nipah virus (NiV) is still unknown. Thus, this study was aimed to identify these regions using a NiV minireplicon system. A series of broad range internal deletion mutations was generated in the 5' non-translated region (NTR) of the N gene mRNA region of NiV leader promoter via site-directed overlapping PCR-mediated mutagenesis. The mutation effects on synthesis and encapsidation of antigenome RNA, transcription, and RNA binding affinity of N protein were evaluated. The deletions of nucleotides 73-108, 79-108, and 85-108 from NiV leader promoter inhibited the encapsidation of antigenome RNA, while the deletion of nucleotides 103-108 suppressed the synthesis and encapsidation of antigenome RNA, implying that these regions are required for genome replication. Surprisingly, none of the mutations had detrimental effect on viral transcription. Using isothermal titration calorimetry, the binding of NiV N protein to genome or antigenome RNA transcript lacking of nucleotides 73-108 was found to be suppressed. Additionally, in silico analysis on secondary structure of genome RNA further supported the plausible cause of inefficient encapsidation of antigenome RNA by the loss of encapsidation signal in genome template. In conclusion, this study suggests that the nucleotides 73-90 within 5' NTR of the N gene mRNA region in NiV leader promoter contain cis-acting RNA element that is important for efficient encapsidation of antigenome RNA.
    Matched MeSH terms: Mutagenesis
  8. Hamid AA, Hamid TH, Wahab RA, Huyop F
    J Basic Microbiol, 2015 Mar;55(3):324-30.
    PMID: 25727054 DOI: 10.1002/jobm.201570031
    The non-stereospecific α-haloalkanoic acid dehalogenase DehE from Rhizobium sp. RC1 catalyzes the removal of the halide from α-haloalkanoic acid D,L-stereoisomers and, by doing so, converts them into hydroxyalkanoic acid L,D-stereoisomers, respectively. DehE has been extensively studied to determine its potential to act as a bioremediation agent, but its structure/function relationship has not been characterized. For this study, we explored the functional relevance of several putative active-site amino acids by site-specific mutagenesis. Ten active-site residues were mutated individually, and the dehalogenase activity of each of the 10 resulting mutants in soluble cell lysates against D- and L-2-chloropropionic acid was assessed. Interestingly, the mutants W34→A,F37→A, and S188→A had diminished activity, suggesting that these residues are functionally relevant. Notably, the D189→N mutant had no activity, which strongly implies that it is a catalytically important residue. Given our data, we propose a dehalogenation mechanism for DehE, which is the same as that suggested for other non-stereospecific α-haloalkanoic acid dehalogenases. To the best of our knowledge, this is the first report detailing a functional aspect for DehE, and our results could help pave the way for the bioengineering of haloalkanoic acid dehalogenases with improved catalytic properties.
    Matched MeSH terms: Mutagenesis, Site-Directed
  9. Lau PS, Leong KV, Ong CE, Dong AN, Pan Y
    Biochem Genet, 2017 Feb;55(1):48-62.
    PMID: 27578295 DOI: 10.1007/s10528-016-9771-8
    Cytochrome P450 (CYP) 2C19 is essential for the metabolism of clinically used drugs including omeprazole, proguanil, and S-mephenytoin. This hepatic enzyme exhibits genetic polymorphism with inter-individual variability in catalytic activity. This study aimed to characterise the functional consequences of CYP2C19*23 (271 G>C, 991 A>G) and CYP2C19*24 (991 A>G, 1004 G>A) in vitro. Mutations in CYP2C19 cDNA were introduced by site-directed mutagenesis, and the CYP2C19 wild type (WT) as well as variants proteins were subsequently expressed using Escherichia coli cells. Catalytic activities of CYP2C19 WT and those of variants were determined by high performance liquid chromatography-based essay employing S-mephenytoin and omeprazole as probe substrates. Results showed that the level of S-mephenytoin 4'-hydroxylation activity of CYP2C19*23 (V max 111.5 ± 16.0 pmol/min/mg, K m 158.3 ± 88.0 μM) protein relative to CYP2C19 WT (V max 101.6 + 12.4 pmol/min/mg, K m 123.0 ± 19.2 μM) protein had no significant difference. In contrast, the K m of CYP2C19*24 (270.1 ± 57.2 μM) increased significantly as compared to CYP2C19 WT (123.0 ± 19.2 μM) and V max of CYP2C19*24 (23.6 ± 2.6 pmol/min/mg) protein was significantly lower than that of the WT protein (101.6 ± 12.4 pmol/min/mg). In vitro intrinsic clearance (CLint = V max/K m) for CYP2C19*23 protein was 85.4 % of that of CYP2C19 WT protein. The corresponding CLint value for CYP2C19*24 protein reduced to 11.0 % of that of WT protein. These findings suggested that catalytic activity of CYP2C19 was not affected by the corresponding amino acid substitutions in CYP2C19*23 protein; and the reverse was true for CYP2C19*24 protein. When omeprazole was employed as the substrate, K m of CYP2C19*23 (1911 ± 244.73 μM) was at least 100 times higher than that of CYP2C19 WT (18.37 ± 1.64 μM) and V max of CYP2C19*23 (3.87 ± 0.74 pmol/min/mg) dropped to 13.4 % of the CYP2C19 WT (28.84 ± 0.61 pmol/min/mg) level. Derived from V max/K m, the CLint value of CYP2C19 WT was 785 folds of CYP2C19*23. K m and V max values could not be determined for CYP2C19*24 due to its low catalytic activity towards omeprazole 5'-hydroxylation. Therefore, both CYP2C19*23 and CYP2C19*24 showed marked reduced activities of metabolising omeprazole to 5-hydroxyomeprazole. Hence, carriers of CYP2C19*23 and CYP2C19*24 allele are potentially poor metabolisers of CYP2C19-mediated substrates.
    Matched MeSH terms: Mutagenesis, Site-Directed
  10. Damis SIR, Murad AMA, Diba Abu Bakar F, Rashid SA, Jaafar NR, Illias RM
    Enzyme Microb Technol, 2019 Dec;131:109383.
    PMID: 31615675 DOI: 10.1016/j.enzmictec.2019.109383
    Enzyme hydrolysis faces a bottleneck due to the recalcitrance of the lignocellulose biomass. The protein engineering of GH11 xylanase from Aspergillus fumigatus RT-1 was performed near the active site and at the N-terminal region to improve its catalytic efficiency towards pretreated kenaf (Hibiscus cannabinus) hydrolysis. Five mutants were constructed by combined approaches of error-prone PCR, site-saturation and site-directed mutagenesis. The double mutant c168 t/Q192H showed the most effective hydrolysis reaction with a 13.9-fold increase in catalytic efficiency, followed by mutants Y7L and c168 t/Q192 H/Y7L with a 1.6-fold increase, respectively. The enhanced catalytic efficiency evoked an increase in sugar yield of up to 28% from pretreated kenaf. In addition, mutant c168 t/Q192 H/Y7L improved the thermostability at higher temperature and acid stability. This finding shows that mutations at distances less than 15 Å from the active site and at putative secondary binding sites affect xylanase catalytic efficiency towards insoluble substrates hydrolysis.
    Matched MeSH terms: Mutagenesis
  11. Kannan, T.P., Quah, B.B., Azlina, A., Samsudin, A.R.
    MyJurnal
    Dentistry has searched for an ideal material to place in osseous defects for many years. Endogenous bone replacement has been the golden standard but involves additional surgery and may be available in limited quantities. Also, the exogenous bone replacement poses a risk of viral or bacterial transmission and the human body may even reject them. Therefore, before new biomaterials are approved for medical use, mutagenesis systems to exclude cytotoxic, mutagenic or carcinogenic properties are applied worldwide. The present preliminary study was carried out in five male New Zealand white rabbits (Oryctolagus cuniculus). Porous form of synthetic hydroxyapatite granules (500 mg), manufactured by School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Penang, was implanted in the femur of the rabbits. Blood samples were collected prior to implantation and one week after implantation. The blood was cultured in vitro and the cell division was arrested at metaphase using colcemid. This was followed by the hypotonic treatment and fixation. Then, the chromosomes were prepared and stained for analysis. The modal chromosome number of rabbit (Oryctolagus cuniculus) was found to be 2n=44. The mean mitotic index values prior to and after implantation were 3.30 ± 0.66 and 3.24 ± 0.27 per cent respectively. No gross chromosome aberrations, both numerical and structural were noticed either prior to or after implantation of the biomaterial. These findings indicate that the test substance, synthetic hydroxyapatite granules does not produce gross chromosome aberrations under the present test conditions in rabbits.
    Matched MeSH terms: Mutagenesis
  12. Kannan, Thirumulu Ponnuraj, Nik Ahmad Shah Nik Lah, Azlina Ahmad, Siti Fatimah Ramli, Narazah Mohd Yusof, Ab Rani Samsudin
    MyJurnal
    Some of the beneficial bio compatible properties of hydroxyapatite [Ca10(PO4)6(OH)2]; the major componentand an essential ingredient of normal bone and teeth, are that it is rapidly integrated into the human body and will bondto bone forming in distinguishable unions. But, before new materials are approved for medical use, mutagenesis systems to exclude cytotoxic, mutagenic or carcinogenic properties are applied worldwide. This study aimed to detectany chromosomal aberrations induced by the synthetic hydroxyapatite granules [Manufactured by Universiti Sains
    Malaysia, (USM) Penang, Malaysia] in the bone marrow cells of mice. The mitotic indices of the groups treated with synthetic hydroxya patite granules did not show any significant difference as compared to the negative control group treated with distilled water. Also the groups of mice treated with synthetic hydroxyapatite granules and distilled waterdid not induce significant change in chromosome aberrations as compared to the positive control group treated with Mitomycin C. The mitotic indices and chromosomal analyses indicate that under the present test conditions, synthetichydroxya patite granules (manufactured by USM) are non cytotoxic and do not induce chromosome aberrations in the bone marrow cells of mice.
    Matched MeSH terms: Mutagenesis
  13. Chung, Hung Hui, Azham Zulkharnain
    MyJurnal
    The FADS2 catalyzes the first rate-limiting step in the long chain-polyunsaturated fatty acids
    (LC-PUFAs) biosynthesis pathway by converting -linolenic acid and linoleic acid into
    stearidonic acid and -linolenic acid via the -3 and -6 pathways respectively. In mammals,
    PPAR and SREBP-1c have been implicated in the polyunsaturated fatty acids (PUFAs)
    mediated transcriptional activation of FADS2 promoter. However, in zebrafish, not much is
    known regarding the regulation of fads2 transcriptional regulation. Here, in this study, five
    vectors containing different promoter regions were constructed in order to analyse putative
    promoter activities. Through truncation analysis, it was found that the 1.2 kb promoter was able
    to drive luciferase activity to an approximate 40-fold in HepG2 cells. Upon mutagenesis
    analysis, three sites which are the putative NF-Y, SREBP and PPAR binding sites were found
    to be essential in driving the promoter activity. Lastly, the 1.2 kb fads2 promoter was able to
    direct EGFP expression specifically to the yolk syncytial layer (YSL) when transiently
    expressed in microinjected zebrafish embryos.
    Matched MeSH terms: Mutagenesis
  14. Shehu D, Alias Z
    FEBS Open Bio, 2019 03;9(3):408-419.
    PMID: 30868049 DOI: 10.1002/2211-5463.12405
    A glutathione S-transferase (GST) with a potential dehalogenation function against various organochlorine substrates was identified from a polychlorobiphenyl (PCB)-degrading organism, Acidovorax sp. KKS102. A homolog of the gene BphK (biphenyl upper pathway K), named BphK-KKS, was cloned, purified and biochemically characterized. Bioinformatic analysis indicated several conserved amino acids that participated in the catalytic activity of the enzyme, and site-directed mutagenesis of these conserved amino acids revealed their importance in the enzyme's catalytic activity. The wild-type and mutant (C10F, K107T and A180P) recombinant proteins displayed wider substrate specificity. The wild-type recombinant GST reacted towards 1-chloro-2,4-dinitrobenzene (CDNB), ethacrynic acid, hydrogen peroxide and cumene hydroperoxide. The mutated recombinant proteins, however, showed significant variation in specific activities towards the substrates. A combination of a molecular docking study and a chloride ion detection assay showed potential interaction with and a dechlorination function against 2-, 3- and 4-chlorobenzoates (metabolites generated during PCB biodegradation) in addition to some organochlorine pesticides (dichlorodiphenyltrichloroethane, endosulfan and permethrin). It was demonstrated that the behavior of the dechlorinating activities varied among the wild-type and mutant recombinant proteins. Kinetic studies (using CDNB and glutathione) showed that the kinetic parameters Km, Vmax, Kcat and Km/Kcat were all affected by the mutations. While C10F and A180P mutants displayed an increase in GST activity and the dechlorination function of the enzyme, the K107T mutant displayed variable results, suggesting a functional role of Lys107 in determining substrate specificity of the enzyme. These results demonstrated that the enzyme should be valuable in the bioremediation of metabolites generated during PCB biodegradation.
    Matched MeSH terms: Mutagenesis, Site-Directed
  15. Lim CC, Choong YS, Lim TS
    Int J Mol Sci, 2019 Apr 15;20(8).
    PMID: 30991723 DOI: 10.3390/ijms20081861
    Antibodies leverage on their unique architecture to bind with an array of antigens. The strength of interaction has a direct relation to the affinity of the antibodies towards the antigen. In vivo affinity maturation is performed through multiple rounds of somatic hypermutation and selection in the germinal centre. This unique process involves intricate sequence rearrangements at the gene level via molecular mechanisms. The emergence of in vitro display technologies, mainly phage display and recombinant DNA technology, has helped revolutionize the way antibody improvements are being carried out in the laboratory. The adaptation of molecular approaches in vitro to replicate the in vivo processes has allowed for improvements in the way recombinant antibodies are designed and tuned. Combinatorial libraries, consisting of a myriad of possible antibodies, are capable of replicating the diversity of the natural human antibody repertoire. The isolation of target-specific antibodies with specific affinity characteristics can also be accomplished through modification of stringent protocols. Despite the ability to screen and select for high-affinity binders, some 'fine tuning' may be required to enhance antibody binding in terms of its affinity. This review will provide a brief account of phage display technology used for antibody generation followed by a summary of different combinatorial library characteristics. The review will focus on available strategies, which include molecular approaches, next generation sequencing, and in silico approaches used for antibody affinity maturation in both therapeutic and diagnostic applications.
    Matched MeSH terms: Mutagenesis
  16. Ranjani V, Janeček S, Chai KP, Shahir S, Abdul Rahman RN, Chan KG, et al.
    Sci Rep, 2014 Jul 28;4:5850.
    PMID: 25069018 DOI: 10.1038/srep05850
    The α-amylases from Anoxybacillus species (ASKA and ADTA), Bacillus aquimaris (BaqA) and Geobacillus thermoleovorans (GTA, Pizzo and GtamyII) were proposed as a novel group of the α-amylase family GH13. An ASKA yielding a high percentage of maltose upon its reaction on starch was chosen as a model to study the residues responsible for the biochemical properties. Four residues from conserved sequence regions (CSRs) were thus selected, and the mutants F113V (CSR-I), Y187F and L189I (CSR-II) and A161D (CSR-V) were characterised. Few changes in the optimum reaction temperature and pH were observed for all mutants. Whereas the Y187F (t1/2 43 h) and L189I (t1/2 36 h) mutants had a lower thermostability at 65°C than the native ASKA (t1/2 48 h), the mutants F113V and A161D exhibited an improved t1/2 of 51 h and 53 h, respectively. Among the mutants, only the A161D had a specific activity, k(cat) and k(cat)/K(m) higher (1.23-, 1.17- and 2.88-times, respectively) than the values determined for the ASKA. The replacement of the Ala-161 in the CSR-V with an aspartic acid also caused a significant reduction in the ratio of maltose formed. This finding suggests the Ala-161 may contribute to the high maltose production of the ASKA.
    Matched MeSH terms: Mutagenesis, Site-Directed*
  17. Ruslan R, Abd Rahman RN, Leow TC, Ali MS, Basri M, Salleh AB
    Int J Mol Sci, 2012;13(1):943-60.
    PMID: 22312296 DOI: 10.3390/ijms13010943
    Mutant D311E and K344R were constructed using site-directed mutagenesis to introduce an additional ion pair at the inter-loop and the intra-loop, respectively, to determine the effect of ion pairs on the stability of T1 lipase isolated from Geobacillus zalihae. A series of purification steps was applied, and the pure lipases of T1, D311E and K344R were obtained. The wild-type and mutant lipases were analyzed using circular dichroism. The T(m) for T1 lipase, D311E lipase and K344R lipase were approximately 68.52 °C, 70.59 °C and 68.54 °C, respectively. Mutation at D311 increases the stability of T1 lipase and exhibited higher T(m) as compared to the wild-type and K344R. Based on the above, D311E lipase was chosen for further study. D311E lipase was successfully crystallized using the sitting drop vapor diffusion method. The crystal was diffracted at 2.1 Å using an in-house X-ray beam and belonged to the monoclinic space group C2 with the unit cell parameters a = 117.32 Å, b = 81.16 Å and c = 100.14 Å. Structural analysis showed the existence of an additional ion pair around E311 in the structure of D311E. The additional ion pair in D311E may regulate the stability of this mutant lipase at high temperatures as predicted in silico and spectroscopically.
    Matched MeSH terms: Mutagenesis, Site-Directed
  18. Low KO, Jonet MA, Ismail NF, Illias RM
    Bioengineered, 2012 Nov-Dec;3(6):334-8.
    PMID: 22892592 DOI: 10.4161/bioe.21454
    Recombinant protein fused to an N-terminal signal peptide can be translocated to the periplasm and, eventually, to the extracellular medium of Escherichia coli under specific conditions. In this communication, we described the use and optimization of a heterologous signal peptide (G1 signal peptide) from a Bacillus sp for improved recombinant protein secretion and cell viability in E. coli. Significant advantages in maintaining high cell viability and high specificity of target protein secretion were achieved by using G1 signal peptide compared to the well-known PelB signal peptide. Signal peptide sequence analysis and site-directed mutagenesis of G1 signal peptide demonstrated that an 'MKK' sequence in n-region and the presence of a helix-breaking residue at the centre of h-region are important elements for the design of an optimal signal peptide.
    Matched MeSH terms: Mutagenesis, Site-Directed
  19. Ngu HL, Zabedah MY, Kobayashi K
    Malays J Pathol, 2010 Jun;32(1):53-7.
    PMID: 20614727 MyJurnal
    Citrin deficiency is an autosomal recessive disorder caused by mutation in the SLC25AJ3 gene. It has two major phenotypes: adult-onset type II citrullinemia (CTLN2) and neonatal intrahepatic cholestatic caused by citrin deficiency (NICCD). NICCD is characterized by neonatal/infantile-onset cholestatic hepatitis syndrome associated with multiple amino acidemia and hypergalactosemia. NICCD is self-limiting in most patients. However, some patients may develop CTLN2 years later, which manifests as fatal hyperammonemia coma. We report three unrelated Malay children with genetically confirmed NICCD characterised by an insertion mutation IVS16ins3kb in SLC25A13 gene. All 3 patients presented with prolonged neonatal jaundice which resolved without specific treatment between 5 to 10 months. Of note was the manifestation of a peculiar dislike of sweet foods and drinks. Elevated plasma citrulline was an important biochemical marker. NICCD should be considered in the differential diagnosis of cholestatic jaundice in Malaysian infants regardless of ethnic origin.
    Matched MeSH terms: Mutagenesis, Insertional
  20. Abdelsalam M, Chen SC, Yoshida T
    FEMS Microbiol Lett, 2010 Aug 1;309(1):105-13.
    PMID: 20528946 DOI: 10.1111/j.1574-6968.2010.02024.x
    The Lancefield group C alpha-hemolytic Streptococcus dysgalactiae ssp. dysgalactiae (GCSD) causes systemic granulomatous inflammatory disease and high mortality rates in infected fish. Superantigen and streptolysin S genes are the most important virulence factors contributing to an invasive streptococcal infection. PCR amplification revealed that all strains isolated from moribund fish harbored the streptolysin S structural gene (sagA). GCSD fish isolates were PCR negative for emm, speA, speB, speC, speM, smeZ, and ssa. However, the size of the streptococcal pyrogenic exotoxin G (spegg) locus, a superantigen, in positive S. dysgalactiae fish and pig strains was variable. The ORF of the spegg locus of 26 GCSD fish strains and one GCSD pig strain was inserted with IS981SC. Interestingly, the ORF of the spegg locus of two fish strains of GCSD collected in Malaysia was inserted with an IS981SC-IS1161 hybrid IS element. The hybrid IS element was found in all of the GCSD fish isolates and one GCSD pig through PCR screening. Although no insertion sequence (IS) was detected in the spegg locus of S. dysgalactiae ssp. equisimilis (GCSE) strains, a five-nucleotide deletion mutation was detected in the ORF of the spegg locus of one GCSE strain at the supposed site of IS981SC insertion, resulting in a frameshift mutation.
    Matched MeSH terms: Mutagenesis, Insertional
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links