Displaying publications 41 - 60 of 306 in total

Abstract:
Sort:
  1. Azlin-Hasim S, Cruz-Romero MC, Morris MA, Cummins E, Kerry JP
    Food Sci Technol Int, 2018 Dec;24(8):688-698.
    PMID: 30044138 DOI: 10.1177/1082013218789224
    Antimicrobial coated films were produced by an innovative method that allowed surface modification of commercial low-density polyethylene films so that well-defined antimicrobial surfaces could be prepared. A Pluronic™ surfactant and a polystyrene-polyethylene oxide block copolymer were employed to develop modified materials. The Pluronic™ surfactant provided a more readily functionalised film surface, while block copolymer provided a reactive interface which was important in providing a route to silver nanoparticles that were well adhered to the surface. Antimicrobial films containing silver were manufactured using a spray coater and the amount of silver used for coating purposes varied by the concentration of the silver precursor (silver nitrate) or the number of silver coatings applied. Potential antimicrobial activity of manufactured silver-coated low-density polyethylene films was tested against Pseudomonas fluorescens, Staphylococcus aureus and microflora isolated from raw chicken. The microbiological and physicochemical quality of chicken breast fillets wrapped with silver-coated low-density polyethylene films followed by vacuum skin packaging was also assessed during storage. Antimicrobial activity of developed silver-coated low-density polyethylene films was dependent ( p 
    Matched MeSH terms: Polyethylene*
  2. Azlisham NAF, Johari Y, Mohamad D, Yhaya MF, Mahmood Z
    Proc Inst Mech Eng H, 2023 Dec;237(12):1339-1347.
    PMID: 38014749 DOI: 10.1177/09544119231208222
    This study evaluated the use of urethane dimethacrylate (UDMA) as a base monomer to prepare the newly developed flowable composite (FC) using nanohybrid silica derived from rice husk in comparison to bisphenol A-glycidyl methacrylate (Bis-GMA) on the degree of conversion and physicomechanical properties. The different loadings of base monomer to diluent monomer were used at the ratio of 40:60, 50:50, and 60:40. The bonding analysis confirmed the presence of nanohybrid silica in the newly developed FC. Independent t-test revealed a statistically significant increase in the degree of conversion, depth of cure and Vickers hardness of the UDMA-based FC, while surface roughness showed comparable results between the two base monomers. In conclusion, UDMA-based FC demonstrated superior performance with 60%-65% conversions, a significantly higher depth of cure exceeding 1 mm which complies with the Internal Standard of Organization 4049 (ISO 4049), and a substantial increase in Vickers hardness numbers compared to Bis-GMA-based FC, making UDMA a suitable alternative to Bis-GMA as a base monomer in the formulation of this newly developed FC derived from rice husk.
    Matched MeSH terms: Polyethylene Glycols
  3. Azzeme AM, Abdullah SNA, Aziz MA, Wahab PEM
    Plant Physiol Biochem, 2017 Mar;112:129-151.
    PMID: 28068641 DOI: 10.1016/j.plaphy.2016.12.025
    Dehydration-responsive element binding (DREB) transcription factor plays an important role in controlling the expression of abiotic stress responsive genes. An intronless oil palm EgDREB1 was isolated and confirmed to be a nuclear localized protein. Electrophoretic mobility shift and yeast one-hybrid assays validated its ability to interact with DRE/CRT motif. Its close evolutionary relation to the dicot NtDREB2 suggests a universal regulatory role. In order to determine its involvement in abiotic stress response, functional characterization was performed in oil palm seedlings subjected to different levels of drought severity and in EgDREB1 transgenic tomato seedlings treated by abiotic stresses. Its expression in roots and leaves was compared with several antioxidant genes using quantitative real-time PCR. Early accumulation of EgDREB1 in oil palm roots under mild drought suggests possible involvement in the initiation of signaling communication from root to shoot. Ectopic expression of EgDREB1 in T1 transgenic tomato seedlings enhanced expression of DRE/CRT and non-DRE/CRT containing genes, including tomato peroxidase (LePOD), ascorbate peroxidase (LeAPX), catalase (LeCAT), superoxide dismutase (LeSOD), glutathione reductase (LeGR), glutathione peroxidase (LeGP), heat shock protein 70 (LeHSP70), late embryogenesis abundant (LeLEA), metallothionine type 2 (LeMET2), delta 1-pyrroline-5- carboxylate synthetase (LePCS), ABA-aldehyde oxidase (LeAAO) and 9-cis- Epoxycarotenoid dioxygenase (LeECD) under PEG treatment and cold stress (4 °C). Altogether, these findings suggest that EgDREB1 is a functional regulator in enhancing tolerance to drought and cold stress.
    Matched MeSH terms: Polyethylene Glycols/pharmacology*
  4. Bakar Ghazali, Othman Mohammed, S.M., Ahmed Yousef Tanakkur, Nor Pa'iza M. Hasan
    MyJurnal
    This article presents an upgraded LUDLUM Scaler Ratemeter Model 2200 into a nucleonic thickness and level gauge. A vertical pipe scanning, consisting mediums such as SS-316, sand, wax, polyethylene, oil, water and air (empty) was done at Malaysian Nuclear Agency, Bangi, Selangor in order to obtain a shielding data as well as the corresponding voltage signals at the ratemeter. A simple comparator circuit with reference potentiometers and LED indicators was then designed and fabricated to work as a thickness or level gauge. The reference can be adjusted in accordance to type and thickness of the pipe/ container, the source intensity of X or Gamma ray, diameter of the pipe and also the distance between source and the NaI(Tl) detector.
    Matched MeSH terms: Polyethylene
  5. Balaji A, Jaganathan SK, Supriyanto E, Muhamad II, Khudzari AZ
    Int J Nanomedicine, 2015;10:5909-23.
    PMID: 26425089 DOI: 10.2147/IJN.S84307
    Developing multifaceted, biocompatible, artificial implants for tissue engineering is a growing field of research. In recent times, several works have been reported about the utilization of biomolecules in combination with synthetic materials to achieve this process. Accordingly, in this study, the ability of an extract obtained from Aloe vera, a commonly used medicinal plant in influencing the biocompatibility of artificial material, is scrutinized using metallocene polyethylene (mPE). The process of coating dense fibrous Aloe vera extract on the surface of mPE was carried out using microwaves. Then, several physicochemical and blood compatibility characterization experiments were performed to disclose the effects of corresponding surface modification. The Fourier transform infrared spectrum showed characteristic vibrations of several active constituents available in Aloe vera and exhibited peak shifts at far infrared regions due to aloe-based mineral deposition. Meanwhile, the contact angle analysis demonstrated a drastic increase in wettability of coated samples, which confirmed the presence of active components on glazed mPE surface. Moreover, the bio-mimic structure of Aloe vera fibers and the influence of microwaves in enhancing the coating characteristics were also meticulously displayed through scanning electron microscopy micrographs and Hirox 3D images. The existence of nanoscale roughness was interpreted through high-resolution profiles obtained from atomic force microscopy. And the extent of variations in irregularities was delineated by measuring average roughness. Aloe vera-induced enrichment in the hemocompatible properties of mPE was established by carrying out in vitro tests such as activated partial thromboplastin time, prothrombin time, platelet adhesion, and hemolysis assay. In conclusion, the Aloe vera-glazed mPE substrate was inferred to attain desirable properties required for multifaceted biomedical implants.
    Matched MeSH terms: Polyethylene/chemistry*
  6. Barambu NU, Bilad MR, Bustam MA, Huda N, Jaafar J, Narkkun T, et al.
    Polymers (Basel), 2020 Oct 29;12(11).
    PMID: 33137888 DOI: 10.3390/polym12112519
    The discharge of improperly treated oil/water emulsion by industries imposes detrimental effects on human health and the environment. The membrane process is a promising technology for oil/water emulsion treatment. However, it faces the challenge of being maintaining due to membrane fouling. It occurs as a result of the strong interaction between the hydrophobic oil droplets and the hydrophobic membrane surface. This issue has attracted research interest in developing the membrane material that possesses high hydraulic and fouling resistance performances. This research explores the vapor-induced phase separation (VIPS) method for the fabrication of a hydrophilic polysulfone (PSF) membrane with the presence of polyethylene glycol (PEG) as the additive for the treatment of oil/water emulsion. Results show that the slow nonsolvent intake in VIPS greatly influences the resulting membrane structure that allows the higher retention of the additive within the membrane matrix. By extending the exposure time of the cast film under humid air, both surface chemistry and morphology of the resulting membrane can be enhanced. By extending the exposure time from 0 to 60 s, the water contact angle decreases from 70.28 ± 0.61° to 57.72 ± 0.61°, and the clean water permeability increases from 328.70 ± 8.27 to 501.89 ± 8.92 (L·m-2·h-1·bar-1). Moreover, the oil rejection also improves from 85.06 ± 1.6 to 98.48 ± 1.2%. The membrane structure was transformed from a porous top layer with a finger-like macrovoid sub-structure to a relatively thick top layer with a sponge-like macrovoid-free sub-structure. Overall results demonstrate the potential of the VIPS process to enhance both surface chemistry and morphology of the PSF membrane.
    Matched MeSH terms: Polyethylene Glycols
  7. Bashir A, Hassan AA, Salmah MR, Rahman WA
    PMID: 18564706
    The efficacy of the larvicidal and pupicidal agent (Agnique) MMF was evaluated against larvae of An. arabiensis and Culex (Diptera: Culicidae) under field conditions in Bahary Locality, Khartoum, Sudan. At an applied dosage of 0.25 ml/m2, MMF resulted in 89.4, 79.8 and 88.2% reductions in L3-L4 instars An. arabiensis and 63.5% in Culex larvae (all stages) 24 to 72 hours post-treatment. Pupae were completely eliminated (100%) within 24 hours posttreatment. The earlier instars (L1-L2) of An. arabiensis were more tolerant with a 62.5% reduction at 72 hours post-treatment compared to (L3-L4) instars and pupae. At 7-days post-treatment Agnique gave a 57.5% reduction in L1-L2 and 92.6% in L3-L4 instar larvae of An. arabiensis and 57.3% and 86.4% in Culex larvae and pupae, respectively. We conclude that Agnique can perform effectively against L3-L4 instars and pupae of An. arabiensis for only 1 week, and 3 to 4 days against L1-L2 instars of Culex spp.
    Matched MeSH terms: Polyethylene Glycols/pharmacology*
  8. Behjat, T., Russly, A.R., Luqman, C.A., Yus, A.Y., Nor Azowa, I.
    MyJurnal
    Several blends of cellulose derived from bast part of kenaf (Hibiscus cannabinus L.) plant, with different thermoplastics, low density polyethylene (LDPE) and high density polyethylene (HDPE), were prepared by a melt blending machine. Polyethylene glycol (PEG) was used as plasticizer. Biodegradability of these blends was measured using soil burial test in order to study the rates of biodegradation of these polymer blends. It was found that the cellulose/LDPE and cellulose/HDPE blends were biodegradable in a considerable rate. The bio-composites with high content of cellulose had higher degradation rate. In addition, biodegradability of the bio-composites made up using PEG was superior to those of the bio-composites fabricated without PEG, due to the improved wetting of the plasticizer in the matrix polymer. The results were also supported by the scanning electron microscopy (SEM).
    Matched MeSH terms: Polyethylene Glycols; Polyethylene
  9. Bhawani SA, Husaini A, Ahmad FB, Asaruddin MR
    Curr Protein Pept Sci, 2018;19(10):972-982.
    PMID: 28828988 DOI: 10.2174/1389203718666170821162823
    Proteins have played a very important role in the drug industry for developing treatments of various diseases such as auto-immune diseases, cancer, diabetes, mental disorder, metabolic disease, and others. Therapeutic proteins have high activity and specificity but they have some limitations such as short half-life, poor stability, low solubility and immunogenicity, so they cannot prolong their therapeutic activity. These shortcomings have been rectified by using polymers for the conjugation with proteins. The conjugates of protein-polymer improves the half-lives, stability and makes them non-immunogenic. Poly(ethylene glycol) (PEG), is widely used in the delivery of proteins because it is the current gold standard for stealth polymers in the emerging field of polymer-based delivery as compared to various biodegradable polymers. PEGylation enhances the retention of therapeutic proteins, effectively alters the pharmacokinetics and enhances the pharmaceutical value. Smart polymer have been used to cope with the pathophysiological environment of target site and have imposed less toxic effects.The contents of this article are challenges in formulation of therapeutic proteins, synthetic routes of conjugates, smart polymer-protein conjugates and also some advantages/disadvantages of polymers as a carrier system of proteins.
    Matched MeSH terms: Polyethylene Glycols
  10. Bullo S, Buskaran K, Baby R, Dorniani D, Fakurazi S, Hussein MZ
    Pharm Res, 2019 Apr 24;36(6):91.
    PMID: 31020429 DOI: 10.1007/s11095-019-2621-8
    BACKGROUND: The chemotherapy of cancer has been complicated by poor bioavailability, adverse side effects, high dose requirement, drug resistance and low therapeutic indices. Cancer cells have different ways to inhibit the chemotherapeutic drugs, use of dual/multiple anticancer agents may be achieve better therapeutic effects in particular for drug resistant tumors. Designing a biocompatible delivery system, dual or multiple drugs could addressing these chemotherapy drawbacks and it is the focus of many current biomedical research.

    METHODS: In the present study, graphene oxide-polyethylene glycol (GOPEG) nanocarrier is designed and loaded with two anticancer drugs; Protocatechuic acid (PCA) and Chlorogenic acid (CA). The designed anticancer nanocomposite was further coated with folic acid to target the cancer cells, as their surface membranes are overexpressed with folate receptors.

    RESULTS: The particle size distribution of the designed nanocomposite was found to be narrow, 9-40 nm. The release profiles of the loaded drugs; PCA and CA was conducted in human body simulated PBS solutions of pH 7.4 (blood pH) and pH 4.8 (intracellular lysosomal pH). Anticancer properties were evaluated against cancerous cells i.e. liver cancer, HEPG2 and human colon cancer, HT-29 cells. The cytocompatbility was assessed on normal 3T3 fibroblasts cells.

    CONCLUSION: The size of the final designed anticancer nanocomposite formulation, GOPEG-PCACA-FA was found to be distributed at 9-40 nm with a median of 8 nm. The in vitro release of the drugs PCA and CA was found to be of sustained manner which took more than 100 h for the release. Furthermore, the designed formulation was biocompatible with normal 3T3 cells and showed strong anticancer activity against liver and colon cancer cells.

    Matched MeSH terms: Polyethylene Glycols/chemistry*
  11. Buskaran K, Hussein MZ, Mohd Moklas MA, Fakurazi S
    Int J Mol Sci, 2020 Aug 16;21(16).
    PMID: 32824281 DOI: 10.3390/ijms21165874
    The development of nanocomposites has swiftly changed the horizon of drug delivery systems in defining a new platform. Major understanding of the interaction of nanocomposites with cells and how the interaction influences intracellular uptake is an important aspect to study in order to ensure successful utilisation of the nanocomposites. Studies have suggested that the nanocomposites' ability to permeate into biological cells is attributable to their well-defined physicochemical properties with nanoscale size, which is relevant to the nanoscale components of biology and cellular organelles. The functionalized graphene oxide coated with polyethylene glycol, loaded with protocatechuic acid and folic acid (GOP-PCA-FA) nanocomposite intracellular uptake was analysed using transmission electron microscope. The accumulation of fluorescent-labelled nanocomposites in the HepG2 cell was also analysed using a fluorescent microscope. In vitro cellular uptake showed that there was uptake of the drug from 24 h into the cells and the release study using fluorescently tagged nanocomposite demonstrated that release and accumulation were observed at 24 h and 48 h. Moreover, the migration ability of tumor cells is a key step in tumor progression which was observed 48 h after treatment. The GOP serves as a potential nanocarrier system which is capable of improving the therapeutic efficacy of drugs and biomolecules in medical as well as pharmaceutical applications through the enhanced intracellular release and accumulation of the encapsulated drugs. Nonetheless, it is essential to analyse the translocation of our newly developed GOP-PCA-FA, and its efficiency for drug delivery, effective cellular uptake, and abundant intracellular accumulation would be compromised by possible untoward side effects.
    Matched MeSH terms: Polyethylene Glycols/chemistry
  12. Butt AM, Amin MC, Katas H, Abdul Murad NA, Jamal R, Kesharwani P
    Mol Pharm, 2016 12 05;13(12):4179-4190.
    PMID: 27934479
    This study investigated the potential of chitosan-coated mixed micellar nanocarriers (polyplexes) for codelivery of siRNA and doxorubicin (DOX). DOX-loaded mixed micelles (serving as cores) were prepared by thin film hydration method and coated with chitosan (CS, serving as outer shell), and complexed with multidrug resistance (MDR) inhibiting siRNA. Selective targeting was achieved by folic acid conjugation. The polyplexes showed pH-responsive enhanced DOX release in acidic tumor pH, resulting in higher intracellular accumulation, which was further augmented by downregulation of mdr-1 gene after treatment with siRNA-complexed polyplexes. In vitro cytotoxicity assay demonstrated an enhanced cytotoxicity in native 4T1 and multidrug-resistant 4T1-mdr cell lines, compared to free DOX. Furthermore, in vivo, polyplexes codelivery resulted in highest DOX accumulation and significantly reduced the tumor volume in mice with 4T1 and 4T1-mdr tumors as compared to the free DOX groups, leading to improved survival times in mice. In conclusion, codelivery of siRNA and DOX via polyplexes has excellent potential as targeted drug nanocarriers for treatment of MDR cancers.
    Matched MeSH terms: Polyethylene Glycols
  13. Butt AM, Mohd Amin MC, Katas H
    Int J Nanomedicine, 2015;10:1321-34.
    PMID: 25709451 DOI: 10.2147/IJN.S78438
    BACKGROUND: Doxorubicin (DOX), an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407) and vitamin E TPGS (D-α-tocopheryl polyethylene glycol succinate, TPGS) are widely used polymers as drug delivery carriers and excipients for enhancing the drug retention times and stability. TPGS reduces multidrug resistance, induces apoptosis, and shows selective anticancer activity against tumor cells. Keeping in view the problems, we designed a mixed micelle system encapsulating DOX comprising TPGS for its selective anticancer activity and P407 conjugated with folic acid (FA) for folate-mediated receptor targeting to cancer cells.

    METHODS: FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue(®) assay.

    RESULTS: The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX-DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX.

    CONCLUSION: FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer activity, inhibition of multidrug resistance, and folate-mediated selective uptake.

    Matched MeSH terms: Polyethylene Glycols/pharmacokinetics; Polyethylene Glycols/chemistry
  14. Buzayan MM, Ariffin YT, Yunus N
    J Prosthodont, 2013 Oct;22(7):591-5.
    PMID: 23551843 DOI: 10.1111/jopr.12036
    A method is described for the fabrication of a closed hollow bulb obturator prosthesis using a hard thermoforming splint material and heat-cured acrylic resin. The technique allowed the thickness of the thermoformed bulb to be optimized for weight reduction, while the autopolymerized seal area was covered in heat-cured acrylic resin, thus eliminating potential leakage and discoloration. This technique permits the obturator prosthesis to be processed to completion from the wax trial denture without additional laboratory investing, flasking, and processing.
    Matched MeSH terms: Polyethylene Glycols/chemistry; Polyethylene Terephthalates/chemistry
  15. Candlish J, Chandra N
    Biochem. J., 1967 Mar;102(3):767-73.
    PMID: 16742493
    1. A skin lesion was made in rats by dorsal incision and the insertion of a polythene tube. 2. Over a period of 25 days after wounding, assays were performed for ascorbic acid, DNA, hydroxyproline, methionine, tryptophan, tyrosine and free amino acids in the lesion tissue. 3. The neutral-salt-soluble proteins of the lesion tissue were fractionated on DEAE-Sephadex, with the separation of fibrinogen and gamma-globulin from a serum protein fraction. 4. Over a period of 20 days after wounding, in wounded rats and in controls, assays were conducted for: ascorbic acid in lens and liver, hydroxyproline, soluble protein, methionine and water in muscle and tendon, and free amino acids in muscle. 5. Relative to controls there was a decrease in lens and liver ascorbic acid, a rise in tendon hydroxyproline, a rise in muscle free amino acids, a fall in muscle protein and a rise in tendon and muscle water.
    Matched MeSH terms: Polyethylene
  16. Carcao M, Zak M, Abdul Karim F, Hanabusa H, Kearney S, Lu MY, et al.
    J Thromb Haemost, 2016 Aug;14(8):1521-9.
    PMID: 27174727 DOI: 10.1111/jth.13360
    Essentials Nonacog beta pegol is a recombinant glycoPEGylated factor IX with an extended half-life. This phase 3 trial investigated its safety/efficacy in previously treated hemophilia B boys ≤ 12 years. A 40 IU kg(-1) dose provided effective once-weekly prophylaxis and hemostasis when used to treat bleeds. Nonacog beta pegol was well tolerated in previously treated boys ≤ 12 years with hemophilia B.

    SUMMARY: Background Nonacog beta pegol is a recombinant glycoPEGylated factor IX with an extended half-life, developed to improve care for patients with hemophilia B. Objectives To investigate the safety, efficacy and pharmacokinetics of nonacog beta pegol for the prophylaxis and treatment of bleeds in previously treated children with hemophilia B. Patients/Methods This phase 3 trial, paradigm(™) 5, enrolled and treated 25 children (aged ≤ 12 years) with hemophilia B (FIX ≤ 2%). Patients were stratified by age (0-6 years and 7-12 years), and received once-weekly prophylaxis with 40 IU kg(-1) nonacog beta pegol for 50 exposure days. Results No patient developed inhibitors, and no safety concerns were identified. Forty-two bleeds in 15 patients were reported to have been treated; the overall success rate was 92.9%, and most bleeds (85.7%) resolved after one dose. The median annualized bleeding rates (ABRs; bleeds per patient per year) were 1.0 in the total population, 0.0 in the 0-6-year group, and 2.0 in the 7-12-year group; the estimated mean ABRs were 1.44 in the total population, 0.87 in the 0-6-year group, and 1.88 in the 7-12-year group. For 22 patients who had previously been receiving prophylaxis, the estimated mean ABR was 1.38 versus a historical ABR of 2.51. Estimated mean steady-state FIX trough levels were 0.153 IU mL(-1) (0-6 years) and 0.190 IU mL(-1) (7-12 years). Conclusion Nonacog beta pegol was well tolerated in previously treated children with hemophilia B; a 40 IU kg(-1) dose provided effective once-weekly prophylaxis and hemostasis when bleeds were treated.

    Matched MeSH terms: Polyethylene Glycols/pharmacokinetics*; Polyethylene Glycols/therapeutic use
  17. Carr AC, Piunova VA, Maarof H, Rice JE, Swope WC
    J Phys Chem B, 2018 05 31;122(21):5356-5367.
    PMID: 29385796 DOI: 10.1021/acs.jpcb.7b10539
    We present an all-atom molecular dynamics study of the effect of a range of organic solvents (dichloromethane, diethyl ether, toluene, methanol, dimethyl sulfoxide, and tetrahydrofuran) on the conformations of a nanogel star polymeric nanoparticle with solvophobic and solvophilic structural elements. These nanoparticles are of particular interest for drug delivery applications. As drug loading generally takes place in an organic solvent, this work serves to provide insight into the factors controlling the early steps of that process. Our work suggests that nanoparticle conformational structure is highly sensitive to the choice of solvent, providing avenues for further study as well as predictions for both computational and experimental explorations of the drug-loading process. Our findings suggest that when used in the drug-loading process, dichloromethane, tetrahydrofuran, and toluene allow for a more extensive and increased drug-loading into the interior of nanogel star polymers of the composition studied here. In contrast, methanol is more likely to support shallow or surface loading and, consequently, faster drug release rates. Finally, diethyl ether should not work in a formulation process since none of the regions of the nanogel star polymer appear to be sufficiently solvated by it.
    Matched MeSH terms: Polyethylene Glycols/chemistry*
  18. Chan SY, Choo WS, Young DJ, Loh XJ
    Polymers (Basel), 2016 Nov 18;8(11).
    PMID: 30974681 DOI: 10.3390/polym8110404
    Pectin is an anionic, water-soluble polymer predominantly consisting of covalently 1,4-linked α-d-galacturonic acid units. This naturally occurring, renewable and biodegradable polymer is underutilized in polymer science due to its insolubility in organic solvents, which renders conventional polymerization methods impractical. To circumvent this problem, cerium-initiated radical polymerization was utilized to graft methoxy-poly(ethylene glycol) methacrylate (mPEGMA) onto pectin in water. The copolymers were characterized by ¹H nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA), and used in the formation of supramolecular hydrogels through the addition of α-cyclodextrin (α-CD) to induce crosslinking. These hydrogels possessed thixotropic properties; shear-thinning to liquid upon agitation but settling into gels at rest. In contrast to most of the other hydrogels produced through the use of poly(ethylene glycol) (PEG)-grafted polymers, the pectin-PEGMA/α-CD hydrogels were unaffected by temperature changes.
    Matched MeSH terms: Polyethylene Glycols
  19. Chan WK, Azmi N, Mahadeva S, Goh KL
    World J Gastroenterol, 2014 Oct 21;20(39):14488-94.
    PMID: 25339836 DOI: 10.3748/wjg.v20.i39.14488
    To compare same-day whole-dose vs split-dose of 2-litre polyethylene glycol electrolyte lavage solution (PEG-ELS) plus bisacodyl for colon cleansing for morning colonoscopy.
    Matched MeSH terms: Polyethylene Glycols/administration & dosage*; Polyethylene Glycols/adverse effects
  20. Charoo N, Chiew M, Tay A, Lian L
    Cutan Ocul Toxicol, 2014 Sep;33(3):242-6.
    PMID: 24147942 DOI: 10.3109/15569527.2013.837058
    The aim of this work was to find the effect of temperature and manufacturing source of phenylmercuric nitrate (PMN) on PMN absorption on low-density polyethylene (LDPE) and polypropylene containers in chloramphenicol eye drops. Two factorial experiments were designed to study the effect of temperature on PMN assay in chloramphenicol eye drops stored in LDPE and prepared from two different PMN sources. PMN source had no effect on PMN assay at 2-8 °C, however at stress conditions (30 °C/75%RH) for 3 weeks, the effect of PMN source on PMN assay was found significant (p 
    Matched MeSH terms: Polyethylene/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links