Displaying publications 41 - 57 of 57 in total

Abstract:
Sort:
  1. Chua YA, Abdullah WZ, Yusof Z, Gan SH
    Turk J Med Sci, 2015;45(4):913-8.
    PMID: 26422867
    BACKGROUND/AIM: VKORC1 and CYP2C9 genetic polymorphisms may not accurately predict warfarin dose requirements. We evaluated an existing warfarin dosing algorithm developed for Malaysian patients that was based only on VKORC1 and CYP2C9 genes.

    MATERIALS AND METHODS: Five Malay patients receiving warfarin maintenance therapy were investigated for their CYP2C9*2, CYP2C9*3, and VKORC1-1639G>A genotypes and their vitamin K-dependent (VKD) clotting factor activities. The records of their daily warfarin doses and international normalized ratio (INR) 2 years prior to and after the measurement of VKD clotting factors activities were acquired. The mean warfarin doses were compared with predicted warfarin doses calculated from a genotypic-based dosing model developed for Asians.

    RESULTS: A patient with the VKORC1-1639 GA genotype, who was supposed to have higher dose requirements, had a lower mean warfarin dose similar to those having the VKORC1-1639 AA genotype. This discrepancy may be due to the coadministration of celecoxib, which has the potential to decrease warfarins metabolism. Not all patients' predicted mean warfarin doses based on a previously developed dosing algorithm for Asians were similar to the actual mean warfarin dose, with the worst predicted dose being 54.34% higher than the required warfarin dose.

    CONCLUSION: Multiple clinical factors can significantly change the actual required dose from the predicted dose from time to time. The additions of other dynamic variables, especially INR, VKD clotting factors, and concomitant drug use, into the dosing model are important in order to improve its accuracy.

    Matched MeSH terms: Pharmacogenetics
  2. Jackson KMP, Rathinasabapathy T, Esposito D, Komarnytsky S
    Mol Nutr Food Res, 2017 Sep;61(9).
    PMID: 28371117 DOI: 10.1002/mnfr.201601118
    SCOPE: Chicory (Cichorium intybus L.) is a perennial herb often consumed as a vegetable, whereas the ground and roasted roots are blended as a coffee substitute. Caffeoylquinic or chlorogenic acids (CQA), the abundant intermediates of lignin biosynthesis in chicory, have been reported to improve glucose metabolism in humans, but the functional group in their structure responsible for this effect has not been yet characterized.

    METHODS AND RESULTS: Here, we showed that three di-O-caffeoylquinic acids suppressed hepatic glucose production in H4IIE rat hepatoma cells by reducing expression of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), two key enzymes that regulate hepatic gluconeogenesis. Direct comparisons between CQAs and their metabolites (3-caffeoylquinic, caffeic, and quinic acids) revealed the caffeic acid moiety alone was responsible for the observed effects. Further analysis suggested the activation of PI3K and MAPK pathways as a method of controlling gene expression was shared between caffeoylquinic and caffeic acids. These compounds promoted increased mitochondrial respiration and cellular metabolism, in part by inducing oxidative phosphorylation and proton leak.

    CONCLUSION: We concluded that the caffeic acid moiety was important for suppression of hepatic gluconeogenesis and hyperglycemia, ultimately strengthening the link between dietary interventions based on caffeic acid-containing plant foods and healthy glucose metabolism.

    Matched MeSH terms: Pharmacogenetics
  3. Chung WH, Chang WC, Lee YS, Wu YY, Yang CH, Ho HC, et al.
    JAMA, 2014 Aug 6;312(5):525-34.
    PMID: 25096692 DOI: 10.1001/jama.2014.7859
    The antiepileptic drug phenytoin can cause cutaneous adverse reactions, ranging from maculopapular exanthema to severe cutaneous adverse reactions, which include drug reactions with eosinophilia and systemic symptoms, Stevens-Johnson syndrome, and toxic epidermal necrolysis. The pharmacogenomic basis of phenytoin-related severe cutaneous adverse reactions remains unknown.
    Matched MeSH terms: Pharmacogenetics
  4. Yusof W, Hua GS
    Toxicol. Mech. Methods, 2012 Apr;22(3):184-92.
    PMID: 22003869 DOI: 10.3109/15376516.2011.623331
    Artesunate (AS) and amodiaquine (AQ) are two prodrugs widely used as antimalarial agents and are metabolized by the CYP P450 2A6 (CYP 2A6) and CYP P450 2C8 (CYP 2C8) enzymes, respectively.
    Matched MeSH terms: Pharmacogenetics
  5. Chang CC, Ng CC, Too CL, Choon SE, Lee CK, Chung WH, et al.
    Pharmacogenomics J, 2017 03;17(2):170-173.
    PMID: 26927288 DOI: 10.1038/tpj.2016.10
    Phenytoin (PHT) is a common cause of severe cutaneous adverse reactions (SCARs), including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) and drug reaction with eosinophilia and systemic symptoms (DRESS). Although HLA-B*15:02 is associated with PHT-induced SJS/TEN (PHT-SJS/TEN) in Han Chinese and Thais, the genetic basis for susceptibility to PHT-induced SCARs (PHT-SCAR) in other populations remains unclear. We performed a case-control association study by genotyping the human leukocyte antigen (HLA)-B alleles of 16 Malay PHT-SCAR patients (13 SJS/TEN and 3 DRESS), 32 PHT-tolerant controls and 300 healthy ethnicity-matched controls. A novel genetic biomarker, HLA-B*15:13, showed significant association with PHT-SJS/TEN (53.8%, 7/13 cases) (odds ratio (OR) 11.28, P=0.003) and PHT-DRESS (100%, 3/3 cases) (OR 59.00, P=0.003) when compared with PHT-tolerant controls (9.4%, 3/32 controls). We also confirmed HLA-B*15:02 association with PHT-SJS/TEN (61.5%, 8/13 cases vs 21.9%, 7/32 controls; OR 5.71, P=0.016) when compared with PHT-tolerant controls. These alleles may serve as markers to predict PHT-SCAR in Malays.
    Matched MeSH terms: Pharmacogenetics
  6. Li L, Tan CM, Koo SH, Chong KT, Lee EJ
    Pharmacogenet Genomics, 2007 Sep;17(9):783-6.
    PMID: 17700367
    The human concentrative nucleoside transporter (hCNT2), also known as SLC28A2, plays an important role in the cellular uptake across intestinal membrane of some naturally occurring nucleosides and nucleoside analogs. This study aims to determine the genetic variability of hCNT2 (SLC28A2) in three major Asian ethnic groups residing in Singapore: Chinese, Malay and Indian, and functionally characterize the variants of hCNT2. Healthy participants (n=96) from each group were screened for genetic variations in the exons of hCNT2 (SLC28A2) using denaturing high performance liquid chromatography and sequencing analyses. A total of 23 polymorphisms were identified in the exonic and flanking intronic regions, and ethnic differences in single nucleotide polymorphism frequencies were evident. Five novel nonsynonymous variants (L12R, R142H, E172D, E385K, M612T) were constructed by mutagenesis and functionally characterized in U-251 cells. Expression of these variants in U-251 cells revealed that all except E385K can uptake various substrates of hCNT2: inosine, ribavirin and uridine.
    Matched MeSH terms: Pharmacogenetics
  7. Mohamad NA, Ramachandran V, Ismail P, Mohd Isa H, Chan YM, Ngah NF, et al.
    Bosn J Basic Med Sci, 2018 Aug 01;18(3):260-267.
    PMID: 29579408 DOI: 10.17305/bjbms.2018.2493
    Pharmacogenetic studies indicate that a variable response to anti-vascular endothelial growth factor (VEGF) therapy in patients with neovascular form of AMD (nAMD) may be due to polymorphisms in the complement factor H gene (CFH). This study is the first to investigate the association between CFH Y402H polymorphism and the response to ranibizumab therapy in Malaysian patients with nAMD. We included 134 patients with nAMD, examined between September 2014 and February 2016. The diagnosis of nAMD was confirmed by ophthalmologic examination, before ranibizumab therapy was started. Each patient received an intravitreal injection of 0.5 mg/0.05 ml ranibizumab following a treat-and-extend (TE) regimen. Best-corrected visual acuity (BCVA) and central retinal thickness (CRT) were recorded after 3 and 6 months following the first injection and compared with the baseline values. Genotyping of Y402H (rs1061170) polymorphism was performed using PCR-RFLP and the amplified product was digested with MluCI restriction enzyme. Association between the Y402H genotypes and response to treatment was determined by a logistic regression analysis of responder (n = 49) and non-responder (n = 84) group. Significantly worse mean BCVA was observed for the CC genotype compared to the TT + CT genotype in the total sample after 6-month follow-up (p = 0.018). Comparing the baseline and 6-month point measurements, improved mean BCVA was observed in responder group, while worse mean BCVA was recorded for non-responder group. However, our regression analysis, adjusted for confounding factors, showed no significant association between the Y402H genotypes and response to treatment in nAMD patients under the recessive model (p > 0.05). Overall, our results suggest that factors other than Y402H polymorphism may be involved in the progression of nAMD after treatment with anti-VEGF agents, in Malaysian population.
    Matched MeSH terms: Pharmacogenetics
  8. Ong, Chin-Eng, Yan, Pan, Tiong, Kai-Hung, Yiap, Beow-Chin, Tan, Eng-Lai, Pook, Peter, et al.
    MyJurnal
    Pharmacogenomics (or pharmacogenetics), the study of the effects of genetic differences on a person’s response to drugs, can help in optimizing drug efficacy and minimizing adverse drug reactions. Interperson difference in drug metabolism is one of the important consequences of such genetic variation. This variation is determined in part by mutations in cytochrome P450 enzymes (CYPs). IMU is part of a major collaborative research project in the area of phamacogenetics and drug metabolism. Working together with USM and UiTM, our group has, since 2000, generated useful population database on genetic polymorphism of various CYP isoforms. We have successfully genotyped three major ethnic groups, Malay, Indian and Chinese for their allelic frequency of important isoforms. These include CYP2D6, CYP2C9, CYP2C8 and CYP2A6. Data generated so far collectively have contributed to our effort in mapping and constructing genomic database for Malaysian population.
    Since early 2002, our research has been focusing on developing in vitro methods in studying the functional consequences of genetic polymorphism of CYP enzymes. Using site-directed mutagenesis, CYP mutants, carrying nucleotide changes as reported in known alleles in human populations, were generated and expressed in E. coli system, and the expressed recombinant proteins were characterized using enzyme assays to determine the functional consequences of mutations. We have established a series of HPLC (high performance liquid chromatography)-based and fluorescence-based assays to investigate CYP activities. Assays that have been developed include tolbutamide methylhydroxylase, paclitaxel 6α-hydroxylase, dextromethorphan O-demethylation, testosterone 6β-hydroxylation and coumarin 7-hydroxylase assays. These assays serve as activity markers allowing comparison of catalytic activities of mutant proteins generated. Another focus of our work is to use the developed assays as a screening tool to investigate drug-herb interactions. This was achieved by co-incubation of herbal extracts and active constituents with the probe substrates in the assays followed by characterization of the kinetic behaviors of the enzymes involved using various pharmacokinetic parameters such as Km, Vmax, IC50 and Ki. This work is currently carried out with collaboration from the Institute for Medical Research (IMR) and is supported by MOSTI’s eScienceFund under RM9. It is envisaged that this screening work will give us insights on the potential of the commonly used herbs to cause pharmacokinetic interactions with other drug substrates, and allow us to elucidate the mechanisms involved in the interactions.
    Matched MeSH terms: Pharmacogenetics
  9. Ooi CJ, Hilmi I, Banerjee R, Chuah SW, Ng SC, Wei SC, et al.
    J Gastroenterol Hepatol, 2019 Aug;34(8):1296-1315.
    PMID: 30848854 DOI: 10.1111/jgh.14648
    The Asia-Pacific Working Group on Inflammatory Bowel Disease was established in Cebu, Philippines, under the auspices of the Asia-Pacific Association of Gastroenterology with the goal of improving inflammatory bowel disease care in Asia. This consensus is carried out in collaboration with Asian Organization for Crohn's and Colitis. With biologic agents and biosimilars becoming more established, it is necessary to conduct a review on existing literature and establish a consensus on when and how to introduce biologic agents and biosimilars in conjunction with conventional treatments for ulcerative colitis and Crohn's disease in Asia. These statements also address how pharmacogenetics influences the treatments of ulcerative colitis and Crohn's disease and provides guidance on response monitoring and strategies to restore loss of response. Finally, the review includes statements on how to manage treatment alongside possible hepatitis B and tuberculosis infections, both common in Asia. These statements have been prepared and voted upon by members of inflammatory bowel disease workgroup employing the modified Delphi process. These statements do not intend to be all-encompassing, and future revisions are likely as new data continue to emerge.
    Matched MeSH terms: Pharmacogenetics
  10. Singh S, de Ronde MWJ, Creemers EE, Van der Made I, Meijering R, Chan MY, et al.
    J Am Heart Assoc, 2021 01 19;10(2):e017120.
    PMID: 33441016 DOI: 10.1161/JAHA.120.017120
    Background Because of a nonresponse to aspirin (aspirin resistance), patients with acute coronary syndrome (ACS) are at increased risk of developing recurrent event. The in vitro platelet function tests have potential limitations, making them unsuitable for the detection of aspirin resistance. We investigated whether miR-19b-1-5p could be utilized as a biomarker for aspirin resistance and future major adverse cardio-cerebrovascular (MACCE) events in patients with ACS. Methods and Results In this cohort study, patients with ACS were enrolled from multiple tertiary hospitals in Christchurch, Hong Kong, Sarawak, and Singapore between 2011 and 2015. MiR-19b-1-5p expression was measured from buffy coat of patients with ACS (n=945) by reverse transcription quantitative polymerase chain reaction. Platelet function was determined by Multiplate aggregometry testing. MACCE was collected over a mean follow-up time of 1.01±0.43 years. Low miR-19b-1-5p expression was found to be related to aspirin resistance as could be observed from sustained platelet aggregation in the presence of aspirin (-Log-miR-19b-1-5p, [unstandardized beta, 44.50; 95% CI, 2.20-86.80; P<0.05]), even after adjusting for age, sex, ethnicity, and prior history of stroke. Lower miR-19b-1-5p expression was independently associated with a higher risk of MACCE (-Log-miR-19b-1-5p, [hazard ratio, 1.85; 95% CI, 1.23-2.80; P<0.05]). Furthermore, a significant interaction was noted between the inverse miR-19b-1-5p expression and family history of premature coronary artery disease (P=0.01) on the risk of MACCE. Conclusions Lower miR-19b-1-5p expression was found to be associated with sustained platelet aggregation on aspirin, and a higher risk of MACCE in patients with ACS. Therefore, miR-19b-1-5p could be a suitable marker for aspirin resistance and might predict recurrence of MACCE in patients with ACS.
    Matched MeSH terms: Pharmacogenetics
  11. Veiga MI, Asimus S, Ferreira PE, Martins JP, Cavaco I, Ribeiro V, et al.
    Eur J Clin Pharmacol, 2009 Apr;65(4):355-63.
    PMID: 18979093 DOI: 10.1007/s00228-008-0573-8
    AIM: The aim of this study was to obtain pharmacogenetic data in a Vietnamese population on genes coding for proteins involved in the elimination of drugs currently used for the treatment of malaria and human immunodeficiency virus/acquired immunodeficiency syndrome.

    METHOD: The main polymorphisms on the cytochrome P450 (CYP) genes, CYP2A6, CYP2B6, CYP2C19, CYP2D6, CYP3A4 and CYP3A5, and the multi-drug resistance 1 gene (MDR1) were genotyped in 78 healthy Vietnamese subjects. Pharmacokinetic metrics were available for CYP2A6 (coumarin), CYP2C19 (mephenytoin), CYP2D6 (metoprolol) and CYP3As (midazolam), allowing correlations with the determined genotype.

    RESULTS: In the CYP2 family, we detected alleles CYP2A6*4 (12%) and *5 (15%); CYP2B6*4 (8%), *6 (27%); CYP2C19*2 (31%) and *3 (6%); CYP2D6*4, *5, *10 (1, 8 and 44%, respectively). In the CYP3A family, CYP3A4*1B was detected at a low frequency (2%), whereas CYP3A5 *3 was detected at a frequency of 67%. The MDR1 3435T allele was present with a prevalence of 40%. Allele proportions in our cohort were compared with those reported for other Asian populations. CYP2C19 genotypes were associated to the S-4'-OH-mephenytoin/S-mephenytoin ratio quantified in plasma 4 h after intake of 100 mg mephenytoin. While CYP2D6 genotypes were partially reflected by the alpha-OH-metroprolol/metoprolol ratio in plasma 4 h after dosing, no correlation existed between midazolam plasma concentrations 4 h post-dose and CYP3A genotypes.

    CONCLUSIONS: The Vietnamese subjects of our study cohort presented allele prevalences in drug-metabolising enzymes that were generally comparable with those reported in other Asian populations. Deviations were found for CYP2A6*4 compared to a Chinese population (12 vs. 5%, respectively; P = 0.023), CYP2A6*5 compared with a Korean population (15 vs. <1%, respectively; P < 0.0001), a Malaysian population (1%; P < 0.0001) and a Chinese population (1%; P < 0.0001); CYP2B6*6 compared with a Korean population (27 vs. 12%; P = 0.002) and a Japanese population (16%; P = 0.021). Pharmacokinetic metrics versus genotype analysis reinforces the view that the predictive value of certain globally common variants (e.g. CYP2D6 single nucleotide polymorphisms) should be evaluated in a population-specific manner.

    Matched MeSH terms: Pharmacogenetics
  12. Ramli FF
    Bosn J Basic Med Sci, 2021 Apr 01;21(2):145-154.
    PMID: 32841585 DOI: 10.17305/bjbms.2020.4897
    Methadone has a wide pharmacokinetic interindividual variability, resulting in unpredicted treatment response. Pharmacogenomic biomarkers seem promising for personalized methadone maintenance treatment. The evidence supports the use of ABCB1 single-nucleotide polymorphism (SNP) 1236C>T with genotypes C/T or C/C (Jewish) and haplotypes AGCTT carrier, AGCGC heterozygote, or non-carrier (Caucasian), which have a predicted lower methadone dose requirement. In contrast, ABCB1 SNP 1236C>T with genotype T/T (Jewish); haplotypes AGCGC homozygote, AGCTT non-carrier (Caucasian), and ABCB1 3435C>T variant carrier; and haplotypes CGT, TTC, and TGT (Han Chinese) have a predicted higher methadone dose. For methadone plasma levels, ABCB1 diplotype non-CGC/TTT (Malay) predicted lower, and diplotype CGC/TTT (Malay), 3435C>T allelic carrier, haplotypes (CGT, TTC, TGT) (Han Chinese) predicted higher methadone levels. In terms of metabolism biomarkers, a lower methadone requirement was related to carriers of CYP2B6 genotypes *4(G/G) and *9(T/T) among Jewish patients, CYP2B6*9 genotype (T/T) and haplotypes (TA/TG); and CYP2C19 (*2/*2,*2/*3, and *3/*3; Han Chinese). Higher methadone dose was observed in CYP2C19*1 allelic carriers (Han Chinese) and CYP2D6 ultrarapid metabolizer (Caucasian). Lower methadone levels were reported in CYP2B6 SNPs, haplotypes TTT, and AGATAA (Han Chinese), CYP2C19 genotype *1/*1 (Han Chinese), allelic carrier *1xN (Caucasian), and CYP3A4 genotype *1/*1 (Caucasian). Carriers of CYP2B6 genotype *6/*6 (Caucasian), CYP2B6 haplotypes ATGCAG and ATGCTG (Han Chinese), and CYP3A4 genotype *1/*1B (Caucasian) had predicted higher methadone plasma levels. Specific pharmacokinetics biomarkers have potential uses for personalized methadone treatment in specific populations.
    Matched MeSH terms: Pharmacogenetics
  13. Ngow H, Teh LK, Langmia IM, Lee WL, Harun R, Ismail R, et al.
    Xenobiotica, 2008 Jun;38(6):641-51.
    PMID: 18570163 DOI: 10.1080/00498250801999087
    1. A retrospective study was conducted to explore the importance of CYP2C9 genotyping for the initiation and maintenance therapy of warfarin in clinical practice. A total of 191 patients on warfarin therapy in a local hospital were recruited after written informed consent. Their medical records were reviewed and no intervention of warfarin dose was performed. 2. A total of 5 ml of blood were taken from each subject for DNA extraction and identification of 1, 2, 3 and 4 CYP2C9 alleles, using a nested-allele-specific-multiplex-polymerase chain reaction (PCR). Half the patients were Malays and the remaining were Chinese. 3. Two genotypes were detected; 93.2% had CYP2C9 1/1 and 6.8% were CYP2C9 1/3. Warfarin doses were higher in patients with CYP2C91/1. Patients with the 1/3 genotype experienced a higher rate of serious and life-threatening bleeding; 15.4 versus 6.2 per 100 patients per 6 months. 4. The observation clearly highlights the inadequacy of the current dosing regimens and the need to move toward a more individualized approach to warfarin therapy. Prospective clinical studies are now being conducted to assess dosing algorithms that incorporate the contribution of the genotype to allow the individualization of warfarin dose.
    Matched MeSH terms: Pharmacogenetics
  14. Au A, Baba AA, Azlan H, Norsa'adah B, Ankathil R
    J Clin Pharm Ther, 2014 Dec;39(6):685-90.
    PMID: 25060527 DOI: 10.1111/jcpt.12197
    The introduction and success of imatinib mesylate (IM) has brought about a paradigm shift in chronic myeloid leukaemia (CML) treatment. However, despite the high efficacy of IM, clinical resistance develops due to a heterogeneous array of mechanisms. Pharmacogenetic variability as a result of genetic polymorphisms could be one of the most important factors influencing resistance to IM. The aim of this study was to investigate the association between genetic variations in drug efflux transporter ABCC1 (MRP1) and ABCC2 (MRP2) genes and response to IM in patients with CML.
    Matched MeSH terms: Pharmacogenetics
  15. Ismail R, Teh LK
    J Clin Pharm Ther, 2006 Feb;31(1):99-109.
    PMID: 16476126
    CYP2D6 polymorphisms are well described in normal populations but there are few data on its clinical significance. We therefore investigated the influence of CYP2D6 polymorphism on steady-state plasma concentrations and apparent oral clearance of metoprolol in patients with cardiovascular diseases.
    Matched MeSH terms: Pharmacogenetics
  16. Gan GG, Phipps ME, Lee MM, Lu LS, Subramaniam RY, Bee PC, et al.
    Ann Hematol, 2011 Jun;90(6):635-41.
    PMID: 21110192 DOI: 10.1007/s00277-010-1119-6
    Within the Asian populations, Indian patients had been reported to require higher warfarin dose compared with the Chinese and Malay patients, and this could not entirely be explained by cytochrome P450 (CYP)2C9 gene variants. Genetic variants of vitamin K epoxide oxidase reductase complex subunit 1 (VKORC1) has been well established as one of key determinants in the different responses of warfarin amongst patients. Adult patients who attended an anticoagulation clinic with stable INR were recruited. VKORC1 and CYP2C9 genotype were sequenced, and clinical characteristics were assessed. A total of 91 Malays, 96 Chinese, and 46 Indian patients were recruited. The mean age was 55 years and 51.5% were males. The mean dose of warfarin for all patients was 3.7 mg, and the mean daily dose of warfarin was significantly higher in Indians compared with the Chinese and Malay patients, 4.9 versus 3.5 and 3.3 mg, respectively (p 
    Matched MeSH terms: Pharmacogenetics
  17. Singh O, Chan JY, Lin K, Heng CC, Chowbay B
    PLoS One, 2012;7(12):e51771.
    PMID: 23272163 DOI: 10.1371/journal.pone.0051771
    This study aimed to explore the influence of SLC22A1, PXR, ABCG2, ABCB1 and CYP3A5 3 genetic polymorphisms on imatinib mesylate (IM) pharmacokinetics in Asian patients with chronic myeloid leukemia (CML).
    Matched MeSH terms: Pharmacogenetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links