Displaying publications 41 - 60 of 377 in total

Abstract:
Sort:
  1. Thent ZC, Chakraborty C, Mahakkanukrauh P, Nik Ritza Kosai Nik Mahmood N, Rajan R, Das S
    Curr Drug Targets, 2017;18(11):1250-1258.
    PMID: 27138760 DOI: 10.2174/1389450117666160502151600
    BACKGROUND: Recently, there are scientific attempts to discover new drugs in the biotechnology industry in order to treat various diseases including atherosclerosis.

    OBJECTIVE: The main objective of the present review was to highlight the cellular, molecular biology and inflammatory process related to the atheromatous plaques.

    METHODS: A thorough literature search of Pubmed, Google and Scopus databases was done.

    RESULTS: Atherosclerosis is considered to be a leading cause of death throughout the world. Atherosclerosis involves oxidative damage to the cells with production of reactive oxygen species (ROS). Development of atheromatous plaques in the arterial wall is a common feature. Specific inflammatory markers pertaining to the arterial wall in atherosclerosis may be useful for both diagnosis and treatment. These include Nitric oxide (NO), cytokines, macrophage inhibiting factor (MIF), leucocytes and Pselectin. Modern therapeutic paradigms involving endothelial progenitor cells therapy, angiotensin II type-2 (AT<sub>2</sub>R) and ATP-activated purinergic receptor therapy are notable to mention.

    CONCLUSION: Future drugs may be designed aiming three signalling mechanisms of AT<sub>2</sub>R which are (a) activation of protein phosphatases resulting in protein dephosphorylation (b) activation of bradykinin/nitric oxide/cyclic guanosine 3&#039;,5&#039;-monophosphate pathway by vasodilation and (c) stimulation of phospholipase A(2) and release of arachidonic acid. Drugs may also be designed to act on ATP-activated purinergic receptor channel type P2X7 molecules which acts on cardiovascular system.

    Matched MeSH terms: Nitric Oxide/metabolism
  2. Yao LJ, Jalil J, Attiq A, Hui CC, Zakaria NA
    J Ethnopharmacol, 2018 Oct 11.
    PMID: 30316887 DOI: 10.1016/j.jep.2018.10.001
    ETHNOPHARMACOLOGICAL RELEVANCE: Polyalthia is one of the largest and notable genera in Annonaceae family. Polyalthia species have been widely used in folklore medicine for the treatment of rheumatic fever, gastrointestinal ulcer and generalized body pain. Numerous in vitro and in vivo studies on Polyalthia Species have also corroborated the significant anti-inflammatory potential of its extracts and secondary metabolites.

    AIM OF THE STUDY: This review is an attempt to assess the anti-inflammatory activity of Polyalthia species by giving critical appraisal and establishing evidences of their traditional uses. Moreover this review will highlight the lead compounds for future drug development that can serve as a potential anti-inflammatory drug with comparative efficacy and minimum side effects.

    MATERIALS AND METHODS: An extensive literature review, focusing the anti-inflammatory potential of Polyalthia species was conducted using the following databases: PubMed, ScienceDirect, SpringerLink, Ovid, Scopus and ProQuest, as well as the locally available books, journals and relevant documents. The reference lists of retrieved papers were also searched for additional studies.

    RESULTS: The Polyalthia species have shown significant anti-inflammatory activity through various mechanism of action. The most significant anti-inflammatory mechanism includes the inhibition of nuclear factor kappa B (NF-κB), prostaglandins (PGs), pro-inflammatory cytokines, inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS). The data suggests that hydroxycleroda-3,13-dien-15,16-olide and 16-oxocleroda-3,13-dien-15-oic acid, quercetin, rutin, spinasterol, α-spinasterol, goniothalamin and (-)-5-hydroxygoniothalamin are the most potent anti-inflammatory compounds from Polyalthia species with comparable IC50 with positive controls.

    CONCLUSIONS: Numerous pharmacological studies have supported the use of Polyalthia species against pain, rheumatic fever, haemorrhages and inflammation in traditional medicine. Flavonoids, diterpenoids, sterols and styrylpyrones from genus Polyalthia are the most significant class of compounds with potent anti-inflammatory activity. Secondary metabolites from these classes should be brought into further research to fill the gaps of knowledge in pharmacokinetics, pharmacodynamics, bioavailability, and toxicity in order to convert the pre-clinical results into clinical data for further investigation.

    Matched MeSH terms: Nitric Oxide Synthase Type II
  3. Mariod AA, Salama SM
    ScientificWorldJournal, 2020;2020:6326452.
    PMID: 32549800 DOI: 10.1155/2020/6326452
    The current study has been conducted to evaluate the effect of different processing techniques on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity and the gastroprotective potential of Chenopodium quinoa red seeds in acute gastric injury induced by absolute ethanol in rats. Seven groups of female Sprague Dawley rats were assigned to normal and absolute ethanol (absolute EtOH) groups, given distilled water, reference control omeprazole (OMP, 20 mg/kg), pressure-cooked quinoa seeds (QP, 200 mg/kg), first stage-germinated quinoa seeds (QG, 200 mg/kg), Lactobacillus plantarum bacteria-fermented quinoa seeds (QB, 200 mg/kg), and Rhizopus oligosporus fungus-fermented quinoa seeds (QF, 200 mg/kg). One hour after treatment, all groups were given absolute ethanol, except for the normal control rats. All animals were sacrificed after an additional hour, and the stomach tissues were examined for histopathology of hematoxylin and eosin staining, immunohistochemistry of cyclooxygenase 2 (COX-2), and nitric oxide synthase (iNOS). Stomach homogenates were evaluated for oxidative stress parameters and prostaglandin E2 (PGE2). Gene expression was performed for gastric tumor necrosis factor alpha (TNF-α) and nuclear factor kappa of B cells (NF-kB). QB and QG recorded the highest DPPH scavengers compared to QF and QP. The gastroprotective potential of QB was comparable to that of OMP, followed by QF, then QG, and QP as confirmed by the histopathology, immunohistochemistry, and gene expression assessments. In conclusion, differently processed red quinoa seeds revealed variable antioxidant capacity and gastroprotective potential, while the bacterial fermented seeds (QB) showed the highest potential compared to the other processing techniques. These results might offer promising new therapy in the treatment of acute gastric injury.
    Matched MeSH terms: Nitric Oxide Synthase Type II/metabolism
  4. Mohd Isa KN, Hashim Z, Jalaludin J, Lung Than LT, Hashim JH
    PMID: 32731346 DOI: 10.3390/ijerph17155413
    BACKGROUND: To explore the inflammation phenotypes following indoor pollutants exposure based on marker expression on eosinophils and neutrophils with the application of chemometric analysis approaches.

    METHODS: A cross-sectional study was undertaken among secondary school students in eight suburban and urban schools in the district of Hulu Langat, Selangor, Malaysia. The survey was completed by 96 students at the age of 14 by using the International Study of Asthma and Allergies in Children (ISAAC) and European Community Respiratory Health Survey (ECRHS) questionnaires. The fractional exhaled nitric oxide (FeNO) was measured, and an allergic skin prick test and sputum induction were performed for all students. Induced sputum samples were analysed for the expression of CD11b, CD35, CD63, and CD66b on eosinophils and neutrophils by flow cytometry. The particulate matter (PM2.5 and PM10), NO2, CO2, and formaldehyde were measured inside the classrooms.

    RESULTS: Chemometric and regression results have clustered the expression of CD63 with PM2.5, CD11b with NO2, CD66b with FeNO levels, and CO2 with eosinophils, with the prediction accuracy of the models being 71.88%, 76.04%, and 76.04%, respectively. Meanwhile, for neutrophils, the CD63 and CD66b clustering with PM2.5 and CD11b with FeNO levels showed a model prediction accuracy of 72.92% and 71.88%, respectively.

    CONCLUSION: The findings indicated that the exposure to PM2.5 and NO2 was likely associated with the degranulation of eosinophils and neutrophils, following the activation mechanisms that led to the inflammatory reactions.

    Matched MeSH terms: Nitric Oxide/analysis
  5. Mohamed Isa SSP, Ablat A, Mohamad J
    Molecules, 2018 Feb 13;23(2).
    PMID: 29438299 DOI: 10.3390/molecules23020400
    Plumeria rubra Linn of the family Apocynaceae is locally known in Malaysia as "Kemboja". It has been used by local traditional medicine practitioners for the treatment of arthritis-related disease. The LCMS/MS analysis of the methanol extract of flowers (PR-ME) showed that it contains 3-O-caffeyolquinic acid, 5-caffeoquinic acid, 1,3-dicaffeoquinic acid, chlorogenic acid, citric acid, 3,3-di-O-methylellagic acid, kaempferol-3-O-glucoside, kaempferol-3-rutinoside, kaempferol, quercetin 3-O-α-l-arabinopyranoside, quercetin, quinic acid and rutin. The flower PR-ME contained high amounts of phenol and flavonoid at 184.632 mg GAE/g and 203.2.2 mg QE/g, respectively. It also exhibited the highest DPPH, FRAP, metal chelating, hydrogen peroxide, nitric oxide superoxide radical scavenging activity. Similarly, the XO inhibitory activity in vitro assay possesses the highest inhibition effects at an IC50 = 23.91 μg/mL. There was no mortality or signs of toxicity in rats at a dose of 4 g/kg body weight. The administration of the flower PR-ME at doses of 400 mg/kg to the rats significantly reduced serum uric acid 43.77%. Similarly, the XO activity in the liver was significantly inhibited by flower PR-ME at doses of 400 mg/kg. These results confirm that the flower PR-ME of P. rubra contains active phytochemical compounds as detected in LCMS/MS that contribute to the inhibition of XO activity in vitro and in vivo in reducing acid uric level in serum and simultaneously scavenging the free radical to reduce the oxidative stress.
    Matched MeSH terms: Nitric Oxide/antagonists & inhibitors; Nitric Oxide/metabolism
  6. Gan YY, Chen CF
    Biochem Genet, 2012 Feb;50(1-2):52-62.
    PMID: 21927815 DOI: 10.1007/s10528-011-9458-0
    Human endothelial nitric oxide synthase (eNOS) is one isoform of the nitric oxide synthases that are responsible for nitric oxide synthesis from L-arginine. The gene encoding eNOS contains a 27-bp VNTR polymorphism in intron 4. We report here for the first time the presence of a novel allele 3, which was absent in all other populations studied to date, in 1.7% each of Singaporean Indians and Malays. We also detected the presence of a novel genotype 3/5 in 3.4% each of Singaporean Indians and Malays. Allele 6, which was absent in Han Chinese from northern China and Taiwan and was also absent in Indians from the Indian subcontinent, was found in 2.1% of Singaporean Chinese and in 0.3% of Singaporean Indians.
    Matched MeSH terms: Nitric Oxide Synthase Type III/genetics*
  7. Rahman NA, Katayama T, Wahid MEA, Kasan NA, Khatoon H, Yamada Y, et al.
    Front Bioeng Biotechnol, 2020;8:581628.
    PMID: 33330417 DOI: 10.3389/fbioe.2020.581628
    Antioxidants found in microalgae play an essential role in both animals and humans, against various diseases and aging processes by protecting cells from oxidative damage. In this study, 26 indigenous tropical marine microalgae were screened. Out of the 26 screened strains, 10 were selected and were further investigated for their natural antioxidant compounds which include carotenoids, phenolics, and fatty acids collected in their exponential and stationary phases. The antioxidant capacity was also evaluated by a total of four assays, which include ABTS, DPPH, superoxide radical (O2•-) scavenging capacity, and nitric oxide (•NO-) scavenging capacity. This study revealed that the antioxidant capacity of the microalgae varied between divisions, strains, and growth phase and was also related to the content of antioxidant compounds present in the cells. Carotenoids and phenolics were found to be the major contributors to the antioxidant capacity, followed by polyunsaturated fatty acids linoleic acid (LA), eicosapentaenoic acid (EPA), arachidonic acid (ARA), and docosahexaenoic acid (DHA) compared to other fatty acids. The antioxidant capacity of the selected bacillariophytes and haptophytes was found to be positively correlated to phenolic (R2-value = 0.623, 0.714, and 0.786 with ABTS, DPPH, and •NO-) under exponential phase, and to carotenoid fucoxanthin and β-carotene (R2 value = 0.530, 0.581 with ABTS, and 0.710, 0.795 with O2•-) under stationary phase. Meanwhile, antioxidant capacity of chlorophyte strains was positively correlated with lutein, β-carotene and zeaxanthin under the exponential phase (R2 value = 0.615, 0.615, 0.507 with ABTS, and R2 value = 0.794, 0.659, and 0.509 with •NO-). In the stationary phase, chlorophyte strains were positively correlated with violaxanthin (0.755 with •NO-), neoxanthin (0.623 with DPPH, 0.610 with •NO-), and lutein (0.582 with •NO-). This study showed that antioxidant capacity and related antioxidant compound production of tropical microalgae strains are growth phase-dependent. The results can be used to improve the microalgal antioxidant compound production for application in pharmaceutical, nutraceutical, food, and feed industry.
    Matched MeSH terms: Nitric Oxide
  8. Mesaik MA, Khan KM, Rahim F, Taha M, Haider SM, Perveen S, et al.
    Bioorg Chem, 2015 Jun;60:118-22.
    PMID: 26000491 DOI: 10.1016/j.bioorg.2015.05.003
    The synthetic indole Mannich bases 1-13 have been investigated for their ability to modulate immune responses measured in vitro. These activities were based on monitoring their affects on T-lymphocyte proliferation, reactive oxygen species (ROS), IL (interleukin)-2, IL-4, and nitric oxide production. Compound 5 was found to be the most potent immunomodulator in this context. Four of the synthesized compounds, 5, 11, 12, and 13, have significant potent inhibitory effects on T-cell proliferation, IL-4, and nitric oxide production. However, none of the thirteen indole compounds exerted any activity against ROS production.
    Matched MeSH terms: Nitric Oxide/immunology
  9. Nallathamby N, Phan CW, Sova M, Saso L, Sabaratnam V
    Med Chem, 2021;17(6):623-629.
    PMID: 31849289 DOI: 10.2174/1573406416666191218095635
    BACKGROUND: Microglia are associated with neuroinflammation, which play a key role in the pathogenesis of neurodegenerative diseases. It has been reported that some quinazolines and quinazolinones possess anti-inflammatory properties. However, the pharmacological properties of certain quinazoline derivatives are still unknown.

    OBJECTIVE: The antioxidant, cytotoxic, and protective effects of a series of synthesized 2- trifluoromethylquinazolines (2, 4, and 5) and quinazolinones (6-8) in lipopolysaccharide (LPS)- murine microglia (BV2) and hydrogen peroxide (H2O2)-mouse neuroblastoma-2a (N2a) cells were investigated.

    METHOD: The antioxidant activity of synthesized compounds was evaluated with ABTS and DPPH assays. The cytotoxic activities were determined by MTS assay in BV2 and N2a cells. The production of nitric oxide (NO) in LPS-induced BV2 microglia cells was quantified.

    RESULTS: The highest ABTS and DPPH scavenging activities were observed for compound 8 with 87.7% of ABTS scavenge percentage and 54.2% DPPH inhibition. All compounds were noncytotoxic in BV2 and N2a cells at 5 and 50 μg/mL. The compounds which showed the highest protective effects in LPS-induced BV2 and H2O2-induced N2a cells were 5 and 7. All tested compounds, except 4, also reduced NO production at concentrations of 50 μg/mL. The quinazolinone series 6-8 exhibited the highest percentage of NO reduction, ranging from 38 to 60%. Compounds 5 and 8 possess balanced antioxidant and protective properties against LPS- and H2O2-induced cell death, thus showing great potential to be developed into anti-inflammatory and neuroprotective agents.

    CONCLUSION: Compounds 5 and 7 were able to protect the BV2 and N2a cells against LPS and H2O2 toxicity, respectively, at a low concentration (5 μg/mL). Compounds 6-8 showed potent reduction of NO production in BV2 cells.

    Matched MeSH terms: Nitric Oxide/biosynthesis
  10. Leong SW, Faudzi SM, Abas F, Aluwi MF, Rullah K, Wai LK, et al.
    Molecules, 2014 Oct 09;19(10):16058-81.
    PMID: 25302700 DOI: 10.3390/molecules191016058
    A series of ninety-seven diarylpentanoid derivatives were synthesized and evaluated for their anti-inflammatory activity through NO suppression assay using interferone gamma (IFN-γ)/lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Twelve compounds (9, 25, 28, 43, 63, 64, 81, 83, 84, 86, 88 and 97) exhibited greater or similar NO inhibitory activity in comparison with curcumin (14.7 ± 0.2 µM), notably compounds 88 and 97, which demonstrated the most significant NO suppression activity with IC50 values of 4.9 ± 0.3 µM and 9.6 ± 0.5 µM, respectively. A structure-activity relationship (SAR) study revealed that the presence of a hydroxyl group in both aromatic rings is critical for bioactivity of these molecules. With the exception of the polyphenolic derivatives, low electron density in ring-A and high electron density in ring-B are important for enhancing NO inhibition. Meanwhile, pharmacophore mapping showed that hydroxyl substituents at both meta- and para-positions of ring-B could be the marker for highly active diarylpentanoid derivatives.
    Matched MeSH terms: Nitric Oxide/metabolism
  11. Yousefi S, Bayat S, Rahman MB, Ibrahim Z, Abdulmalek E
    Chem Biodivers, 2017 Apr;14(4).
    PMID: 28036129 DOI: 10.1002/cbdv.201600362
    Inflammatory bowel disease (IBD) is the main risk factor for developing colorectal cancer which is common in patients of all ages. 5-Aminosalicylic acid (5-ASA), structurally related to the salicylates, is highly active in the treatment of IBD with minor side effects. In this study, the synthesis of galactose and fructose esters of 5-ASA was planned to evaluate the role of glycoconjugation on the bioactivity of the parent drug. The antibacterial activity of the new compounds were evaluated against two Gram-negative and two Gram-positive species of bacteria, with a notable effect observed against Staphylococcus aureus and Escherichia coli in comparisons with the 5-ASA. Cytotoxicity testing over HT-29 and 3T3 cell lines indicated that the toxicity of the new products against normal cells was significantly reduced compared with the original drug, whereas their activity against cancerous cells was slightly decreased. The anti-inflammatory activity test in RAW264.7 macrophage cells indicated that the inhibition of nitric oxide by both of the monosaccharide conjugated derivatives was slightly improved in comparison with the non-conjugated drug.
    Matched MeSH terms: Nitric Oxide/antagonists & inhibitors
  12. Lee KH, Ab Aziz FH, Syahida A, Abas F, Shaari K, Israf DA, et al.
    Eur J Med Chem, 2009 Aug;44(8):3195-200.
    PMID: 19359068 DOI: 10.1016/j.ejmech.2009.03.020
    A series of 46 curcumin related diarylpentanoid analogues were synthesized and evaluated for their anti-inflammatory, antioxidant and anti-tyrosinase activities. Among these compounds 2, 13 and 33 exhibited potent NO inhibitory effect on IFN-gamma/LPS-activated RAW 264.7 cells as compared to L-NAME and curcumin. However, these series of diarylpentanoid analogues were not significantly inhibiting NO scavenging, total radical scavenging and tyrosinase enzyme activities. The results revealed that the biological activity of these diarylpentanoid analogues is most likely due to their action mainly upon inflammatory mediator, inducible nitric oxide synthase (iNOS). The present results showed that compounds 2, 13 and 33 might serve as a useful starting point for the design of improved anti-inflammatory agents.
    Matched MeSH terms: Nitric Oxide/biosynthesis; Nitric Oxide/metabolism
  13. Kim JK, Choi E, Hong YH, Kim H, Jang YJ, Lee JS, et al.
    J Ethnopharmacol, 2021 May 10;271:113887.
    PMID: 33539951 DOI: 10.1016/j.jep.2021.113887
    ETHNOPHARMACOLOGICAL RELEVANCE: Melicope accedens (Blume) Thomas G. Hartley is a plant included in the family Rutaceae and genus Melicope. It is a native plant from Vietnam that has been used for ethnopharmacology. In Indonesia and Malaysia, the leaves of M. accedens are applied externally to decrease fever.

    AIM OF THE STUDY: The molecular mechanisms of the anti-inflammatory properties of M. accedens are not yet understood. Therefore, we examined those mechanisms using a methanol extract of M. accedens (Ma-ME) and determined the target molecule in macrophages.

    MATERIALS AND METHODS: We evaluated the anti-inflammatory effects of Ma-ME in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and in an HCl/EtOH-triggered gastritis model in mice. To investigate the anti-inflammatory activity, we performed a nitric oxide (NO) production assay and ELISA assay for prostaglandin E2 (PGE2). RT-PCR, luciferase gene reporter assays, western blotting analyses, and a cellular thermal shift assay (CETSA) were conducted to identify the mechanism and target molecule of Ma-ME. The phytochemical composition of Ma-ME was analyzed by HPLC and LC-MS/MS.

    RESULTS: Ma-ME suppressed the production of NO and PGE2 and the mRNA expression of proinflammatory genes (iNOS, IL-1β, and COX-2) in LPS-stimulated RAW264.7 cells without cytotoxicity. Ma-ME inhibited NF-κB activation by suppressing signaling molecules such as IκBα, Akt, Src, and Syk. Moreover, the CETSA assay revealed that Ma-ME binds to Syk, the most upstream molecule in the NF-κB signal pathway. Oral administration of Ma-ME not only alleviated inflammatory lesions, but also reduced the gene expression of IL-1β and p-Syk in mice with HCl/EtOH-induced gastritis. HPLC and LC-MS/MS analyses confirmed that Ma-ME contains various anti-inflammatory flavonoids, including quercetin, daidzein, and nevadensin.

    CONCLUSIONS: Ma-ME exhibited anti-inflammatory activities in vitro and in vivo by targeting Syk in the NF-κB signaling pathway. Therefore, we propose that Ma-ME could be used to treat inflammatory diseases such as gastritis.

    Matched MeSH terms: Nitric Oxide/metabolism; Nitric Oxide Synthase Type II/genetics
  14. Mat Bah MN, Tan RYH, Razak H, Sapian MH, Abdullah N, Alias EY
    J Perinatol, 2021 04;41(4):786-793.
    PMID: 33589728 DOI: 10.1038/s41372-021-00962-6
    OBJECTIVE: This study aims to determine the immediate outcome of persistent pulmonary hypertension of the newborn (PPHN) and risk factors for mortality in the era of inhaled nitric oxide (iNO).

    STUDY DESIGN: This observational cross-sectional study includes 195 confirmed PPHN with a gestational age of ≥34 weeks without congenital heart disease. Multivariable logistic regression was used to identify risk factors for mortality.

    RESULTS: The mortality rate was 16.4%, with the highest mortality with pulmonary hypoplasia. Of 195, 65% received iNO; 18% were iNO non-responders with the majority having pulmonary hypoplasia. Independent risk factors for mortality were the presence of reversal of flow at the descending aorta, pulmonary hypoplasia, APGAR scores ≤ 5 at 5 min, and idiopathic PPHN with an adjusted odds ratio of 15.9, 7.5, 6.7, and 6.4, respectively.

    CONCLUSIONS: Despite the usage of iNO, mortality due to PPHN remains high and is related to etiology and cardiac function.

    Matched MeSH terms: Nitric Oxide/therapeutic use
  15. Yong YK, Sulaiman N, Hakim MN, Lian GE, Zakaria ZA, Othman F, et al.
    Biomed Res Int, 2013;2013:463145.
    PMID: 24224164 DOI: 10.1155/2013/463145
    The aim of the present study was to evaluate the anti-inflammatory activities of aqueous extract of Bixa orellana (AEBO) leaves and its possible mechanisms in animal models. The anti-inflammatory activity of the extract was evaluated using serotonin-induced rat paw edema, increased peritoneal vascular permeability, and leukocyte infiltrations in an air-pouch model. Nitric oxide (NO), indicated by the sum of nitrites and nitrates, and vascular growth endothelial growth factor (VEGF) were measured in paw tissues of rats to determine their involvement in the regulation of increased permeability. Pretreatments with AEBO (50 and 150 mg kg⁻¹) prior to serotonin inductions resulted in maximum inhibitions of 56.2% of paw volume, 45.7% of Evans blue dye leakage in the peritoneal vascular permeability model, and 83.9% of leukocyte infiltration in the air-pouch model. 57.2% maximum inhibition of NO and 27% of VEGF formations in rats' paws were observed with AEBO at the dose of 150 mg kg⁻¹. Pharmacological screening of the extract showed significant (P < 0.05) anti-inflammatory activity, indicated by the suppressions of increased vascular permeability and leukocyte infiltration. The inhibitions of these inflammatory events are probably mediated via inhibition of NO and VEGF formation and release.
    Matched MeSH terms: Nitric Oxide/metabolism
  16. Muniandy K, Gothai S, Badran KMH, Suresh Kumar S, Esa NM, Arulselvan P
    J Immunol Res, 2018;2018:3430684.
    PMID: 30155492 DOI: 10.1155/2018/3430684
    Alternanthera sessilis, an edible succulent herb, has been widely used as herbal drug in many regions around the globe. Inflammation is a natural process of the innate immune system, accompanied with the increase in the level of proinflammatory mediators, for example, nitric oxide (NO) and prostaglandin (PGE2); cytokines such as interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor alpha (TNFα); and enzymes including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) via the activation and nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) subunit p65 due to the phosphorylation of inhibitory protein, IκBα. Inflammation over a short period of time is essential for its therapeutic effect. However, prolonged inflammation can be detrimental as it is related to many chronic diseases such as delayed wound healing, cardiovascular disease, arthritis, and autoimmune disorders. Therefore, ways to curb chronic inflammation have been extensively investigated. In line with that, in this present study, we attempted to study the suppression activity of the proinflammatory cytokines and mediators as a characteristic of anti-inflammatory action, by using stem extract of A. sessilis in the lipopolysaccharide- (LPS-) stimulated RAW 264.7 macrophage cell line. The results showed that the extract has significantly inhibited the production of the proinflammatory mediators including NO and PGE2; cytokines comprising IL-6, IL-1β, and TNFα; and enzymes covering the iNOS and COX-2 by preventing the IκBα from being degraded, to inhibit the nuclear translocation of NF-κB subunit p65 in order to hinder the inflammatory pathway activation. These results indicated that the stem extract of A. sessilis could be an effective candidate for ameliorating inflammatory-associated complications.
    Matched MeSH terms: Nitric Oxide/metabolism
  17. Azhar NA, Ghozali SZ, Abu Bakar SA, Lim V, Ahmad NH
    Toxicol In Vitro, 2020 Sep;67:104910.
    PMID: 32526345 DOI: 10.1016/j.tiv.2020.104910
    Application of silver nanoparticles serves as a new approach in cancer treatment due to its unique features. Biosynthesis of silver nanoparticles using plant is advantageous since they are easily accessible, nontoxic and produce quicker reaction compared to other methods. To evaluate the cytotoxicity, mechanism of cell death and DNA damage of biosynthesized Catharanthus roseus-silver nanoparticles on human liver cancer (HepG2) cells. The antiproliferative activity of Catharanthus roseus‑silver nanoparticles was measured using MTT assay. The cytotoxic effects were further evaluated by measuring nitric oxide and reactive oxygen species (ROS). The mechanism of cell death was determined by annexin-FITC/propidium iodide, mitochondrial membrane potential (MMP) and cell cycle assays. The assessment of DNA damage was evaluated using Comet assay method. The uptake of the nanoparticles were evaluated by Transmission Electron Microscopy (TEM). Catharanthus roseus‑silver nanoparticles has inhibited the proliferation of HepG2 cells in a time-dependent manner with a median IC50 value of 3.871 ± 0.18 μg/mL. The concentration of nitrite and ROS were significantly higher than control. The cell death was due to apoptosis associated with MMP loss, cell cycle arrest, and extensive DNA damage. TEM analysis indicated the presence of free nanoparticles and endosomes containing the nanoparticles. The findings show that Catharanthus roseus‑silver nanoparticles have produced cytotoxic effects on HepG2 cells and thus may have a potential to be used as an anticancer treatment, particularly for hepatocellular carcinoma.
    Matched MeSH terms: Nitric Oxide/metabolism
  18. Ridwan R, Razak HRA, Adenan MI, Saad WMM
    Prev Nutr Food Sci, 2019 Mar;24(1):41-48.
    PMID: 31008095 DOI: 10.3746/pnf.2019.24.1.41
    Nutritional intervention of fruit juice supplementation is able to maximize exercise performance. Watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] contains high L-citrulline content and consumption of watermelon juice may promote ergogenic effects. The aim of the present study was to investigate the role of 100% flesh watermelon juice and 100% rind watermelon juice supplementation for 14 days on swimming performance in rats. Twenty four male Sprague-Dawley rats were randomly divided into four groups: Cx group of rats supplemented with filtered tap water (negative control), L-cit group of rats supplemented with L-citrulline (positive control), FR group of rats supplemented with 100% flesh watermelon juice, and RR group of rats supplemented with 100% rind watermelon juice. Each group was supplemented for 14 days ad libitum prior to swimming exercise protocol. The rats were performed swimming exercise for 3 days and swimming time until exhaustion was measured. Plasma samples were collected to measure lactate concentration, ammonia concentration, and nitric oxide production. Rats supplemented with 100% flesh watermelon juice demonstrated significantly prolonged of swimming time until exhaustion, reduction of lactate and ammonia concentrations, and increased of nitric oxide production compared to Cx and L-cit groups (P<0.05). These findings postulate that supplementation with 100% flesh watermelon juice improves endurance in swimming performance.
    Matched MeSH terms: Nitric Oxide
  19. Razali FN, Ismail A, Abidin NZ, Shuib AS
    PLoS One, 2014;9(10):e108988.
    PMID: 25299340 DOI: 10.1371/journal.pone.0108988
    The polysaccharide fraction from Solanum nigrum Linne has been shown to have antitumor activity by enhancing the CD4+/CD8+ ratio of the T-lymphocyte subpopulation. In this study, we analyzed a polysaccharide extract of S. nigrum to determine its modulating effects on RAW 264.7 murine macrophage cells since macrophages play a key role in inducing both innate and adaptive immune responses. Crude polysaccharide was extracted from the stem of S. nigrum and subjected to ion-exchange chromatography to partially purify the extract. Five polysaccharide fractions were then subjected to a cytotoxicity assay and a nitric oxide production assay. To further analyze the ability of the fractionated polysaccharide extract to activate macrophages, the phagocytosis activity and cytokine production were also measured. The polysaccharide fractions were not cytotoxic, but all of the fractions induced nitric oxide in RAW 264.7 cells. Of the five fractions tested, SN-ppF3 was the least toxic and also induced the greatest amount of nitric oxide, which was comparable to the inducible nitric oxide synthase expression detected in the cell lysate. This fraction also significantly induced phagocytosis activity and stimulated the production of tumor necrosis factor-α and interleukin-6. Our study showed that fraction SN-ppF3 could classically activate macrophages. Macrophage induction may be the manner in which polysaccharides from S. nigrum are able to prevent tumor growth.
    Matched MeSH terms: Nitric Oxide/metabolism; Nitric Oxide Synthase Type II/metabolism
  20. Srivastava N, Mishra S, Iqbal H, Chanda D, Shanker K
    J Ethnopharmacol, 2021 May 10;271:113911.
    PMID: 33571614 DOI: 10.1016/j.jep.2021.113911
    ETHNOPHARMACOLOGICAL RELEVANCE: Kaempferia galanga L. rhizome (KGR) is part of more than sixty-one Ayurvedic formulations and commonly known as 'Chandramula'. KGR is widely used in traditional Indian medicines to treat fever (jwar), rheumatism (Amavata), respiratory (Shwasa), hypertension (Vyanabala vaishamya) and cardiovascular disorders (Vyanavayu Dushtijanya Hrudrog). Although ethnomedicinal properties have extensively been demonstrated in traditional medicines of south-east countries i.e. China, India, Indonesia, and Malaysia, the chemico-biological validation are still lacking.

    AIM OF THE STUDY: Chemico-biological standardization with respect to its vasorelaxation potential is the main objective of the present study. To investigate the vasorelaxation potential of key phytochemical of KGR, i.e., ethyl-p-methoxycinnamate (EPMC) and to study it's the mechanism of action.

    MATERIALS AND METHODS: A HPLC method was developed and validated for the quality assessment of KGR using its two major phytochemicals i.e. ethyl-p-methoxycinnamate (EPMC) and ethyl cinnamate (EC) in KGR. The vasorelaxation effect of major phytochemicals of KGR was evaluated on the main mesenteric arteries isolated from male Wistar rats. Specific BKca channel blocker tetraethylammonium (TEA), receptor antagonist, nitric oxide scavenging capacity, and antioxidant potential were also evaluated for its plausible mechanism.

    RESULTS: Present validated HPLC method facilitates simultaneous quantitation of EPMC and EC faster than classical GC techniques. EPMC has shown a dose-dependent relaxation in rat main mesenteric arteries (MMA) contracted by U46619 with an Emax of 58.68 ± 3.31%. Similarly, in endothelium-denuded MMA rings, relaxation was also observed (Emax of 61.83 ± 3.38%). Moreover, relaxation response to EPMC has strongly inhibited (Emax 14.76 ± 2.29%) when the tissue exposed to depolarizing high K+ containing buffer for the contraction. The point correlation dimension (pD2) values were also significantly decreased in high K+ treated arterial rings compared to control. Interestingly, when MMA rings incubated with a specific BKca channel blocker (TEA, 1 mM), the relaxation response to EPMC was also significantly blocked.

    CONCLUSIONS: The first time this study demonstrated the chemical standardization of K. galanga rhizome and EPMC is responsible for its vasorelaxation potential as demonstrated by the endothelium-independent response mediated by Ca2+ dependent potassium channels.

    Matched MeSH terms: Nitric Oxide/antagonists & inhibitors
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links