Displaying publications 41 - 60 of 231 in total

Abstract:
Sort:
  1. Hild F, Nguyen NT, Deng E, Katrib J, Dimitrakis G, Lau PL, et al.
    Macromol Rapid Commun, 2016 Aug;37(15):1295-9.
    PMID: 27315130 DOI: 10.1002/marc.201600149
    The use of dielectric property measurements to define specific trends in the molecular structures of poly(caprolactone) containing star polymers and/or the interbatch repeatability of the synthetic procedures used to generate them is demonstrated. The magnitude of the dielectric property value is shown to accurately reflect: (a) the number of functional groups within a series of materials with similar molecular size when no additional intermolecular order is present in the medium, (b) the polymer molecular size for a series of materials containing a fixed core material and so functional group number, and/or (c) the batch to batch repeatability of the synthesis method. The dielectric measurements are validated by comparison to spectroscopic/chromatographic data.
    Matched MeSH terms: Polyesters/chemical synthesis*
  2. Liau CP, Bin Ahmad M, Shameli K, Yunus WM, Ibrahim NA, Zainuddin N, et al.
    ScientificWorldJournal, 2014;2014:572726.
    PMID: 24600329 DOI: 10.1155/2014/572726
    Polyhydroxybutyrate (PHB)/polycaprolactone (PCL)/stearate Mg-Al layered double hydroxide (LDH) nanocomposites were prepared via solution casting intercalation method. Coprecipitation method was used to prepare the anionic clay Mg-Al LDH from nitrate salt solution. Modification of nitrate anions by stearate anions between the LDH layers via ion exchange reaction. FTIR spectra showed the presence of carboxylic acid (COOH) group which indicates that stearate anions were successfully intercalated into the Mg-Al LDH. The formation of nanocomposites only involves physical interaction as there are no new functional groups or new bonding formed. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the mixtures of nanocomposites are intercalated and exfoliated types. XRD results showed increasing of basal spacing from 8.66 to 32.97 Å in modified stearate Mg-Al LDH, and TEM results revealed that the stearate Mg-Al LDH layers are homogeneously distributed in the PHB/PCL polymer blends matrix. Enhancement in 300% elongation at break and 66% tensile strength in the presence of 1.0 wt % of the stearate Mg-Al LDH as compare with PHB/PCL blends. Scanning electron microscopy (SEM) proved that clay improves compatibility between polymer matrix and the best ratio 80PHB/20PCL/1stearate Mg-Al LDH surface is well dispersed and stretched before it breaks.
    Matched MeSH terms: Polyesters/chemistry*
  3. Loo CY, Sudesh K
    Int J Biol Macromol, 2007 Apr 10;40(5):466-71.
    PMID: 17207850
    The ability of Delftia acidovorans to incorporate a broad range of 3-hydroxyvalerate (3HV) monomers into polyhydroxyalkanoate (PHA) copolymers was evaluated in this study. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] containing 0-90 mol% of 3HV was obtained when a mixture of sodium 3-hydroxybutyrate and sodium valerate was used as the carbon sources. Transmission electron microscopy analysis revealed an interesting aspect of the P(3HB-co-3HV) granules containing high molar ratios of 3HV whereby, the copolymer granules were generally larger than those of poly(3-hydroxybutyrate) [P(3HB)] granules, despite having almost the same cellular PHA contents. The large number of P(3HB-co-3HV) granules occupying almost the entire cell volume did not correspond to a higher amount of polymer by weight. This indicated that the granules of P(3HB-co-3HV) contain polymer chains that are loosely packed and therefore have lower density than P(3HB) granules. It was also interesting to note that a decrease in the length of the side chain from 3HV to 4-hydroxybutyrate (4HB) corresponded to an increase in the density of the respective PHA granules. The presence of longer side chain monomers (3HV) in the PHA structure seem to exhibit steric effects that prevent the polymer chains in the granules from being closely packed. The results reported here have important implications on the maximum ability of bacterial cells to accumulate PHA containing monomers with longer side chain length.
    Matched MeSH terms: Polyesters/metabolism*
  4. Ahmad AF, Abbas Z, Obaiys SJ, Ibrahim N, Hashim M, Khaleel H
    PLoS One, 2015;10(10):e0140505.
    PMID: 26474301 DOI: 10.1371/journal.pone.0140505
    Bio-composites of oil palm empty fruit bunch (OPEFB) fibres and polycaprolactones (PCL) with a thickness of 1 mm were prepared and characterized. The composites produced from these materials are low in density, inexpensive, environmentally friendly, and possess good dielectric characteristics. The magnitudes of the reflection and transmission coefficients of OPEFB fibre-reinforced PCL composites with different percentages of filler were measured using a rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in the X-band frequency range. In contrast to the effective medium theory, which states that polymer-based composites with a high dielectric constant can be obtained by doping a filler with a high dielectric constant into a host material with a low dielectric constant, this paper demonstrates that the use of a low filler percentage (12.2%OPEFB) and a high matrix percentage (87.8%PCL) provides excellent results for the dielectric constant and loss factor, whereas 63.8% filler material with 36.2% host material results in lower values for both the dielectric constant and loss factor. The open-ended probe technique (OEC), connected with the Agilent vector network analyzer (VNA), is used to determine the dielectric properties of the materials under investigation. The comparative approach indicates that the mean relative error of FEM is smaller than that of NRW in terms of the corresponding S21 magnitude. The present calculation of the matrix/filler percentages endorses the exact amounts of substrate utilized in various physics applications.
    Matched MeSH terms: Polyesters/chemistry*
  5. Abdullah BM, Zubairi SI, Huri HZ, Hairunisa N, Yousif E, Basu RC
    PLoS One, 2016;11(3):e0151603.
    PMID: 27008312 DOI: 10.1371/journal.pone.0151603
    Presently, plant oils which contain high percentage of linoleic acid 1 are perceived to be a viable alternative to mineral oil for biolubricant applications due to their biodegradability and technical properties. In order to get biodegradable lubricant, triester derivatives compounds (1-5) were synthesized and characterized. The processes involved were monoepoxidation of linoleic acid 2, oxirane ring opening 3, esterification 4 and acylation 5. The structures of the products were confirmed by FTIR, 1H and 13C-NMR and LC-MS. The results that showed lowest temperature properties were obtained for triester 5, with a pour point value (PP) of -73°C, highest onset temperature (260°C) and lowest volatility at 0.30%. Viscosity index (VI) increased for the ester's synthetic compounds (2, 3, 4, 5), while the PP decreased. This behavior is the result of the increase of the chain length of the branching agents. Triester based linoleic acid has improved properties such as low-temperature and tribological properties. These results will make it feasible for plant oil to be used for biolubricants, fuels in chain saws, transmission oil and brake fluid.
    Matched MeSH terms: Polyesters/chemistry*
  6. Leong YH, Isa ASM, Mohamed Mahmood M, Moey CEJ, Utar Z, Soon YI, et al.
    Regul Toxicol Pharmacol, 2018 Jun;95:280-288.
    PMID: 29567329 DOI: 10.1016/j.yrtph.2018.03.011
    This study aimed to investigate the oral acute and subacute toxicity of Poly [3-hydroxybutyrate-co-4-hydroxybutyrate], P(3HB-co-4HB) in the form of nanoparticles in Sprague-Dawley rats. Acute oral administration of P(3HB-co-4HB) nanoparticles was performed as a single dose up to 2000 mg/kg in six female rats for 14 days. Subacute toxicity study via oral administration for 28 days at doses of 0 (control), 500, 1000 and 2000 mg/kg in rats (10 rats in each group, female:male = 1:1) was conducted. The estimated lethal dose (LD50) of P(3HB-co-4HB) nanoparticles was >2000 mg/kg. No mortality, unusual changes in behaviour, adverse clinical signs, abnormal changes in body weights or food consumption were observed on all animals treated with P(3HB-co-4HB) nanoparticles during 14 days of the acute toxicity study. In the subacute test, there was no mortality and toxicologically significant changes in clinical signs, body weights, food consumption, hematology, clinical biochemistry, urinalysis, macroscopic findings, organ weights as well as histopathological examination were observed.
    Matched MeSH terms: Polyesters/toxicity*
  7. Chee JW, Amirul AA, Majid MI, Mansor SM
    Int J Pharm, 2008 Sep 1;361(1-2):1-6.
    PMID: 18584978 DOI: 10.1016/j.ijpharm.2008.05.007
    Copolyesters of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB) were produced by Cupriavidus sp. (USMAA2-4) (DSM 19379) from carbon sources of 1,4-butanediol and gamma-butyrolactone. The composition of copolyesters produced varied from 0 to 45 mol% 4HB, depending on the combination of carbon sources supplied. The P(3HB-co-4HB) films containing Mitragyna speciosa crude extract were prepared with the ratio varying from 10 to 40% (w/w). The in vitro crude extract release of the films was studied in 0.1M phosphate buffer (pH 7.4) at 37 degrees C. Although the release rate was slow, it was maintained at a constant rate. This suggests that the crude extract release was due to the polymer degradation because the amount of crude extract released was consistent. The amount of degradation was based on the films' dry weight loss, decrease in molecular weight and surface morphology changes. The degradation rate increased with the 4HB content. This showed that the polymer degradation is dependant on the molecular weight, crystallinity, thermal properties and water permeability. The different drug loading ratio which led to surface morphology changes also gave an effect on polymer degradation.
    Matched MeSH terms: Polyesters/chemistry*
  8. Almoustafa HA, Alshawsh MA, Chik Z
    Int J Pharm, 2017 Nov 25;533(1):275-284.
    PMID: 28943210 DOI: 10.1016/j.ijpharm.2017.09.054
    Nanoprecipitation is a simple and increasingly trending method for nanoparticles preparation. The self-assembly feature of poly (ethylene glycol)-poly (lactide-co-glycolic acid) (PEG-PLGA) amphiphilic copolymer into a nanoparticle and its versatile structure makes nanoprecipitation one of the best methods for its preparation. The aim of this study is to review currently available literature for standard preparation of PEG-PLGA nanoparticles using nanoprecipitation technique in order to draw conclusive evidenceto draw conclusive evidence that can guide researchers during formulation development. To achieve this, three databases (Web of Science, Scopus and PubMed) were searched using relevant keywords and the extracted articles were reviewed based on defined inclusion and exclusion criteria. Data extraction and narrative analysis of the obtained literature was performed when appropriate, along with our laboratory observations to support those claims wherever necessary. As a result of this analysis, reports that matched our criteria conformed to the general facts about nanoprecipitation techniques such as simplicity in procedure, low surfactants requirement, narrow size distribution, and low resulting concentrations. However, these reports showed interesting advantages for using PEG-PLGA as they are frequently reported to be freeze-dried and active pharmaceutical ingredients (APIs) with low hydrophobicity were reported to successfully be encapsulated in the particles.
    Matched MeSH terms: Polyesters/chemistry*
  9. Huong KH, Elina KAR, Amirul AA
    Int J Biol Macromol, 2018 Sep;116:217-223.
    PMID: 29723627 DOI: 10.1016/j.ijbiomac.2018.04.148
    Long carbon chain alkanediols are used in the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)], however these substrates possess high toxicity towards bacterial cells. This study demonstrated the effective utilisation of a long carbon chain alkanediol, namely 1,8-octanediol, to enhance the yield and production of a copolymer with a high molecular weight of over 1000 kDa, which is desirable for novel applications in medical and biopharmaceuticals. The increased PHA content (47-61 wt%) and concentration (1.7-4.5 g/L) was achieved by additional feeding of a combination of C4 substrates at C/N 10, with 1,8-octanediol + γ-butyrolactone producing P(3HB-co-22 mol% 4HB) with a high molecular weight (1060 kDa) and elongation at break of 970%. The DO-stat feeding strategy of C/N 10 has shown an increment of PHA concentration for both carbon combination, 0.45-4.27 g/L and 0.32-3.36 g/L for 1,8-octanediol + sodium 4-hydroxybutyrate (4HB-Na) and 1,8-octanediol + γ-butyrolactone, but with a slight reduction on molecular weight and mechanical strength. Nonetheless, further study revealed that a nitrogen-absence feeding strategy could retain the high molecular weight and elongation at break of the copolymer, and simultaneously improving the overall P(3HB-co-4HB) production.
    Matched MeSH terms: Polyesters/chemistry*
  10. Revati R, Majid MSA, Ridzuan MJM, Basaruddin KS, Rahman Y MN, Cheng EM, et al.
    J Mech Behav Biomed Mater, 2017 10;74:383-391.
    PMID: 28688321 DOI: 10.1016/j.jmbbm.2017.06.035
    The in vitro degradation and mechanical properties of a 3D porous Pennisetum purpureum (PP)/polylactic acid (PLA)-based scaffold were investigated. In this study, composite scaffolds with PP to PLA ratios of 0%, 10%, 20%, and 30% were immersed in a PBS solution at 37°C for 40 days. Compression tests were conducted to evaluate the compressive strength and modulus of the scaffolds, according to ASTM F451-95. The compression strength of the scaffolds was found to increase from 1.94 to 9.32MPa, while the compressive modulus increased from 1.73 to 5.25MPa as the fillers' content increased from 0wt% to 30wt%. Moreover, field emission scanning electron microscopy (FESEM) and X-ray diffraction were employed to observe and analyse the microstructure and fibre-matrix interface. Interestingly, the degradation rate was reduced for the PLA/PP20scaffold, though insignificantly, this could be attributed to the improved mechanical properties and stronger fibre-matrix interface. Microstructure changes after degradation were observed using FESEM. The FESEM results indicated that a strong fibre-matrix interface was formed in the PLA/PP20scaffold, which reflected the addition of P. purpureum into PLA decreasing the degradation rate compared to in pure PLA scaffolds. The results suggest that the P. purpureum/PLA scaffold degradation rate can be altered and controlled to meet requirements imposed by a given tissue engineering application.
    Matched MeSH terms: Polyesters/chemistry*
  11. Kao CY, Lin TL, Lin YH, Lee AK, Ng SY, Huang TH, et al.
    Cells, 2022 Dec 08;11(24).
    PMID: 36552731 DOI: 10.3390/cells11243967
    In scaffold-regulated bone regeneration, most three-dimensional (3D)-printed scaffolds do not provide physical stimulation to stem cells. In this study, a magnetic scaffold was fabricated using fused deposition modeling with calcium silicate (CS), iron oxide nanoparticles (Fe3O4), and poly-ε-caprolactone (PCL) as the matrix for internal magnetic sources. A static magnetic field was used as an external magnetic source. It was observed that 5% Fe3O4 provided a favorable combination of compressive strength (9.6 ± 0.9 MPa) and degradation rate (21.6 ± 1.9% for four weeks). Furthermore, the Fe3O4-containing scaffold increased in vitro bioactivity and Wharton's jelly mesenchymal stem cells' (WJMSCs) adhesion. Moreover, it was shown that the Fe3O4-containing scaffold enhanced WJMSCs' proliferation, alkaline phosphatase activity, and the osteogenic-related proteins of the scaffold. Under the synergistic effect of the static magnetic field, the CS scaffold containing Fe3O4 can not only enhance cell activity but also stimulate the simultaneous secretion of collagen I and osteocalcin. Overall, our results demonstrated that Fe3O4-containing CS/PCL scaffolds could be fabricated three dimensionally and combined with a static magnetic field to affect cell behaviors, potentially increasing the likelihood of clinical applications for bone tissue engineering.
    Matched MeSH terms: Polyesters/pharmacology
  12. Arai T, Aikawa S, Sudesh K, Arai W, Mohammad Rawi NF, Leh CPP, et al.
    World J Microbiol Biotechnol, 2024 Jun 13;40(8):242.
    PMID: 38869634 DOI: 10.1007/s11274-024-04041-8
    Lignocellulosic biomass is a valuable, renewable substrate for the synthesis of polyhydroxybutyrate (PHB), an ecofriendly biopolymer. In this study, bacterial strain E5-3 was isolated from soil in Japan; it was identified as Burkholderia ambifaria strain E5-3 by 16 S rRNA gene sequencing. The strain showed optimal growth at 37 °C with an initial pH of 9. It demonstrated diverse metabolic ability, processing a broad range of carbon substrates, including xylose, glucose, sucrose, glycerol, cellobiose, and, notably, palm oil. Palm oil induced the highest cellular growth, with a PHB content of 65% wt. The strain exhibited inherent tolerance to potential fermentation inhibitors derived from lignocellulosic hydrolysate, withstanding 3 g/L 5-hydroxymethylfurfural and 1.25 g/L acetic acid. Employing a fed-batch fermentation strategy with a combination of glucose, xylose, and cellobiose resulted in PHB production 2.7-times that in traditional batch fermentation. The use of oil palm trunk hydrolysate, without inhibitor pretreatment, in a fed-batch fermentation setup led to significant cell growth with a PHB content of 45% wt, equivalent to 10 g/L. The physicochemical attributes of xylose-derived PHB produced by strain E5-3 included a molecular weight of 722 kDa, a number-average molecular weight of 191 kDa, and a polydispersity index of 3.78. The amorphous structure of this PHB displayed a glass transition temperature of 4.59 °C, while its crystalline counterpart had a melting point of 171.03 °C. This research highlights the potential of lignocellulosic feedstocks, especially oil palm trunk hydrolysate, for PHB production through fed-batch fermentation by B. ambifaria strain E5-3, which has high inhibitor tolerance.
    Matched MeSH terms: Polyesters/metabolism
  13. Deng E, Nguyen NT, Hild F, Hamilton IE, Dimitrakis G, Kingman SW, et al.
    Molecules, 2015 Nov 09;20(11):20131-45.
    PMID: 26569198 DOI: 10.3390/molecules201119681
    Macromolecules that possess three-dimensional, branched molecular structures are of great interest because they exhibit significantly differentiated application performance compared to conventional linear (straight chain) polymers. This paper reports the synthesis of 3- and 4-arm star branched polymers via ring opening polymerisation (ROP) utilising multi-functional hydroxyl initiators and Sn(Oct)2 as precatalyst. The structures produced include mono-functional hydrophobic and multi-functional amphiphilic core corona stars. The characteristics of the synthetic process were shown to be principally dependent upon the physical/dielectric properties of the initiators used. ROP's using initiators that were more available to become directly involved with the Sn(Oct)₂ in the "in-situ" formation of the true catalytic species were observed to require shorter reaction times. Use of microwave heating (MWH) in homopolymer star synthesis reduced reaction times compared to conventional heating (CH) equivalents, this was attributed to an increased rate of "in-situ" catalyst formation. However, in amphiphilic core corona star formation, the MWH polymerisations exhibited slower propagation rates than CH equivalents. This was attributed to macro-structuring within the reaction medium, which reduced the potential for reaction. It was concluded that CH experiments were less affected by this macro-structuring because it was disrupted by the thermal currents/gradients caused by the conductive/convective heating mechanisms. These gradients are much reduced/absent with MWH because it selectively heats specific species simultaneously throughout the entire volume of the reaction medium. These partitioning problems were overcome by introducing additional quantities of the species that had been determined to selectively heat.
    Matched MeSH terms: Polyesters/chemistry*
  14. Nizamuddin S, Jadhav A, Qureshi SS, Baloch HA, Siddiqui MTH, Mubarak NM, et al.
    Sci Rep, 2019 Apr 01;9(1):5445.
    PMID: 30931991 DOI: 10.1038/s41598-019-41960-1
    Polymer composites are fabricated by incorporating fillers into a polymer matrix. The intent for addition of fillers is to improve the physical, mechanical, chemical and rheological properties of the composite. This study reports on a unique polymer composite using hydrochar, synthesised by microwave-assisted hydrothermal carbonization of rice husk, as filler in polylactide matrix. The polylactide/hydrochar composites were fabricated by incorporating hydrochar in polylactide at 5%, 10%, 15% and 20 wt% by melt processing in a Haake rheomix at 170 °C. Both the neat polylactide and polylactide/hydrochar composite were characterized for mechanical, structural, thermal and rheological properties. The tensile modulus of polylactide/hydrochar composites was improved from 2.63 GPa (neat polylactide) to 3.16 GPa, 3.33 GPa, 3.54 GPa, and 4.24 GPa after blending with hydrochar at 5%, 10%, 15%, and 20%, respectively. Further, the incorporation of hydrochar had little effect on storage modulus (G') and loss modulus (G″). The findings of this study reported that addition of hydrochar improves some characteristics of polylactide composites suggesting the potential of hydrochar as filler for polymer/hydrochar composites.
    Matched MeSH terms: Polyesters/chemistry*
  15. Kamaruddin HK, Farah NMF, Aziz AR, Mündel T, Che Muhamed AM
    Eur J Appl Physiol, 2023 Jul;123(7):1507-1518.
    PMID: 36920510 DOI: 10.1007/s00421-023-05170-y
    PURPOSE: To determine whether carbohydrate mouth rinsing would improve endurance running performance of tropical natives in a warm-humid (30 °C and 70% relative humidity) environment.

    METHOD: Twelve endurance male runners [age 25 ± 3 years; peak aerobic capacity ([Formula: see text]O2peak) 57.6 ± 3.6 mL.kg-1.min-1] completed three time-to-exhaustion (TTE) trials at ~ 70% [Formula: see text]O2peak while swilling 25 ml of a 6% carbohydrate (CHO) or taste-matched placebo (PLA) as well as no mouth rinse performed in the control (CON) trial.

    RESULTS: TTE performance was significantly longer in both CHO and PLA trials when compared with the CON trial (54.7 ± 5.4 and 53.6 ± 5.1 vs. 48.4 ± 3.6 min, respectively; p  0.05). Similarly, plasma lactate and glucose as well as exercise heart rate were not influenced by the trials.

    CONCLUSIONS: The present study demonstrates that mouth rinsing, whether carbohydrate or placebo, provides an ergogenic benefit to running endurance when compared to CON in a heat stress environment. Nevertheless, the results do not support the notion that rinsing a carbohydrate solution provides a greater advantage as previously described among non-heat acclimated individuals within a temperate condition.

    Matched MeSH terms: Polyesters/pharmacology
  16. Alregib AH, Tan HY, Wong YH, Kasbollah A, Wong EH, Abdullah BJJ, et al.
    J Labelled Comp Radiopharm, 2023 Aug;66(10):308-320.
    PMID: 37287213 DOI: 10.1002/jlcr.4046
    Transarterial chemoembolization (TACE) and transarterial radioembolization (TARE) are promising treatments for unresectable liver tumours. Some recent studies suggested that combining TACE and TARE in one treatment course might improve treatment efficacy through synergistic cytotoxicity effects. Nonetheless, current formulations do not facilitate a combination of chemo- and radio-embolic agents in one delivery system. Therefore, this study aimed to synthesise a hybrid biodegradable microsphere loaded with both radioactive agent, samarium-153 (153 Sm) and chemotherapeutic drug, doxorubicin (Dox) for potential radio-chemoembolization of advanced liver tumours. 152 Sm and Dox-loaded polyhydroxybutyrate-co-3-hydroxyvalerate (PHBV) microspheres were prepared using water-in-oil-in-water solvent evaporation method. The microspheres were then sent for neutron activation in a neutron flux of 2 × 1012  n/cm2 /s. The physicochemical properties, radioactivity, radionuclide purity, 153 Sm retention efficiency, and Dox release profile of the Dox-153 Sm-PHBV microspheres were analysed. In addition, in vitro cytotoxicity of the formulation was tested using MTT assay on HepG2 cell line at 24 and 72 h. The mean diameter of the Dox-153 Sm-PHBV microspheres was 30.08 ± 2.79 μm. The specific radioactivity was 8.68 ± 0.17 GBq/g, or 177.69 Bq per microsphere. The 153 Sm retention efficiency was more than 99%, tested in phosphate-buffered saline (PBS) and human blood plasma over 26 days. The cumulative release of Dox from the microspheres after 41 days was 65.21 ± 1.96% and 29.96 ± 0.03% in PBS solution of pH 7.4 and pH 5.5, respectively. The Dox-153 Sm-PHBV microspheres achieved a greater in vitro cytotoxicity effect on HepG2 cells (85.73 ± 3.63%) than 153 Sm-PHBV (70.03 ± 5.61%) and Dox-PHBV (74.06 ± 0.78%) microspheres at 300 μg/mL at 72 h. In conclusion, a novel biodegradable microspheres formulation loaded with chemotherapeutic drug (Dox) and radioactive agent (153 Sm) was successfully developed in this study. The formulation fulfilled all the desired physicochemical properties of a chemo-radioembolic agent and achieved better in vitro cytotoxicity on HepG2 cells. Further investigations are needed to evaluate the biosafety, radiation dosimetry, and synergetic anticancer properties of the formulation.
    Matched MeSH terms: Polyesters/therapeutic use
  17. Rennukka M, Sipaut CS, Amirul AA
    Biotechnol Prog, 2014 Nov-Dec;30(6):1469-79.
    PMID: 25181613 DOI: 10.1002/btpr.1986
    This work aims to shed light in the fabrication of poly(3-hydroxybutyrate-co-44%-4-hydroxybutyrate)[P(3HB-co-44%4HB)]/chitosan-based silver nanocomposite material using different contents of silver nanoparticle (SNP); 1-9 wt%. Two approaches were applied in the fabrication; namely solvent casting and chemical crosslinking via glutaraldehyde (GA). A detailed characterization was conducted in order to yield information regarding the nanocomposite material. X-ray diffraction analysis exhibited the nature of the three components that exist in the nanocomposite films: P(3HB-co-4HB), chitosan, and SNP. In term of mechanical properties, tensile strength, and elongation at break were significantly improved up to 125% and 22%, respectively with the impregnation of the SNP. The melting temperature of the nanocomposite materials was increased whereas their thermal stability was slightly changed. Scanning electron microscopy images revealed that incorporation of 9 wt% of SNP caused agglomeration but the surface roughness of the material was significantly improved with the loading. Staphylococcus aureus and Escherichia coli were completely inhibited by the nanocomposite films with 7 and 9 wt% of SNP, respectively. On the other hand, degradation of the nanocomposite materials outweighed the degradation of the pure copolymer. These bioactive and biodegradable materials stand a good chance to serve the vast need of biomedical applications namely management and care of wound as wound dressing.
    Matched MeSH terms: Polyesters/metabolism*; Polyesters/pharmacology; Polyesters/chemistry
  18. Sanyang ML, Sapuan SM
    J Food Sci Technol, 2015 Oct;52(10):6445-54.
    PMID: 26396389 DOI: 10.1007/s13197-015-1759-6
    Biobased food packaging materials are gaining more attention owing to their intrinsic biodegradable nature and renewability. Selection of suitable biobased polymers for food packaging applications could be a tedious task with potential mistakes in choosing the best materials. In this paper, an expert system was developed using Exsys Corvid software to select suitable biobased polymer materials for packaging fruits, dry food and dairy products. If - Then rule based system was utilized to accomplish the material selection process whereas a score system was formulated to facilitate the ranking of selected materials. The expert system selected materials that satisfied all constraints and selection results were presented in suitability sequence depending on their scores. The expert system selected polylactic acid (PLA) as the most suitable material.
    Matched MeSH terms: Polyesters
  19. Nur Lisa Farhana Mohamad, Fathilah Binti Ali, Azlin Suhaida Azmi, Barre, Mohamed Soleiman, Hazleen Anuar
    MyJurnal
    The concern about our dependency on non-renewable resources and overwhelming environmental issues such as pollution caused by non-degradable packaging materials has prompted researchers to come up with alternatives to solve this problem. Thermoplastic polylactic acid (PLA) has been gaining interest due to its versatility and easy processability, thus this study was carried out to find out the properties of PLA reinforced with pineapple fibers. However, surface of the natural fibers need to be treated for better properties enhancement in the polymer matrices. Considering this, fibers were treated with 10% (w/v) concentration of potassium hydroxide (KOH) and then continued for mixing with PLA at a fixed ratio of plasticizer by using internal mixer, and then the composites were prepared into sheet via hot press. Characterization for the mechanical and morphological was conducted by using tensile testing and scanning electron microscopy, respectively. After the analysis, it is found that the surface treated pineapple fiber composite showed better elongation at break compared to untreated fiber composite. The enhance properties of PLA nanocomposites has potential to be used in various packaging materials.
    Matched MeSH terms: Polyesters
  20. Nazrin A, Sapuan SM, Zuhri MYM
    Polymers (Basel), 2020 Sep 27;12(10).
    PMID: 32992514 DOI: 10.3390/polym12102216
    In this paper, sugar palm nanocellulose fibre-reinforced thermoplastic starch (TPS)/poly (lactic acid) (PLA) blend bionanocomposites were prepared using melt blending and compression moulding with different TPS concentrations (20%, 30%, 40%, 60%, and 80%) and constant sugar palm nanocellulose fibres (0.5%). The physical, mechanical, thermal, and water barrier properties were investigated. The SEM images indicated different TPS loading effects with the morphology of the blend bionanocomposites due to their immiscibility. A high content of TPS led to agglomeration, while a lower content resulted in the presence of cracks and voids. The 20% TPS loading reduced the tensile strength from 49.08 to 19.45 MPa and flexural strength from 79.60 to 35.38 MPa. The thermal stability of the blend bionanocomposites was reduced as the TPS loading increased. The thickness swelling, which corresponded to the water absorption, demonstrated an increasing trend with the increased addition of TPS loading.
    Matched MeSH terms: Polyesters
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links