Graphene has attracted much attention from researchers due to its interesting mechanical, electrochemical, and electronic properties. It has many potential applications such as polymer filler, sensor, energy conversion, and energy storage devices. Graphene-based nanocomposites are under an intense spotlight amongst researchers. A large amount of graphene is required for preparation of such samples. Lately, graphene-based materials have been the target for fundamental life science investigations. Despite graphene being a much sought-after raw material, the drawbacks in the preparation of graphene are that it is a challenge amongst researchers to produce this material in a scalable quantity and that there is a concern about its safety. Thus, a simple and efficient method for the preparation of graphene oxide (GO) is greatly desired to address these problems. In this work, one-pot chemical oxidation of graphite was carried out at room temperature for the preparation of large-area GO with ~100% conversion. This high-conversion preparation of large-area GO was achieved using a simplified Hummer's method from large graphite flakes (an average flake size of 500 μm). It was found that a high degree of oxidation of graphite could be realized by stirring graphite in a mixture of acids and potassium permanganate, resulting in GO with large lateral dimension and area, which could reach up to 120 μm and ~8000 μm(2), respectively. The simplified Hummer's method provides a facile approach for the preparation of large-area GO.
Sunflower seed oil residue, a by-product of sunflower seed oil refining, was utilized as a feedstock for preparation of activated carbon (SSHAC) via microwave induced K(2)CO(3) chemical activation. SSHAC was characterized by Fourier transform infrared spectroscopy, nitrogen adsorption-desorption and elemental analysis. Surface acidity/basicity was examined with acid-base titration, while the adsorptive properties of SSHAC were quantified using methylene blue (MB) and acid blue 15 (AB). The monolayer adsorption capacities of MB and AB were 473.44 and 430.37 mg/g, while the Brunauer-Emmett-Teller surface area, Langmuir surface area and total pore volume were 1411.55 m(2)/g, 2137.72 m(2)/g and 0.836 cm(3)/g, respectively. The findings revealed the potential to prepare high surface area activated carbon from sunflower seed oil residue by microwave irradiation.
It is well established that renal sympathetic nerves are primarily involved in renal sodium and water regulation. However, the relationship between renal sympathetic nerve activity (RSNA) and renal potassium handling is not extensively known. The present study was performed to investigate the role of the renal sympathetic nervous system in the regulation of tubular potassium reabsorption and secretion.
The valorization process involves transforming low-value materials such as wastes into high-value-added products. The current study aims to determine the potential of using a valorization process such as vermicomposting technology to convert palm oil mill byproduct, namely, decanter cake (DC), into organic fertilizer or vermicompost. The maturity of the vermicompost was characterized through various chemical and instrumental characterization to ensure the end product was safe and beneficial for agricultural application. The vermicomposting of DC showed significantly higher nutrient recovery and decreases in C:N ratio in comparison with the controls, particularly in the treatment with 2 parts DC and 1 part rice straw (w/w) (2DC:1RS). 2DC:1RS vermicompost had a final C:N ratio of 9.03 ± 0.12 and reasonably high levels of calcium (1.13 ± 0.05 g/kg), potassium (25.47 ± 0.32 g/kg), magnesium (4.87 ± 0.19 g/kg), sodium (7.40 ± 0.03 g/kg), and phosphorus (3.62 ± 0.27 g/kg). In addition, instrumental characterization also revealed a higher degree of maturity in the vermicompost. Ratios of 2921:1633 and DTG2:DTG3 also showed significant linear correlations with the C:N ratio, implying that those ratios could be used to characterize the progression of vermicompost maturity during the valorization process of DC.
The activity concentrations of 226Ra, 232Th and 40K radionuclides from common building materials used by Malaysian people for construction purposes were studied using High-Purity Germanium (HPGe) detector. The measured activity concentrations of the aforementioned radionuclides range from 10 ± 1 Bq kg-1 (limestone) to 155 ± 61 Bq kg-1 (feldspar), 12 ± 3 Bq kg-1 (limestone) to 274 ± 8 Bq kg-1 (kaolin) and 62 ± 19 Bq kg-1 (limestone) to 1114 ± 20 Bq kg-1 (pottery stone) for 226Ra, 232Th and 40K, respectively. The measured activity concentrations of the natural radionuclides reported herein were found to be in accordance with other previous studies. In general, the activity concentration of the natural radionuclides revealed that all the determined values were below the recommended limit.
Continuing trend in silicon wafer thickness directed at cost reduction approaches basic boundaries created by: (a) mismatch between Al paste and Si wafer thermal expansion and (b) incomplete optical absorption. With its symmetrical front and back electrical contacts, the bifacial solar cell setup reduces stress due to mismatch thermal expansion, decreases metal use and increases high temperature efficiency. Efficiency improvement is accomplished in bifacial solar cells by capturing light from the back surface. Partially transparent wafers provide an option to improve near-infrared radiation absorption within Si wafer. To fully absorb optical radiation, three-dimensional texture of these kinds of wafers is essential. Pulsed laser interactions, thermal oxidation, and wet chemical etching are included in this research. A feature of its energy and pattern setup is the interaction of pulsed laser with Si, running at 1.064 μm wavelength and micro-second length. Two experimental settings were explored: (a) post-laser chemical etching with potassium hydro-oxide etching with thermal oxide as etching mask and (b) post-laser heat Si surface oxidation. Due to fast melting and recrystallization, laser pulsed processing inherently produces its own texture. Some of these spherically-shaped, randomly focused characteristics improve inner scattering and boost near-infrared absorption within the wafer. These characteristics are separated during chemical etching with the thermally-grown oxide layer as an etch mask. Comparison of optical absorption in both surfaces shows almost a rise in the magnitude of absorption in non-etched surfaces. Detailed optical (optical microscope and IR absorption), morphological (field emission scanning electron microscope) and heat imaging (far IR camera) analyses were performed to comprehend physical processes that contribute to near-IR absorption improvement. Such kinds of partially-transparent, three-dimensional textured Si wafers are anticipated to discover applications for bifacial solar cells as substrates.
Adsorption technology has led to the development of promising techniques to purify biogas, i.e., biomethane or biohydrogen. Such techniques mainly depend on the adsorbent ability and operating parameters. This research focused on adsorption technology for upgrading biogas technique by developing a novel adsorbent. The commercial coconut shell activated carbon (CAC) and two types of gases (H2S/N2 and H2S/N2/CO2) were used. CAC was modified by copper sulfate (CuSO4), zinc acetate (ZnAc2), potassium hydroxide (KOH), potassium iodide (KI), and sodium carbonate (Na2CO3) on their surface to increase the selectivity of H2S removal. Commercial H2S adsorbents were soaked in 7 wt.% of impregnated solution for 30 min before drying at 120°C for 24 h. The synthesized adsorbent's physical and chemical properties, including surface morphology, porosity, and structures, were characterized by SEM-EDX, FTIR, XRD, TGA, and BET analyses. For real applications, the modified adsorbents were used in a real-time 0.85 L single-column adsorber unit. The operating parameters for the H2S adsorption in the adsorber unit varied in L/D ratio (0.5-2.5) and feed flow rate (1.5-5.5 L/min) where, also equivalent with a gas hourly space velocity, GHSV (212.4-780.0 hour-1) used. The performances of H2S adsorption were then compared with those of the best adsorbent that can be used for further investigation. Characterization results revealed that the impregnated solution homogeneously covered the adsorbent surface, morphology, and properties (i.e., crystallinity and surface area). BET analysis further shows that the modified adsorbents surface area decreased by up to 96%. Hence, ZnAc2-CAC clarify as the best adsorption capacity ranging within 1.3-1.7 mg H2S/g, whereby the studied extended to adsorption-desorption cycle.
The presence of natural radionuclides in the food chain point to a need to assess concentration levels and concomitant radiological risk. Highly popular and forming a staple part of the diet in North Africa, the Arabian Peninsula, and West Asia, palm dates growing naturally there have even greater marketability than simple satisfaction of domestic demand, the palm dates representing a valuable export item. Accurate knowledge of the levels of natural radioactivity in the fruit is thus of importance. In this study, using high-purity germanium gamma-ray spectrometry, quantification has been made of natural radionuclide concentrations in imported dates originating from Iran, Saudi Arabia, and Tunisia. Sample analyses reveal respective mean activity concentrations of 1.4 ± 0.3, 0.8 ± 0.4, and 186 ± 9 Bq kg dry weight for Ra, Ra, and K. For each nuclide, the mean concentration varies little between the dates of the three represented regions. The estimated committed effective dose resulting from the consumption of date fruits for a typical adult was found to be 29.9 μSv y, well below the global internal dose of 290 μSv y assessed by the United Nations Scientific Committee on the Effects of Atomic Radiation to be due to food and water intake. Similarly, the excess lifetime cancer risk due to naturally occurring radioactive material exposure via date fruit consumption is seen to be below the International Commission on Radiological Protection cancer risk factor of 2.5 × 10 based on the additional annual dose limit of 1 mSv for a member of the general public. The results show no significant uptake in the analyzed date fruits.
The current study focused on the monitoring of pollution loads in the Kalpakkam coastal zone of India in terms of physico-chemical characteristics of sediment. The investigation took place at 12 sampling points around the Kalpakkam coastal zone for one year beginning from 2019. The seasonal change of nutrients in the sediment, such as nitrogen, phosphorus, potassium, total organic carbon, and particles size distribution, was calculated. Throughout the study period, the pH (7.55 to 8.99), EC (0.99 to 4.98 dS/m), nitrogen (21.74 to 58.12 kg/ha), phosphorus (7.5 to 12.9 kg/ha), potassium (218 to 399 kg/ha), total organic carbon (0.11 to 0.88%), and particle size cumulative percent of sediments (from 9.01 to 9.39%) was observed. A number of multivariate statistical techniques were used to examine the changes in sediment quality. The population means were substantially different according to the three-way ANOVA test at the 0.05 level. Principal component analysis and cluster analysis showed a substantial association with all indicators throughout all seasons, implying contamination from both natural and anthropogenic causes. The ecosystem of the Kalpakkam coastal zone has been affected by nutrient contamination.
Healthy Eating Index (HEI) is a diet quality measure that assesses the population's compliance towards dietary guidelines. In Malaysia, diet quality measure, though existing, has some limitations in terms of application and relevance. This study aims to develop a new standardized Malaysian Healthy Eating Index (S-MHEI) that can measure the diet quality of all Malaysians regardless of their energy requirement level. The Malaysian Dietary Guidelines (MDG) 2010 and MDG for Children and Adolescents (MDGCA) 2013 were used as main references in developing the index components. In addition, the latest Malaysian Adults Nutrition Survey (MANS) and Adolescent Nutrition Survey (ANS) were also referred to ensure the relevance of the components selected. For adequacy components, the least restrictive method was used in setting the standard for the scoring system. Meanwhile, the scoring system for moderation components was built based on the Recommended Nutrient Intake (RNI) 2017. The new S-MHEI comprises of 11 components with a maximum total score of 100. The least restrictive method allowed the index to be used across energy requirement levels. However, the index will not be sensitive towards adhering to the specific recommended amount of intake-which in effect, made the index focus on measuring diet quality rather than diet quantity.
A particular category of jewelry is one involving bracelets and necklaces that are deliberately made to contain naturally occurring radioactive material (NORM)-purveyors making unsubstantiated claims for health benefits from the release of negative ions. Conversely, within the bounds of the linear no-threshold model, long-term use presents a radiological risk to wearers. Evaluation is conducted herein of the radiological risk arising from wearing these products and gamma-ray spectrometry is used to determine the radioactivity levels and annual effective dose of 15 commercially available bracelets (samples B1 to B15) and five necklaces (samples N16 to N20). Various use scenarios are considered; a Geant4 Monte Carlo (Geant4 MC) simulation is also performed to validate the experimental results. The dose conversion coefficient for external radiation and skin equivalent doses were also evaluated. Among the necklaces, sample N16 showed the greatest levels of radioactivity, at 246 ± 35, 1682 ± 118, and 221 ± 40 Bq, for 238U, 232Th, and 40K, respectively. For the bracelets, for 238U and 232Th, sample B15 displayed the greatest level of radioactivity, at 146 ± 21 and 980 ± 71 Bq, respectively. N16 offered the greatest percentage concentrations of U and Th, with means of 0.073 ± 0.0002% and 1.51 ± 0.0015%, respectively, giving rise to an estimated annual effective dose exposure of 1.22 mSv, substantially in excess of the ICRP recommended limit of 1 mSv/year.
Estimating balanced nutrient requirements for soybean (Glycine max [L.] Merr) in China is essential for identifying optimal fertilizer application regimes to increase soybean yield and nutrient use efficiency. We collected datasets from field experiments in major soybean planting regions of China between 2001 and 2015 to assess the relationship between soybean seed yield and nutrient uptake, and to estimate nitrogen (N), phosphorus (P), and potassium (K) requirements for a target yield of soybean using the quantitative evaluation of the fertility of tropical soils (QUEFTS) model. The QUEFTS model predicted a linear-parabolic-plateau curve for the balanced nutrient uptake with a target yield increased from 3.0 to 6.0 t ha-1 and the linear part was continuing until the yield reached about 60-70% of the potential yield. To produce 1000 kg seed of soybean in China, 55.4 kg N, 7.9 kg P, and 20.1 kg K (N:P:K = 7:1:2.5) were required in the above-ground parts, and the corresponding internal efficiencies (IE, kg seed yield per kg nutrient uptake) were 18.1, 126.6, and 49.8 kg seed per kg N, P, and K, respectively. The QUEFTS model also simulated that a balanced N, P, and K removal by seed which were 48.3, 5.9, and 12.2 kg per 1000 kg seed, respectively, accounting for 87.1%, 74.1%, and 60.8% of the total above-ground parts, respectively. These results were conducive to make fertilizer recommendations that improve the seed yield of soybean and avoid excessive or deficient nutrient supplies. Field validation indicated that the QUEFTS model could be used to estimate nutrient requirements which help develop fertilizer recommendations for soybean.
Cesium-137 (137Cs) is one of the radioactive substances that was released into the environment as a result of the Fukushima nuclear disaster. Radiocesium exposure is of great concern due to its potential environmental implications. However, research on 137Cs removal using algae is still limited. This is the first report to describe the kinetic properties of 137Cs uptake by Vacuoliviride crystalliferum in the presence and absence of potassium. In this work, we studied the kinetic properties of 137Cs uptake using a freshwater microalga, V. crystalliferum (NIES 2860). We also analyzed the effects of temperature, light, and potassium (K) on the 137Cs uptake. Results showed that V. crystalliferum can remove up to 90% of 157 nM 137Cs within an hour. At 20 °C, the removal increased by up to 96%, compared to less than 10% at 5 °C. However, the removal was inhibited by nearly 90% in the dark compared to the removal in the light, implying that V. crystalliferum cells require energy to accumulate 137Cs. In the inhibition assay, K concentrations ranged from 0 to 500 µM and the inhibitory constant (Ki) for K was determined to be 16.7 µM. While in the uptake assay without potassium (- K), the Michaelis constant (Km) for Cs was 45 nM and increased to 283 nM by the addition of 20 µM potassium (+ K), indicating that V. crystalliferum had a high affinity for 137Cs. In addition, the maximum uptake velocity (Vmax) also increased from 6.75 to 21.10 nmol (mg Chl h)-1, implying the existence of Cs active transport system. In conclusion, V. crystalliferum is capable of removing radioactive 137Cs from the environment and the removal was favorable at both normal temperature and in the light.
This is the first attempt in the world to depict the vertical distribution of radionuclides in the soil samples along several heights (900 feet, 1550 feet, and 1650 feet) of Marayon Tong hill in the Chittagong Hill Tracts, Bandarban by HPGe gamma-ray spectrometry. The average activity concentrations of 232Th, 226Ra, and 40K were found to be 37.15 ± 3.76 Bqkg-1, 19.69 ± 2.15 Bqkg-1, and 347.82 ± 24.50 Bqkg-1, respectively, where in most cases, 232Th exceeded the world average value of 30 Bqkg-1. According to soil characterization, soils ranged from slightly acidic to moderately acidic, with low soluble salts. The radium equivalent activity, outdoor and indoor absorbed dose rate, external and internal hazard indices, external and internal effective dose rates, gamma level index, and excess lifetime cancer risk were evaluated and found to be below the recommended or world average values; but a measurable activity of 137Cs was found at soils collected from ground level and at an altitude of 1550 feet, which possibly arises from the nuclear fallout. The evaluation of cumulative radiation doses to the inhabitants via periodic measurement is recommended due to the elevated levels of 232Th.This pioneering work in mapping the vertical distribution of naturally occurring radioactive materials (NORMs) can be an essential factual baseline data for the scientific community that may be used to evaluate the variation in NORMs in the future, especially after the commissioning of the Rooppur Nuclear Power Plant in Bangladesh in 2024.
This study marks the first-ever assessment of radiological hazards linked to the sands and rocks of Patuartek Sea Beach, situated along one of the world's longest sea beaches in Cox' Bazar of Bangladesh. Through the utilization of an HPGe detector, a comprehensive analysis of the activity concentrations of 226Ra, 232Th, and 40 K was conducted, and their activity ranged from 7 to 23 Bq/kg, 9-58 Bq/kg, and 172-340 Bq/kg, respectively, in soils, and 19-24 Bq/kg, 27-39 Bq/kg, and 340-410 Bq/kg, respectively, in rocks. Some sand samples exhibited elevated levels of 232Th, while the rock samples displayed higher levels of 40 K compared to the global average. The radiological hazard parameters were assessed, and no values surpassed the recommended limits set by several international organizations. Hence, the sands and rocks of Patuartek sea beach pose no significant radiological risk to the residents or tourists. The findings of this study provide crucial insights for the development of a radiological baseline map in the country, which is important due to the commissioning of the country's first nuclear power plant Rooppur Nuclear Power Plant. The data may also stimulate interest in the rare-earth minerals present in the area, which is important for the electronics industry, thorium-based nuclear fuel cycles.
Uranium, perhaps the most strategically important component of heavy minerals, finds particular significance in the nuclear industry. In prospecting trenches, the radioactivity of 238U and 232Th provides a good signature of the presence of heavy minerals. In the work herein, the activity concentrations of several key primordial radionuclides (238U, 232Th, and 40K) were measured in prospecting trenches (each of the latter being of approximately the same geometry and physical situation). All of these are located in the Seila area of the South Eastern desert of Egypt. A recently introduced industry standard, the portable hand-held RS-230 BGO gamma-ray spectrometer (1024 channels) was employed in the study. Based on the measured data, the trenches were classified as either non-regulated (U activity less than 1000 Bq kg-1) or regulated (with 238U activity more than 1000 Bq kg-1). Several radiological hazard parameters were calculated, statistical analysis also being performed to examine correlations between the origins of the radionuclides and their influence on the calculated values. While the radioactivity and hazard parameters exceed United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) guided limits, the mean annual effective doses of 0.49 and 1.4 mSv y-1 in non-regulated and regulated trenches respectively remain well below the International Commission on Radiological Protection (ICRP) recommended 20 mSv/y maximum occupational limit. This investigation reveals that the studied area contains high uranium content, suitable for extraction of U-minerals for use in the nuclear fuel cycle.