PURPOSE: This review aims to gather existing literature on the clinical effects of ticagrelor after inhibiting adenosine uptake.
METHODOLOGY: The current study reviewed literature related to the effects of ticagrelor on adenosine metabolism. The review also examined the drug's biological effects and clinical characteristics to see how it could be used in a clinical setting.
RESULTS: Many studies have shown that ticagrelor can inhibit equilibrative nucleoside transporter 1 (ENT1). This inhibition leads to intracellular adenosine uptake, increased adenosine half-life and plasma concentration levels and an enhanced adenosine-mediated biological effect.
CONCLUSIONS: Based on the studies reviewed, it was found that ticagrelor essentially inhibits adenosine absorption of adenosine into cells through ENT1, which increases the concentration in the blood and subsequently increases the protection of the heart muscle by adenosine. It also prevents platelet aggregation, and extends the biological effects of coronary arteries. Moreover, it leads to a lower mortality rate in acute coronary syndrome (ACS) patients.
OBJECTIVE: This study aimed to investigate the prevalence and impact of CYP2C19*2, *3 and *17 genotypes on clopidogrel responsiveness in a multiethnic Malaysian population planned for percutaneous coronary intervention.
SETTING: Between October 2010 and March 2011, a total of 118 consecutive patients planned for percutaneous coronary intervention were enrolled in Sarawak General Hospital, Borneo. All patients received at least 75 mg aspirin daily for at least 2 days and 75 mg clopidogrel daily for at least 4 days prior to angiography.
METHOD: Genotyping for CYP2C19*2 (rs4244285, 681G > A), *3 (rs4986893, 636G > A) and *17 (rs11188072, -3402C > T) alleles were performed by polymerase chain reaction-restriction fragment linked polymorphism method. Whole blood ADP-induced platelet aggregation was assessed with multiple electrode platelet aggregometry (MEA) using the Multiplate Analyzer.
MAIN OUTCOME MEASURES: The distribution of CYP2C19*2, *3 and *17 among different ethnic groups and the association between genotype, clopidogrel responsiveness and clinical outcome were the main outcome measures.
RESULTS: The highest prevalence of poor metabolisers (carriers of at least one copy of the *2 or *3 allele) was among the Chinese (53.7 %), followed by the Malays (26.9 %), Ibans (16.4 %) and other races (3.0 %). Poor metabolisers (PMs) had the highest mean MEA (303.6 AU*min), followed by normal metabolisers (NMs) with 270.5 AU*min and extensive metabolisers (EMs) with 264.1 AU*min (p = 0.518). Among poor responders to clopidogrel, 65.2 % were PMs and NMs, respectively, whereas none were EMs (p = 0.350). Two cardiac-related deaths were reported.
CONCLUSION: There was a diverse inter-ethnic difference in the distribution of CYP2C19 polymorphism. The findings of this study echo that of other studies where genotype appears to have a limited impact on clopidogrel responsiveness and clinical outcome in low-risk patients.