Displaying publications 41 - 60 of 320 in total

Abstract:
Sort:
  1. Jamlus SA, Jauhari I, Khalid HM
    Mater Sci Eng C Mater Biol Appl, 2014 Oct;43:566-72.
    PMID: 25175251 DOI: 10.1016/j.msec.2014.06.034
    In this study, HA is superplastically embedded into Titanium substrate and the sample is subsequently deformed superplastically until 70% deformation degree. The former process is termed as superplastic embedment (SPE) while the later as superplastic deformation (SPD). After the SPE, HA is successfully embedded into the substrate, forming a layer with a thickness of about 249 nm. After the SPD the embedded HA layer thickness decreases to 111 nm. The SPD sample is then immersed in simulated body fluid (SBF) to evaluate its biological properties. A newly grown apatite is formed as a result of the immersion and the HA layer thickness increases with immersion time. The cohesion and adhesion strength within the HA coating and coating-substrate interface of the SPD samples before and after immersion in the SBF is evaluated through the nanoscratch test technique. The results indicate that the HA layer after SPD is still strong even though after being exposed in SBF environment for quite some time. The study suggests that the superplastically embedded HA nanolayer is still intact mechanically and functioning appropriately as biological activity base even after the SPD process.
    Matched MeSH terms: Nanostructures*
  2. Mirjalili F, Chuah L, Salahi E
    ScientificWorldJournal, 2014;2014:718765.
    PMID: 24688421 DOI: 10.1155/2014/718765
    A nanocomposite containing polypropylene (PP) and nano α-Al2O3 particles was prepared using a Haake internal mixer. Mechanical tests, such as tensile and flexural tests, showed that mechanical properties of the composite were enhanced by addition of nano α-Al2O3 particles and dispersant agent to the polymer. Tensile strength was approximately ∼ 16% higher than pure PP by increasing the nano α-Al2O3 loading from 1 to 4 wt% into the PP matrix. The results of flexural analysis indicated that the maximum values of flexural strength and flexural modulus for nanocomposite without dispersant were 50.5 and 1954 MPa and for nanocomposite with dispersant were 55.88 MPa and 2818 MPa, respectively. However, higher concentration of nano α-Al2O3 loading resulted in reduction of those mechanical properties that could be due to agglomeration of nano α-Al2O3 particles. Transmission and scanning electron microscopic observations of the nanocomposites also showed that fracture surface became rougher by increasing the content of filler loading from 1 to 4% wt.
    Matched MeSH terms: Nanostructures*
  3. Ali Khan A, Mudassir J, Mohtar N, Darwis Y
    Int J Nanomedicine, 2013;8:2733-44.
    PMID: 23926431 DOI: 10.2147/IJN.S41521
    The delivery of drugs and bioactive compounds via the lymphatic system is complex and dependent on the physiological uniqueness of the system. The lymphatic route plays an important role in transporting extracellular fluid to maintain homeostasis and in transferring immune cells to injury sites, and is able to avoid first-pass metabolism, thus acting as a bypass route for compounds with lower bioavailability, ie, those undergoing more hepatic metabolism. The lymphatic route also provides an option for the delivery of therapeutic molecules, such as drugs to treat cancer and human immunodeficiency virus, which can travel through the lymphatic system. Lymphatic imaging is useful in evaluating disease states and treatment plans for progressive diseases of the lymph system. Novel lipid-based nanoformulations, such as solid lipid nanoparticles and nanostructured lipid carriers, have unique characteristics that make them promising candidates for lymphatic delivery. These formulations are superior to colloidal carrier systems because they have controlled release properties and provide better chemical stability for drug molecules. However, multiple factors regulate the lymphatic delivery of drugs. Prior to lymphatic uptake, lipid-based nanoformulations are required to undergo interstitial hindrance that modulates drug delivery. Therefore, uptake and distribution of lipid-based nanoformulations by the lymphatic system depends on factors such as particle size, surface charge, molecular weight, and hydrophobicity. Types of lipid and concentration of the emulsifier are also important factors affecting drug delivery via the lymphatic system. All of these factors can cause changes in intermolecular interactions between the lipid nanoparticle matrix and the incorporated drug, which in turn affects uptake of drug into the lymphatic system. Two lipid-based nanoformulations, ie, solid lipid nanoparticles and nanostructured lipid carriers, have been administered via multiple routes (subcutaneous, pulmonary, and intestinal) for targeting of the lymphatic system. This paper provides a detailed review of novel lipid-based nanoformulations and their lymphatic delivery via different routes, as well as the in vivo and in vitro models used to study drug transport in the lymphatic system. Physicochemical properties that influence lymphatic delivery as well as the advantages of lipid-based nanoformulations for lymphatic delivery are also discussed.
    Matched MeSH terms: Nanostructures*
  4. H P S AK, Saurabh CK, A S A, Nurul Fazita MR, Syakir MI, Davoudpour Y, et al.
    Carbohydr Polym, 2016 Oct 05;150:216-26.
    PMID: 27312632 DOI: 10.1016/j.carbpol.2016.05.028
    Chitin is one of the most abundant natural polymers in world and it is used for the production of chitosan by deacetylation. Chitosan is antibacterial in nature, non-toxic, and biodegradable thus it can be used for the production of biodegradable film which is a green alternative to commercially available synthetic counterparts. However, their poor mechanical and thermal properties restricted its wide spread applications. Chitosan is highly compatible with other biopolymers thus its blending with cellulose and/or incorporation of nanofiber isolated from cellulose namely cellulose nanofiber and cellulose nanowhiskers are generally useful. Cellulosic fibers in nano scale are attractive reinforcement in chitosan to produce environmental friendly composite films with improved physical properties. Thus chitosan based composites have wide applicability and potential in the field of biomedical, packaging and water treatment. This review summarises properties and preparation procedure of chitosan-cellulose blends and nano size cellulose reinforcement in chitosan bionanocomposites for different applications.
    Matched MeSH terms: Nanostructures/chemistry*
  5. Ong HS, Rahim MS, Firdaus-Raih M, Ramlan EI
    PLoS One, 2015;10(8):e0134520.
    PMID: 26258940 DOI: 10.1371/journal.pone.0134520
    The unique programmability of nucleic acids offers alternative in constructing excitable and functional nanostructures. This work introduces an autonomous protocol to construct DNA Tetris shapes (L-Shape, B-Shape, T-Shape and I-Shape) using modular DNA blocks. The protocol exploits the rich number of sequence combinations available from the nucleic acid alphabets, thus allowing for diversity to be applied in designing various DNA nanostructures. Instead of a deterministic set of sequences corresponding to a particular design, the protocol promotes a large pool of DNA shapes that can assemble to conform to any desired structures. By utilising evolutionary programming in the design stage, DNA blocks are subjected to processes such as sequence insertion, deletion and base shifting in order to enrich the diversity of the resulting shapes based on a set of cascading filters. The optimisation algorithm allows mutation to be exerted indefinitely on the candidate sequences until these sequences complied with all the four fitness criteria. Generated candidates from the protocol are in agreement with the filter cascades and thermodynamic simulation. Further validation using gel electrophoresis indicated the formation of the designed shapes. Thus, supporting the plausibility of constructing DNA nanostructures in a more hierarchical, modular, and interchangeable manner.
    Matched MeSH terms: Nanostructures/chemistry*
  6. Haarindraprasad R, Hashim U, Gopinath SC, Kashif M, Veeradasan P, Balakrishnan SR, et al.
    PLoS One, 2015;10(7):e0132755.
    PMID: 26167853 DOI: 10.1371/journal.pone.0132755
    The performance of sensing surfaces highly relies on nanostructures to enhance their sensitivity and specificity. Herein, nanostructured zinc oxide (ZnO) thin films of various thicknesses were coated on glass and p-type silicon substrates using a sol-gel spin-coating technique. The deposited films were characterized for morphological, structural, and optoelectronic properties by high-resolution measurements. X-ray diffraction analyses revealed that the deposited films have a c-axis orientation and display peaks that refer to ZnO, which exhibits a hexagonal structure with a preferable plane orientation (002). The thicknesses of ZnO thin films prepared using 1, 3, 5, and 7 cycles were measured to be 40, 60, 100, and 200 nm, respectively. The increment in grain size of the thin film from 21 to 52 nm was noticed, when its thickness was increased from 40 to 200 nm, whereas the band gap value decreased from 3.282 to 3.268 eV. Band gap value of ZnO thin film with thickness of 200 nm at pH ranging from 2 to 10 reduces from 3.263eV to 3.200 eV. Furthermore, to evaluate the transducing capacity of the ZnO nanostructure, the refractive index, optoelectric constant, and bulk modulus were analyzed and correlated. The highest thickness (200 nm) of ZnO film, embedded with an interdigitated electrode that behaves as a pH-sensing electrode, could sense pH variations in the range of 2-10. It showed a highly sensitive response of 444 μAmM-1cm-2 with a linear regression of R2 =0.9304. The measured sensitivity of the developed device for pH per unit is 3.72μA/pH.
    Matched MeSH terms: Nanostructures*
  7. Raychaudhuri R, Pandey A, Hegde A, Abdul Fayaz SM, Chellappan DK, Dua K, et al.
    Expert Opin Drug Deliv, 2020 12;17(12):1737-1765.
    PMID: 32878492 DOI: 10.1080/17425247.2020.1819237
    Introduction: In this review, we aim to highlight the impact of various processes and formulation variables influencing the characteristics of certain surfactant-based nanoconstructs for drug delivery. Areas covered: The review includes the discussion on processing parameters for the preparation of nanoconstructs, especially those made up of surfactants. Articles published in last 15 years (437) were reviewed, 381 articles were selected for data review and most appropriate articles (215) were included in article. Effect of variables such as surfactant concentration and type, membrane additives, temperature, and pH-dependent transitions on morphology has been highlighted along with effect of shape on nanoparticle uptake by cells. Various characterization techniques explored for these nanostructures with respect to size, morphology, lamellarity, distribution, etc., and a separate section on polymeric vesicles and the influence of block copolymers, type of block copolymer, control of block length, interaction of multiple block copolymers on the structure of polymersomes and chimeric nanostructures have been discussed. Finally, applications, modification, degradation, and toxicological aspects of these drug delivery systems have been highlighted. Expert opinion: Parameters influencing the morphology of micelles and vesicles can directly or indirectly affect the efficacy of small molecule cellular internalization as well as uptake in the case of biologicals.[Figure: see text].
    Matched MeSH terms: Nanostructures*
  8. Keerthana SP, Yuvakkumar R, Ravi G, Manimegalai M, Pannipara M, Al-Sehemi AG, et al.
    Environ Res, 2021 08;199:111312.
    PMID: 34019891 DOI: 10.1016/j.envres.2021.111312
    Herein we reported the effect of doping and addition of surfactant on SnO2 nanostructures for enhanced photocatalytic activity. Pristine SnO2, Zn-SnO2 and SDS-(Zn-SnO2) was prepared via simple co-precipitation method and the product was annealed at 600 °C to obtain a clear phase. The structural, optical, vibrational, morphological characteristics of the synthesized SnO2, Zn-SnO2 and SDS-(Zn-SnO2) product were investigated. SnO2, Zn-SnO2 and SDS-(Zn-SnO2) possess crystallite size of 20 nm, 19 nm and 18 nm correspondingly with tetragonal structure and high purity. The metal oxygen vibrations were present in FT-IR spectra. The obtained bandgap energies of SnO2, Zn-SnO2 and SDS-(Zn-SnO2) were 3.58 eV, 3.51 eV and 2.81 eV due to the effect of dopant and surfactant. This narrowing of bandgap helped in the photocatalytic activity. The morphology of the pristine sample showed poor growth of nanostructures with high level of agglomeration which was effectively reduced for other two samples. Product photocatalytic action was tested beneath visible light of 300 W. SDS-(Zn-SnO2) nanostructure efficiency showed 90% degradation of RhB dye which is 2.5 times higher than pristine sample. Narrow bandgap, crystallite size, better growth of nanostructures paved the way for SDS-(Zn-SnO2) to degrade the toxic pollutant. The superior performance and individuality of SDS-(Zn-SnO2) will makes it a potential competitor on reducing toxic pollutants from wastewater in future research.
    Matched MeSH terms: Nanostructures*
  9. Ahmed S, Mahmood S, Danish Ansari M, Gull A, Sharma N, Sultana Y
    Int J Pharm, 2021 Sep 25;607:121006.
    PMID: 34391848 DOI: 10.1016/j.ijpharm.2021.121006
    The current work attempted to achieve bypassed hepatic metabolism, controlled release, and boosted brain distribution of agomelatine by loading in NLC and administering via transdermal route. Agomelatine-loaded NLC (AG-NLC) was fabricated employing melt-emulsification technique and optimized using central composite design. The optimized AG-NLC had 183.16 ± 6.82 nm particle size, 0.241 ± 0.0236 polydispersity index, and 83.29 ± 2.76% entrapment efficiency. TEM and FESEM visually confirmed the size and surface morphology of AG-NLC, respectively. DSC thermogram confirmed the conversion of AG from crystalline to amorphous form, which indicates improved solubility of AG when loaded in NLC. For further stability and improved applicability, AG-NLC was converted into a hydrogel. The texture analysis of AG-NLC-Gel showed appropriate gelling property in terms of hardness (142.292 g), cohesiveness (0.955), and adhesiveness (216.55 g.sec). In comparison to AG-suspension-Gel (38.036 ± 6.058%), AG-NLC-Gel (89.440 ± 2.586%) exhibited significantly higher (P 
    Matched MeSH terms: Nanostructures*
  10. Chen YW, Lee HV, Juan JC, Phang SM
    Carbohydr Polym, 2016 Oct 20;151:1210-1219.
    PMID: 27474672 DOI: 10.1016/j.carbpol.2016.06.083
    Nanocellulose was successfully isolated from Gelidium elegans red algae marine biomass. The red algae fiber was treated in three stages namely alkalization, bleaching treatment and acid hydrolysis treatment. Morphological analysis was performed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). TEM results revealed that the isolated nanocellulose had the average diameter and length of 21.8±11.1nm and of 547.3±23.7nm, respectively. Fourier transform infrared (FTIR) spectroscopy proved that the non-cellulosic polysaccharides components were progressively removed during the chemically treatment, and the final derived materials composed of cellulose parent molecular structure. X-ray diffraction (XRD) study showed that the crystallinity of yielded product had been improved after each successive treatments subjected to the treated fiber. The prepared nano-dimensional cellulose demonstrated a network-like structure with higher crystallinity (73%) than that of untreated fiber (33%), and possessed of good thermal stability which is suitable for nanocomposite material.
    Matched MeSH terms: Nanostructures/chemistry*
  11. Mohd Bakhori SK, Mahmud S, Ling CA, Sirelkhatim AH, Hasan H, Mohamad D, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Sep 01;78:868-877.
    PMID: 28576061 DOI: 10.1016/j.msec.2017.04.085
    ZnO with two different morphologies were used to study the inhibition of Streptococcus sobrinus and Streptococcus mutans which are closely associated with tooth cavity. Rod-like shaped ZnO-A and plate-like shaped ZnO-B were produced using a zinc boiling furnace. The nanopowders were characterized using energy filtered transmission electron microscopy (EFTEM), X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, Raman spectroscopy and dynamic light scattering (DLS) to confirm the properties of the ZnO polycrystalline wurtzite structures. XRD results show that the calculated crystallite sizes of ZnO-A and ZnO-B were 36.6 and 39.4nm, respectively, whereas DLS revealed particle size distributions of 21.82nm (ZnO-A) and 52.21nm (ZnO-B). PL spectra showed ion vacancy defects related to green and red luminescence for both ZnO particles. These defects evolved during the generation of reactive oxygen species which contributed to the antibacterial activity. Antibacterial activity was investigated using microdilution technique towards S. sobrinus and S. mutans at different nanopowder concentrations. Results showed that ZnO-A exhibited higher inhibition on both bacteria compared with ZnO-B. Moreover, S. mutans was more sensitive compared with S. sobrinus because of its higher inhibition rate.
    Matched MeSH terms: Nanostructures/chemistry*
  12. Soon G, Pingguan-Murphy B, Akbar SA
    J Mech Behav Biomed Mater, 2017 04;68:26-31.
    PMID: 28135639 DOI: 10.1016/j.jmbbm.2017.01.028
    This study utilizes the technique of self-assembly to fabricate arrays of nanoislands on (001)-oriented yttria-stabilized zirconia single crystal substrates with miscut of 10° toward <110> direction. These self-assembled nanostructures were annealed at 1100°C for 5h upon doping with 10mol% gadolinium-doped ceria (GDC) by powder-suspension based method. X-Ray diffraction result showed that the miscut substrate after doping GDC was in the cubic phase. Energy dispersive X-ray (EDX) illustrates that the nanopatterned material contains all the elements from the GDC source and yttria-stabilized zirconia (YSZ) substrate. It also demonstrates a higher surface roughness and a more hydrophilic surface. The nanostructured materials were subsequently used for an in vitro study using a human fetal osteoblastic cell line (hFOB). An improved spreading, enhanced cell proliferation and up-regulated alkaline phosphatase activity (ALP) were observed on the nanopatterned substrates compared to the control substrates. Calcium deposits, which were stained positively by Alizarin Red S, appeared to be more abundant on the nanopatterned surfaces on day 7. The overall findings suggest that post fabrication treatment with surface modification such as creating a nanostructure (e.g. nanopatterns) can improve biocompatibility.
    Matched MeSH terms: Nanostructures/chemistry*
  13. Saleem H, Zaidi SJ, Ismail AF, Goh PS
    Chemosphere, 2022 Jan;287(Pt 2):132083.
    PMID: 34488054 DOI: 10.1016/j.chemosphere.2021.132083
    One of the most favorable environmental applications of nanotechnology has been in air pollution remediation in which different nanomaterials are used as nanoadsorbents, nanocatalysts, nanofilters, and nanosensors. The nanomaterials have the ability to adsorb several contaminants existing in the air. Also, certain semiconducting nanomaterials materials can be used for photocatalytic remediation. Air contamination control can also be achieved by nanostructured membranes with pores sufficiently small to separate various pollutants from the exhaust. Nanomaterial enabled sensors are also used for the detection of harmful gases such as hydrogen sulfide, sulphur dioxide, and nitrogen dioxide. Conversely, because of the uncertainties in addition to irregularities in size, shape as well as chemical compositions, the existence of some nanomaterials might cause harmful effects on the environment along with the health of people. Thus, concerns were expressed about the transport and conversion of nanoparticles discharged into the surroundings. This review critically examined and assessed the present literature on the application of nanomaterials in the air, together with its negative impacts. The main focus is placed on the application of carbon-based and metal-based nanomaterials for air pollution remediation. It is noted that these nanomaterials demonstrating fascinating properties for improving the environmental pollution remediation system.
    Matched MeSH terms: Nanostructures*
  14. Mohamad Nor N, Ramli NH, Poobalan H, Qi Tan K, Abdul Razak K
    Crit Rev Anal Chem, 2023;53(2):253-288.
    PMID: 34565248 DOI: 10.1080/10408347.2021.1950521
    Heavy metal pollution has gained global attention due to its high toxicity and non-biodegradability, even at a low level of exposure. Therefore, the development of a disposable electrode that is sensitive, simple, portable, rapid, and cost-effective as the sensor platform in electrochemical heavy metal detection is vital. Disposable electrodes have been modified with nanomaterials so that excellent electrochemical properties can be obtained. This review highlights the recent progress in the development of numerous types of disposable electrodes modified with nanomaterials for electrochemical heavy metal detection. The disposable electrodes made from carbon-based, glass-based, and paper-based electrodes are reviewed. In particular, the analytical performance, fabrication technique, and integration design of disposable electrodes modified with metal (such as gold, tin and bismuth), carbon (such as carbon nanotube and graphene), and metal oxide (such as iron oxide and zinc oxide) nanomaterials are summarized. In addition, the role of the nanomaterials in improving the electrochemical performance of the modified disposable electrodes is discussed. Finally, the current challenges and future prospect of the disposable electrode modified with nanomaterials are summarized.
    Matched MeSH terms: Nanostructures*
  15. Khan SS, Kour D, Kaur T, Sharma A, Kumar S, Kumari S, et al.
    Curr Microbiol, 2024 Jul 01;81(8):251.
    PMID: 38954017 DOI: 10.1007/s00284-024-03772-z
    A new area of biotechnology is nanotechnology. Nanotechnology is an emerging field that aims to develope various substances with nano-dimensions that have utilization in the various sectors of pharmaceuticals, bio prospecting, human activities and biomedical applications. An essential stage in the development of nanotechnology is the creation of nanoparticles. To increase their biological uses, eco-friendly material synthesis processes are becoming increasingly important. Recent years have shown a lot of interest in nanostructured materials due to their beneficial and unique characteristics compared to their polycrystalline counterparts. The fascinating performance of nanomaterials in electronics, optics, and photonics has generated a lot of interest. An eco-friendly approach of creating nanoparticles has emerged in order to get around the drawbacks of conventional techniques. Today, a wide range of nanoparticles have been created by employing various microbes, and their potential in numerous cutting-edge technological fields have been investigated. These particles have well-defined chemical compositions, sizes, and morphologies. The green production of nanoparticles mostly uses plants and microbes. Hence, the use of microbial nanotechnology in agriculture and plant science is the main emphasis of this review. The present review highlights the methods of biological synthesis of nanoparticles available with a major focus on microbially synthesized nanoparticles, parameters and biochemistry involved. Further, it takes into account the genetic engineering and synthetic biology involved in microbial nanobiosynthesis to the construction of microbial nanofactories.
    Matched MeSH terms: Nanostructures/chemistry
  16. Morozova OV, Manuvera VA, Barinov NA, Subcheva EN, Laktyushkin VS, Ivanov DA, et al.
    Arch Biochem Biophys, 2024 Feb;752:109843.
    PMID: 38072298 DOI: 10.1016/j.abb.2023.109843
    Self-assembling nanoparticles (saNP) and nanofibers were found in the recombinant coronavirus SARS-CoV-2 S1, S2, RBD and N proteins purified by affinity chromatography using Ni Sepharose. Scanning electron (SEM), atomic force (AFM) microscopy on mica or graphite surface and in liquid as well as dynamic light scattering (DLS) revealed nanostructures of various sizes. AFM in liquid cell without drying on the surface showed mean height of S1 saNP 80.03 nm, polydispersity index (PDI) 0.006; for S2 saNP mean height 93.32 nm, PDI = 0.008; for N saNP mean height 16.71 nm, PDI = 0.99; for RBD saNP mean height 16.25 nm, PDI = 0.55. Ratios between the height and radius of each saNP in the range 0.1-0.5 suggested solid protein NP but not vesicles with internal empty spaces. The solid but not empty structures of the protein saNP were also confirmed by STEM after treatment of saNP with the standard contrasting agent uranyl acetate. The saNP remained stable after multiple freeze-thaw cycles in water and hyperosmotic solutions for 2 years at -20 °C. Receptor-mediated penetration of the SARS-CoV-2 S1 and RBD saNP in the African green mokey kidney Vero cells with the specific receptors for β-coronavirus reproduction was more efficient compared to unspecific endocytosis into MDCK cells without the specific receptors. Amyloid-like structures were revealed in the SARS-CoV-2 S1, S2, RBD and N saNP by means of their interaction with Thioflavin T and Congo Red dyes. Taken together, spontaneous formation of the amyloid-like self-assembling nanostructures due to the internal affinity of the SARS-CoV-2 virion proteins might induce proteinopathy in patients, including conformational neurodegenerative diseases, change stability of vaccines and diagnostic systems.
    Matched MeSH terms: Nanostructures*
  17. Kausar AS, Reza AW, Latef TA, Ullah MH, Karim ME
    Sensors (Basel), 2015 Apr 15;15(4):8787-831.
    PMID: 25884787 DOI: 10.3390/s150408787
    The concept of optical antennas in physical optics is still evolving. Like the antennas used in the radio frequency (RF) regime, the aspiration of optical antennas is to localize the free propagating radiation energy, and vice versa. For this purpose, optical antennas utilize the distinctive properties of metal nanostructures, which are strong plasmonic coupling elements at the optical regime. The concept of optical antennas is being advanced technologically and they are projected to be substitute devices for detection in the millimeter, infrared, and visible regimes. At present, their potential benefits in light detection, which include polarization dependency, tunability, and quick response times have been successfully demonstrated. Optical antennas also can be seen as directionally responsive elements for point detectors. This review provides an overview of the historical background of the topic, along with the basic concepts and parameters of optical antennas. One of the major parts of this review covers the use of optical antennas in biosensing, presenting biosensing applications with a broad description using different types of data. We have also mentioned the basic challenges in the path of the universal use of optical biosensors, where we have also discussed some legal matters.
    Matched MeSH terms: Nanostructures/adverse effects
  18. Muthoosamy K, Bai RG, Abubakar IB, Sudheer SM, Lim HN, Loh HS, et al.
    Int J Nanomedicine, 2015;10:1505-19.
    PMID: 25759577 DOI: 10.2147/IJN.S75213
    PURPOSE: A simple, one-pot strategy was used to synthesize reduced graphene oxide (RGO) nanosheets by utilizing an easily available over-the-counter medicinal and edible mushroom, Ganoderma lucidum.

    METHODS: The mushroom was boiled in hot water to liberate the polysaccharides, the extract of which was then used directly for the reduction of graphene oxide. The abundance of polysaccharides present in the mushroom serves as a good reducing agent. The proposed strategy evades the use of harmful and expensive chemicals and avoids the typical tedious reaction methods.

    RESULTS: More importantly, the mushroom extract can be easily separated from the product without generating any residual byproducts and can be reused at least three times with good conversion efficiency (75%). It was readily dispersible in water without the need of ultrasonication or any surfactants; whereas 5 minutes of ultrasonication with various solvents produced RGO which was stable for the tested period of 1 year. Based on electrochemical measurements, the followed method did not jeopardize RGO's electrical conductivity. Moreover, the obtained RGO was highly biocompatible to not only colon (HT-29) and brain (U87MG) cancer cells, but was also viable towards normal cells (MRC-5).

    CONCLUSION: Besides being eco-friendly, this mushroom based approach is easily scalable and demonstrates remarkable RGO stability and biocompatibility, even without any form of functionalization.

    Matched MeSH terms: Nanostructures/chemistry*
  19. Nordin AH, Yusoff AH, Husna SMN, Noor SFM, Norfarhana AS, Paiman SH, et al.
    Int J Biol Macromol, 2024 Nov;280(Pt 2):135799.
    PMID: 39307484 DOI: 10.1016/j.ijbiomac.2024.135799
    The long-term presence of pharmaceutical pollution in water bodies has raised public awareness. Nanocellulose is often used in adsorption to remove pollutants from wastewater since it is an abundant, green and sustainable material. This paper offers an extensive overview of the recent works reporting the potential of nanocellulose-based adsorbents to treat pharmaceutical wastewater. This study distinguishes itself by not only summarizing recent research findings but also critically integrating discussions on the improvements in nanocellulose production and sorts of alterations based on the type of pharmaceutical contaminants. Commonly, charged, or hydrophobic characteristics are introduced onto nanocellulose surfaces to accelerate and enhance the removal of pharmaceutical compounds. Although adsorbents based on nanocellulose have considerable potential, several significant challenges impede their practical application, particularly concerning cost and scalability. Large-scale synthesis of nanocellulose is technically challenging and expensive, which prevents its widespread use in wastewater treatment plants. Continued innovation in this area could lead to breakthroughs in the practical application of nanocellulose as a superior adsorbent. The prospects of utilization of nanocellulose are explained, providing a sustainable way to address the existing restriction and maximize the application of the modified nanocellulose in the field of pharmaceutical pollutants removal.
    Matched MeSH terms: Nanostructures/chemistry
  20. Sonam Dongsar T, Tsering Dongsar T, Molugulu N, Annadurai S, Wahab S, Gupta N, et al.
    Environ Res, 2023 Sep 15;233:116455.
    PMID: 37356522 DOI: 10.1016/j.envres.2023.116455
    Breast carcinoma is a molecularly diverse illness, and it is among the most prominent and often reported malignancies in female across the globe. Surgical intervention, chemotherapy, immunotherapy, gene therapy, and endocrine treatment are among the currently viable treatment options for the carcinoma of breast. Chemotherapy is among the most prevalent cancer management strategy. Doxorubicin (DOX) widely employed as a cytostatic medication for the treatment of a variety of malignancies. Despite its widespread acceptance and excellent efficacy against an extensive line up of neoplasia, it has a variety of shortcomings that limit its therapeutic potential in the previously mentioned indications. Employment of nanoparticulate systems has come up as a unique chemo medication delivery strategy and are being considerably explored for the amelioration of breast carcinoma. Polylactic-co-glycolic acid (PLGA)-based nano systems are being utilized in a number of areas within the medical research and medication delivery constitutes one of the primary functions for PLGA given their inherent physiochemical attributes, including their aqueous solubility, biocompatibility, biodegradability, versatility in formulation, and limited toxicity. Herein along with the different application of PLGA-based nano formulations in cancer therapy, the present review intends to describe the various research investigations that have been conducted to enumerate the effectiveness of DOX-encapsulated PLGA nanoparticles (DOX-PLGA NPs) as a feasible treatment option for breast cancer.
    Matched MeSH terms: Nanostructures*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links