AREAS COVERED: Literature was searched in different resources for eligible studies. The pooled risk ratio was measured using RevMan software, with p<0.05 (two-sided) set as statistically significant.
EXPERT OPINION: The ABCB1 C3435T homozygous mutant (TT) was associated with significantly increased risk of MACE compared to either wild type genotype (CC) or the combination of wild type and heterozygous genotypes (TT vs. CC: RR 1.33; 95% CI 1.06-1.68; p=0.02; TT vs. CC+CT: RR 1.32; 95% CI 1.10-1.60; p=0.004). Safety outcomes, i.e. bleeding events were not significantly different between the genetic models investigated (TT vs. CC: RR 1.93; 95% CI 0.86-4.35; p=0.11; TT vs. CC+CT: RR 1.36; 95% CI 0.89-2.09; p=0.16; CT+TT vs. CC: RR 1.20; 95% CI 0.59-2.44; p=0.61). It is suggested that ABCB1 C3435T genotype should be tested for ACS/CAD patients undergoing PCI to ensure optimum therapy of clopidogrel.
STUDY QUESTION: Whether FDA death data in the PLATO trial matched the local site records.
STUDY DESIGN: The NDA spreadsheet contains 938 precisely detailed PLATO deaths. We obtained and validated local evidence for 52 deaths among 861 PLATO patients from 14 enrolling sites in 8 countries and matched those with the official NDA dataset submitted to the FDA.
MEASURES AND OUTCOMES: Existence, precise time, and primary cause of deaths in PLATO.
RESULTS: Discrepant to the NDA document, sites confirmed 2 extra unreported deaths (Poland and Korea) and failed to confirm 4 deaths (Malaysia). Of the remaining 46 deaths, dates were reported correctly for 42 patients, earlier (2 clopidogrel), or later (2 ticagrelor) than the actual occurrence of death. In 12 clopidogrel patients, cause of death was changed to "vascular," whereas 6 NDA ticagrelor "nonvascular" or "unknown" deaths were site-reported as of "vascular" origin. Sudden death was incorrectly reported in 4 clopidogrel patients, but omitted in 4 ticagrelor patients directly affecting the primary efficacy PLATO endpoint.
CONCLUSIONS: Many deaths were inaccurately reported in PLATO favoring ticagrelor. The full extent of mortality misreporting is currently unclear, while especially worrisome is a mismatch in identifying primary death cause. Because all PLATO events are kept in the cloud electronic Medidata Rave capture system, securing the database content, examining the dataset changes or/and repeated entries, identifying potential interference origin, and assessing full magnitude of the problem are warranted.
AIM OF THE STUDY: To establish the relationship between CYP2C19 genotype, clopidogrel responsiveness and 1-year MACE.
MATERIALS & METHODS: Aspirin/clopidogrel responses were assessed with Multiplate Analyzer and CYP2C19*2 allele by SpartanRx.
RESULTS: A total of 42.0% carried ≥1 CYP2C19*2 allele. Prevalences of aspirin and clopidogrel high on-treatment platelet reactivity (HPR; local cutoffs: 300 AU*min for aspirin and 600 AU*min for clopidogrel) were 11.5% and 19.8% respectively. In multivariate ana-lysis, clopidogrel HPR was found to be an independent predictor for 1-year MACE (adj HR: 3.48, p = 0.022 ).
CONCLUSION: Having clopidogrel HPR could be a potentially modifiable risk factor guided by phenotyping.
METHODS: In an international, randomized, single-blind trial, we compared polymer-based zotarolimus-eluting stents with polymer-free umirolimus-coated stents in patients at high bleeding risk. After PCI, patients were treated with 1 month of dual antiplatelet therapy, followed by single antiplatelet therapy. The primary outcome was a safety composite of death from cardiac causes, myocardial infarction, or stent thrombosis at 1 year. The principal secondary outcome was target-lesion failure, an effectiveness composite of death from cardiac causes, target-vessel myocardial infarction, or clinically indicated target-lesion revascularization. Both outcomes were powered for noninferiority.
RESULTS: A total of 1996 patients at high bleeding risk were randomly assigned in a 1:1 ratio to receive zotarolimus-eluting stents (1003 patients) or polymer-free drug-coated stents (993 patients). At 1 year, the primary outcome was observed in 169 of 988 patients (17.1%) in the zotarolimus-eluting stent group and in 164 of 969 (16.9%) in the polymer-free drug-coated stent group (risk difference, 0.2 percentage points; upper boundary of the one-sided 97.5% confidence interval [CI], 3.5; noninferiority margin, 4.1; P = 0.01 for noninferiority). The principal secondary outcome was observed in 174 patients (17.6%) in the zotarolimus-eluting stent group and in 169 (17.4%) in the polymer-free drug-coated stent group (risk difference, 0.2 percentage points; upper boundary of the one-sided 97.5% CI, 3.5; noninferiority margin, 4.4; P = 0.007 for noninferiority).
CONCLUSIONS: Among patients at high bleeding risk who received 1 month of dual antiplatelet therapy after PCI, use of polymer-based zotarolimus-eluting stents was noninferior to use of polymer-free drug-coated stents with regard to safety and effectiveness composite outcomes. (Funded by Medtronic; ONYX ONE ClinicalTrials.gov number, NCT03344653.).
METHODS: Patients who received PF-SES were investigated in an unselected large-scale international, single-armed, multicenter, 'all comers' observational study. The primary endpoint was the 9-month target lesion revascularisation (TLR) rate, whereas secondary endpoints included the 9-month major adverse cardiac events (MACE) and procedural success rates. A priori defined subgroups such as patients with ACS, diabetes, lesion subsets and procedural characteristics relative to DAPT were investigated.
RESULTS: A total of 2877 patients of whom 1084 had ACS were treated with PF-SES (1.31±0.75 stents per patient). At 9 months, the accumulated overall TLR rate was 2.3% (58/2513). There was no significant difference between ACS and stable CAD (2.6% vs 2.1%, p=0.389). However, the overall MACE rate was 4.3% (108/2513) with a higher rate in patients with ACS when compared with the stable CAD subgroup (6.1%, 58/947 vs 3.2%, 50/1566, p<0.001).
CONCLUSIONS: PF-SES angioplasty is safe and effective in the daily clinical routine with low rates of TLR and MACE in an unselected patient population. Our data are in agreement with prior clinical findings that extended DAPT duration beyond 6 months do not improve clinical outcomes in patients with stable CAD (ClinicalTrials.gov Identifier NCT02629575).
TRIAL REGISTRATION NUMBER: NCT02629575.