Displaying publications 41 - 60 of 170 in total

Abstract:
Sort:
  1. Seah TC, Tay YL, Tan HK, Muhammad TS, Wahab HA, Tan ML
    Int J Toxicol, 2015 08 12;34(5):454-68.
    PMID: 26268769 DOI: 10.1177/1091581815599335
    A cell-based assay to measure cytochrome P450 3A4 (CYP3A4) induction was developed to screen for potential CYP3A4 inducers. This 96-well format assay utilizes HepG2 cells transfected with a gene construct of CYP3A4 proximal promoter linked to green fluorescence protein (GFP) gene, and the expression of the GFP is then measured quantitatively. Bergamottin at 5 to 25 µmol/L produced low induction relative to the positive control. Both curcumin and lycopene were not found to affect the expression of GFP, suggesting no induction properties toward CYP3A4. Interestingly, resveratrol produced significant induction from 25 µmol/L onward, which was similar to omeprazole and may warrant further studies. In conclusion, the present study demonstrated that this cell-based assay can be used as a tool to evaluate the potential CYP3A4 induction properties of compounds. However, molecular docking data have not provided satisfactory pointers to differentiate between CYP3A4 inducers from noninducers or from inhibitors, more comprehensive molecular screening may be indicated.
    Matched MeSH terms: Promoter Regions, Genetic
  2. Tai ES, Corella D, Deurenberg-Yap M, Cutter J, Chew SK, Tan CE, et al.
    J Nutr, 2003 Nov;133(11):3399-408.
    PMID: 14608050 DOI: 10.1093/jn/133.11.3399
    We have previously reported an interaction between -514C>T polymorphism at the hepatic lipase (HL) gene and dietary fat on high-density lipoprotein-cholesterol (HDL-C) metabolism in a representative sample of white subjects participating in the Framingham Heart Study. Replication of these findings in other populations will provide proof for the relevance and consistency of this marker as a tool for risk assessment and more personalized cardiovascular disease prevention. Therefore, we examined this gene-nutrient interaction in a representative sample of Singaporeans (1324 Chinese, 471 Malays and 375 Asian Indians) whose dietary fat intake was recorded by a validated questionnaire. When no stratification by fat intake was considered, the T allele was associated with higher plasma HDL-C concentrations (P = 0.001), higher triglyceride (TG) concentrations (P = 0.001) and higher HDL-C/TG ratios (P = 0.041). We found a highly significant interaction (P = 0.001) between polymorphism and fat intake in determining TG concentration and the HDL-C/TG ratio (P = 0.001) in the overall sample even after adjustment for potential confounders. Thus, TT subjects showed higher TG concentrations only when fat intake supplied >30% of total energy. This interaction was also found when fat intake was considered as continuous (P = 0.035). Moreover, in the upper tertile of fat intake, TT subjects had 45% more TG than CC individuals (P < 0.01). For HDL-C concentration, the gene-diet interaction was significant (P = 0.015) only in subjects of Indian origin. In conclusion, our results indicate that there are differences in the association of -514C>T polymorphism with plasma lipids according to dietary intake and ethnic background. Specifically, the TT genotype is associated with a more atherogenic lipid profile when subjects consume diets with a fat content > 30%.
    Matched MeSH terms: Promoter Regions, Genetic/genetics*
  3. Safi SZ, Qvist R, Yan GO, Ismail IS
    BMC Med Genomics, 2014;7:29.
    PMID: 24885710 DOI: 10.1186/1755-8794-7-29
    Aberrant epigenetic profiles are concomitant with a spectrum of developmental defects and diseases. Role of methylation is an increasingly accepted factor in the pathophysiology of diabetes and its associated complications. This study aims to examine the correlation between oxidative stress and methylation of β1, β2 and β3-adrenergic receptors and to analyze the differential variability in the expression of these genes under hyperglycemic conditions.
    Matched MeSH terms: Promoter Regions, Genetic/genetics
  4. Wong SC, Shirley NJ, Little A, Khoo KH, Schwerdt J, Fincher GB, et al.
    PMID: 25620877
    The cellulose synthase-like gene HvCslF6, which is essential for (1,3;1,4)-β-glucan biosynthesis in barley, collocates with quantitative trait loci (QTL) for grain (1,3;1,4)-β-glucan concentration in several populations, including CDC Bold × TR251. Here, an alanine-to-threonine substitution (caused by the only non-synonymous difference between the CDC Bold and TR251 HvCslF6 alleles) was mapped to a position within HvCSLF6 that seems unlikely to affect enzyme stability or function. Consistent with this, transient expression of full-length HvCslF6 cDNAs from CDC Bold and TR251 in Nicotianabenthamiana led to accumulation of similar amounts of (1,3;1,4)-β-glucan accumulation. Monitoring of HvCslF6 transcripts throughout grain development revealed a significant difference late in grain development (more than 30 days after pollination), with TR251 [the parent with higher grain (1,3;1,4)-β-glucan] exhibiting higher transcript levels than CDC Bold. A similar difference was observed between Beka and Logan, the parents of another population in which a QTL had been mapped in the HvCslF6 region. Sequencing of a putative promoter region of HvCslF6 revealed numerous polymorphisms between CDC Bold and TR251, but none between Beka and Logan. While the results of this work indicate that naturally occurring quantitative differences in (1,3;1,4)-β-glucan accumulation may be due to cis-regulated differences in HvCslF6 expression, these could not be attributed to any specific DNA sequence polymorphism. Nevertheless, information on HvCslF6 sequence polymorphism was used to develop molecular markers that could be used in barley breeding to select for the desired [low or high (1,3;1,4)-β-glucan] allele of the QTL.
    Matched MeSH terms: Promoter Regions, Genetic
  5. Tang K, Ngoi SM, Gwee PC, Chua JM, Lee EJ, Chong SS, et al.
    Pharmacogenetics, 2002 Aug;12(6):437-50.
    PMID: 12172212
    The MDR1 multidrug transporter plays a key role in determining drug bioavailability, and differences in drug response exist amongst different ethnic groups. Numerous studies have identified an association between the MDR1 single nucleotide polymorphism (SNP) exon 26 3435C>T and differences in MDR1 function. We performed a haplotype analysis of the MDR1 gene in three major ethnic groups (Chinese, Malays and Indians) by examining 10 intragenic SNPs. Four were polymorphic in all three ethnic groups: one occurring in the non-coding region and three occurring in coding exons. All three coding SNPs (exon 12 1236C>T, exon 21 2677G>T/A and exon 26 3435C>T) were present in high frequency in each ethnic group, and the derived haplotype profiles exhibited distinct differences between the groups. Fewer haplotypes were observed in the Malays (n = 6) compared to the Chinese (n = 10) and Indians (n = 9). Three major haplotypes (> 10% frequency) were observed in the Malays and Chinese; of these, two were observed in the Indians. Strong linkage disequilibrium (LD) was detected between the three SNPs in all three ethnic groups. The strongest LD was present in the Chinese, followed by Indians and Malays, with the corresponding LD blocks estimated to be approximately 80 kb, 60 kb and 40 kb, respectively. These data strongly support the hypothesis that strong LD between the neutral SNP exon 26 3435C>T and a nearby unobserved causal SNP underlies the observed associations between the neutral SNP and MDR1 functional differences. Furthermore, strong LD between exon 26 3435T and different unobserved causal SNPs in different study populations may provide a plausible explanation for conflicting reports associating the same exon 26 3435T allele with different MDR1 functional changes.
    Matched MeSH terms: Promoter Regions, Genetic
  6. Chen YF, Chong CL, Wu YC, Wang YL, Tsai KN, Kuo TM, et al.
    PLoS One, 2015;10(6):e0131743.
    PMID: 26121644 DOI: 10.1371/journal.pone.0131743
    Hepatitis B virus reactivation is an important medical issue in cancer patients who undergo systemic chemotherapy. Up to half of CHB carriers receiving chemotherapy develop hepatitis and among these cases a notable proportion are associated with HBV reactivation. However, the molecular mechanism(s) through which various chemotherapeutic agents induce HBV reactivation is not yet fully understood. In this study, we investigated the role of the cell cycle regulator p21 (Waf1/Cip1) in the modulation of HBV replication when a common chemotherapeutic agent, doxorubicin, is present. We showed that p21 expression was increased by doxorubicin treatment. This elevation in p21 expression enhanced the expression of CCAAT/enhancer-binding protein α (C/EBPα); such an increase is likely to promote the binding of C/EBPα to the HBV promoter, which will contribute to the activation of HBV replication. Our current study thus reveals the mechanism underlying doxorubicin modulation of HBV replication and provides an increased understanding of HBV reactivation in CHB patients who are receiving systemic chemotherapy.
    Matched MeSH terms: Promoter Regions, Genetic
  7. Chan PL, Rose RJ, Abdul Murad AM, Zainal Z, Ong PW, Ooi LC, et al.
    Plant Cell Rep, 2020 Nov;39(11):1395-1413.
    PMID: 32734510 DOI: 10.1007/s00299-020-02571-7
    KEY MESSAGE: Transcript profiling during the early induction phase of oil palm tissue culture and RNAi studies in a model somatic embryogenesis system showed that EgENOD93 expression is essential for somatic embryogenesis. Micropropagation of oil palm through tissue culture is vital for the generation of superior and uniform elite planting materials. Studies were carried out to identify genes to distinguish between leaf explants with the potential to develop into embryogenic or non-embryogenic callus. Oil palm cDNA microarrays were co-hybridized with cDNA probes of reference tissue, separately with embryo forming (media T527) and non-embryo (media T694) forming leaf explants sampled at Day 7, Day 14 and Day 21. Analysis of the normalized datasets has identified 77, 115 and 127 significantly differentially expressed genes at Day 7, Day 14, and Day 21, respectively. An early nodulin 93 protein gene (ENOD93), was highly expressed at Day 7, Day 14, and Day 21 and in callus (media T527), as assessed by RT-qPCR. Validation of EgENOD93 across tissue culture lines of different genetic background and media composition showed the potential of this gene as an embryogenic marker. In situ RNA hybridization and functional characterization in Medicago truncatula provided additional evidence that ENOD93 is essential for somatic embryogenesis. This study supports the suitability of EgENOD93 as a marker to predict the potential of leaf explants to produce embryogenic callus. Crosstalk among stresses, auxin, and Nod-factor like signalling molecules likely induces the expression of EgENOD93 for embryogenic callus formation.
    Matched MeSH terms: Promoter Regions, Genetic
  8. Khor YM, Soga T, Parhar IS
    Gen Comp Endocrinol, 2016 Feb 1;227:84-93.
    PMID: 26686318 DOI: 10.1016/j.ygcen.2015.12.004
    Early-life stress can cause long-term effects in the adulthood such as alterations in behaviour, brain functions and reproduction. DNA methylation is a mechanism of epigenetic change caused by early-life stress. Dexamethasone (DEX) was administered to zebrafish larvae to study its effect on reproductive dysfunction. The level of GnRH2, GnRH3, Kiss1 and Kiss2 mRNAs were measured between different doses of DEX treatment groups in adult zebrafish. Kiss1 and GnRH2 expression were increased in the 200mg/L DEX treated while Kiss2 and GnRH3 mRNA levels were up-regulated in the 2mg/L DEX-treated zebrafish. The up-regulation may be related to programming effect of DEX in the zebrafish larvae, causing overcompensation mechanism to increase the mRNA levels. Furthermore, DEX treatment caused negative impact on the development and maturation of the testes, in particular spermatogenesis. Therefore, immature gonadal development may cause positive feedback by increasing GnRH and Kiss. This indicates that DEX can alter the regulation of GnRH2, GnRH3, Kiss1 and Kiss2 in adult zebrafish, which affects maturation of gonads. Computer analysis of 1.5 kb region upstream of the 5' UTR of Kiss1, Kiss2, GnRH2 and GnRH3 promoter showed that there are putative binding sites of glucocorticoid response element and transcription factors involved in stress response. GnRH3 promoter analysed from pre-optic area, ventral telencephalon and ventral olfactory bulb showed higher methylation at CpG residues located on -1410, -1377 and -1355 between control and 2mg/L DEX-treated groups. Hence, early-life DEX treatment can alter methylation of GnRH3 gene promoter, which subsequently affects gene regulation and reproductive functions.
    Matched MeSH terms: Promoter Regions, Genetic*
  9. Low SC, Vo DN, Hameed BH, Abd Rahman SB
    Environ Sci Pollut Res Int, 2023 Dec;30(60):124425-124426.
    PMID: 38015403 DOI: 10.1007/s11356-023-31128-w
    Matched MeSH terms: Promoter Regions, Genetic
  10. Thanh T, Chi VT, Abdullah MP, Omar H, Napis S
    Mol Biol (Mosk), 2012 Jan-Feb;46(1):64-70.
    PMID: 22642102
    Isolation of promoter sequences from known gene sequences is a tedious task in genome-related research. An efficient method of obtaining the promoter sequences is necessary in order to successfully use targeted promoters for genetic manipulations. Here, efficiency and usefulness of two PCR-based methods, namely: ligation-mediated PCR and thermal asymmetric interlaced (TAIL) PCR, for isolation of promoter sequences of the ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS) gene from green microalgae Ankistrodesmus convolutus (A. convolutus) were evaluated. The results showed that the amplification efficiency of TAIL-PCR was higher than that of the ligation-mediated PCR method, i.e. the amplified promoter fragments of 1.2 and 0.8 kb in length or promoter sequences of 813 and 606 bp (after eliminating the unreadable sequences). The use of TAIL-PCR described here presents a low cost and efficient strategy for the isolation of promoter sequences of known genes, especially in GC-rich regions, and species with little or no available genome information such as A. convolutus.
    Matched MeSH terms: Promoter Regions, Genetic*
  11. Kashkin KN, Kotova ES, Alekseenko IV, Bulanenkova SS, Akopov SB, Kopantzev EP, et al.
    Int J Mol Sci, 2022 Nov 30;23(23).
    PMID: 36499347 DOI: 10.3390/ijms232315011
    A library of active genome regulatory elements (putative promoters and enhancers) from MIA PaCa-2 pancreatic adenocarcinoma cells was constructed using a specially designed lentiviral vector and a massive parallel reporter assay (ChIP-lentiMPRA). Chromatin immunoprecipitation of the cell genomic DNA by H3K27ac antibodies was used for primary enrichment of the library for regulatory elements. Totally, 11,264 unique genome regions, many of which are capable of enhancing the expression of the CopGFP reporter gene from the minimal CMV promoter, were identified. The regions tend to be located near promoters. Based on the proximity assay, we found an enrichment of highly expressed genes among those associated with three or more mapped distal regions (2 kb distant from the 5'-ends of genes). It was shown significant enrichment of genes related to carcinogenesis or Mia PaCa-2 cell identity genes in this group. In contrast, genes associated with 1-2 distal regions or only with proximal regions (within 2 kbp of the 5'-ends of genes) are more often related to housekeeping functions. Thus, ChIP-lentiMPRA is a useful strategy for creating libraries of regulatory elements for the study of tumor-specific gene transcription.
    Matched MeSH terms: Promoter Regions, Genetic
  12. Sakeh NM, Abdullah SNA, Bahari MNA, Azzeme AM, Shaharuddin NA, Idris AS
    BMC Plant Biol, 2021 Jan 22;21(1):59.
    PMID: 33482731 DOI: 10.1186/s12870-020-02812-7
    BACKGROUND: Hemibiotrophic pathogen such as the fungal pathogen Ganoderma boninense that is destructive to oil palm, manipulates host defense mechanism by strategically switching from biotrophic to necrotrophic phase. Our previous study revealed two distinguishable expression profiles of oil palm genes that formed the basis in deducing biotrophic phase at early interaction which switched to necrotrophic phase at a later stage of infection.

    RESULTS: The present report is a continuing study from our previous published transcriptomic profiling of oil palm seedlings against G. boninense. We focused on identifying differentially expressed genes (DEGs) encoding transcription factors (TFs) from the same RNA-seq data; resulting in 106 upregulated and 108 downregulated TFs being identified. The DEGs are involved in four established defense-related pathways responsible for cell wall modification, reactive oxygen species (ROS)-mediated signaling, programmed cell death (PCD) and plant innate immunity. We discovered upregulation of JUNGBRUNNEN 1 (EgJUB1) during the fungal biotrophic phase while Ethylene Responsive Factor 113 (EgERF113) demonstrated prominent upregulation when the palm switches to defense against necrotrophic phase. EgJUB1 was shown to have a binding activity to a 19 bp palindromic SNBE1 element, WNNYBTNNNNNNNAMGNHW found in the promoter region of co-expressing EgHSFC-2b. Further in silico analysis of promoter regions revealed co-expression of EgJUB1 with TFs containing SNBE1 element with single nucleotide change at either the 5th or 18th position. Meanwhile, EgERF113 binds to both GCC and DRE/CRT elements promoting plasticity in upregulating the downstream defense-related genes. Both TFs were proven to be nuclear-localized based on subcellular localization experiment using onion epidermal cells.

    CONCLUSION: Our findings demonstrated unprecedented transcriptional reprogramming of specific TFs potentially to enable regulation of a specific set of genes during different infection phases of this hemibiotrophic fungal pathogen. The results propose the intricacy of oil palm defense response in orchestrating EgJUB1 during biotrophic and EgERF113 during the subsequent transition to the necrotrophic phase. Binding of EgJUB1 to SNBE motif instead of NACBS while EgERF113 to GCC-box and DRE/CRT motifs is unconventional and not normally associated with pathogen infection. Identification of these phase-specific oil palm TFs is important in designing strategies to tackle or attenuate the progress of infection.

    Matched MeSH terms: Promoter Regions, Genetic/genetics
  13. Rasouli M, Ahmad Z, Omar AR, Allaudin ZN
    BMC Biotechnol, 2011 Nov 03;11:99.
    PMID: 22047106 DOI: 10.1186/1472-6750-11-99
    BACKGROUND: Diabetes mellitus is a complicated disease with a pathophysiology that includes hyperinsulinemia, hyperglycemia and other metabolic impairments leading to many clinical complications. It is necessary to develop appropriate treatments to manage the disease and reduce possible acute and chronic side effects. The advent of gene therapy has generated excitement in the medical world for the possible application of gene therapy in the treatment of diabetes. The glucagon-like peptide-1 (GLP-1) promoter, which is recognised by gut L-cells, is an appealing candidate for gene therapy purposes. The specific properties of L-cells suggest that L-cells and the GLP-1 promoter would be useful for diabetes therapy approaches.

    RESULTS: In this study, L-cells were isolated from a primary intestinal cell line to create suitable target cells for insulin expression studies. The isolated cells displayed L-cell properties and were therefore used as an L-cell surrogate. Next, the isolated L-cells were transfected with the recombinant plasmid consisting of an insulin gene located downstream of the GLP-1 promoter. The secretion tests revealed that an increase in glucose concentration from 5 mM to 25 mM induced insulin gene expression in the L-cells by 2.7-fold. Furthermore, L-cells quickly responded to the glucose stimulation; the amount of insulin protein increased 2-fold in the first 30 minutes and then reached a plateau after 90 minutes.

    CONCLUSION: Our data showed that L-cells efficiently produced the mature insulin protein. In addition, the insulin protein secretion was positively regulated with glucose induction. In conclusion, GLP-1 promoter and L-cell could be potential candidates for diabetes gene therapy agents.

    Matched MeSH terms: Promoter Regions, Genetic
  14. Mualif SA, Teow SY, Omar TC, Chew YW, Yusoff NM, Ali SA
    PLoS One, 2015;10(7):e0130446.
    PMID: 26147991 DOI: 10.1371/journal.pone.0130446
    Relative ease in handling and manipulation of Escherichia coli strains make them primary candidate to express proteins heterologously. Overexpression of heterologous genes that contain codons infrequently used by E. coli is related with difficulties such as mRNA instability, early termination of transcription and/or translation, deletions and/or misincorporation, and cell growth inhibition. These codon bias -associated problems are addressed by co-expressing ColE1-compatible, rare tRNA expressing helper plasmids. However, this approach has inadequacies, which we have addressed by engineering an expression vector that concomitantly expresses the heterologous protein of interest, and rare tRNA genes in E. coli. The expression vector contains three (argU, ileY, leuW) rare tRNA genes and a useful multiple cloning site for easy in-frame cloning. To maintain the overall size of the parental plasmid vector, the rare tRNA genes replaced the non-essential DNA segments in the vector. The cloned gene is expressed under the control of T7 promoter and resulting recombinant protein has a C-terminal 6His tag for IMAC-mediated purification. We have evaluated the usefulness of this expression vector by expressing three HIV-1 genes namely HIV-1 p27 (nef), HIV-1 p24 (ca), and HIV-1 vif in NiCo21(DE3) E.coli and demonstrated the advantages of using expression vector that concomitantly expresses rare tRNA and heterologous genes.
    Matched MeSH terms: Promoter Regions, Genetic/genetics
  15. Umar KM, Abdulkarim SM, Radu S, Abdul Hamid A, Saari N
    ScientificWorldJournal, 2012;2012:529031.
    PMID: 22645428 DOI: 10.1100/2012/529031
    A mimicked biosynthetic pathway of catechin metabolite genes from C. sinensis, consisting of flavanone 3 hydroxylase (F3H), dihydroflavonol reductase (DFR), and leucoanthocyanidin reductase (LCR), was designed and arranged in two sets of constructs: (a) single promoter in front of F3H and ribosome-binding sequences both in front of DFR and LCR; (b) three different promoters with each in the front of the three genes and ribosome-binding sequences at appropriate positions. Recombinant E. coli BL (DE3) harbouring the constructs were cultivated for 65 h at 26 °C in M9 medium consisting of 40 g/L glucose, 1 mM IPTG, and 3 mM eriodictyol. Compounds produced were extracted in ethyl acetate in alkaline conditions after 1 h at room temperature and identified by HPLC. Two of the four major catechins, namely, (-)-epicatechin (0.01) and (-)-epicatechin gallate (0.36 mg/L), and two other types ((+)-catechin hydrate (0.13 mg/L) and (-)-catechin gallate (0.04 mg/L)) were successfully produced.
    Matched MeSH terms: Promoter Regions, Genetic
  16. Tan CW, Tee HK, Lee MH, Sam IC, Chan YF
    PLoS One, 2016;11(9):e0162771.
    PMID: 27617744 DOI: 10.1371/journal.pone.0162771
    Enterovirus A71 (EV-A71) causes major outbreaks of hand, foot and mouth disease, and is occasionally associated with neurological complications and death in children. Reverse genetics is widely used in the field of virology for functional study of viral genes. For EV-A71, such tools are limited to clones that are transcriptionally controlled by T7/SP6 bacteriophage promoter. This is often time-consuming and expensive. Here, we describe the development of infectious plasmid DNA-based EV-A71 clones, for which EV-A71 genome expression is under transcriptional control by the CMV-intermediate early promoter and SV40 transcriptional-termination signal. Transfection of this EV-A71 infectious DNA produces good virus yield similar to in vitro-transcribed EV-A71 infectious RNA, 6.4 and 5.8 log10PFU/ml, respectively. Infectious plasmid with enhanced green fluorescence protein and Nano luciferase reporter genes also produced good virus titers, with 4.3 and 5.0 log10 PFU/ml, respectively. Another infectious plasmid with both CMV and T7 promoters was also developed for easy manipulation of in vitro transcription or direct plasmid transfection. Transfection with either dual-promoter infectious plasmid DNA or infectious RNA derived from this dual-promoter clone produced infectious viral particles. Incorporation of hepatitis delta virus ribozyme, which yields precise 3' ends of the DNA-launched EV-A71 genomic transcripts, increased infectious viral production. In contrast, the incorporation of hammerhead ribozyme in the DNA-launched EV-A71 resulted in lower virus yield, but improved the virus titers for T7 promoter-derived infectious RNA. This study describes rapid and robust reverse genetic tools for EV-A71.
    Matched MeSH terms: Promoter Regions, Genetic
  17. Greenwood MP, Greenwood M, Gillard BT, Loh SY, Paton JF, Murphy D
    J Neuroendocrinol, 2016 04;28(4).
    PMID: 26833868 DOI: 10.1111/jne.12371
    The synthesis of arginine vasopressin (AVP) in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus is sensitive to increased plasma osmolality and a decreased blood volume, and thus is robustly increased by both dehydration (increased plasma osmolality and decreased blood volume) and salt loading (increased plasma osmolality). Both stimuli result in functional remodelling of the SON and PVN, a process referred to as functional-related plasticity. Such plastic changes in the brain have recently been associated with altered patterns of DNA methylation at CpG (cytosine-phosphate-guanine) residues, a process considered to be important for the regulation of gene transcription. In this regard, the proximal Avp promoter contains a number of CpG sites and is recognised as one of four CpG islands for the Avp gene, suggesting that methylation may be regulating Avp transcription. In the present study, we show that, in an immortalised hypothalamic cell line 4B, the proximal Avp promoter is highly methylated, and treatment of these cells with the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine to demethylate DNA dramatically increases basal and stimulated Avp biosynthesis. We report no changes in the expression of DNA methyltransferases, Dnmt1 and Dnmt3a, whereas there is decreased expression of the demethylating enzyme ten-eleven-translocation 2, Tet2, in the SON by dehydration and salt loading. We found higher methylation of the SON Avp promoter in dehydrated but not salt-loaded rats. By analysis of individual CpG sites, we observed hypomethylation, hypermethylation and no change in methylation of specific CpGs in the SON Avp promoter of the dehydrated rat. Using reporter gene assays, we show that mutation of individual CpGs can result in altered Avp promoter activity. We propose that methylation of the SON Avp promoter is necessary to co-ordinate the duel inputs of increased plasma osmolality and decreased blood volume on Avp transcription in the chronically dehydrated rat.
    Matched MeSH terms: Promoter Regions, Genetic/genetics*
  18. Li G, Tang H, Chen Y, Yin Y, Ogawa S, Liu M, et al.
    Mol Cell Endocrinol, 2018 02 05;461:1-11.
    PMID: 28801227 DOI: 10.1016/j.mce.2017.08.003
    The LHb expression is up-regulated during puberty in female zebrafish. However, the molecular mechanism underlying how LHb expression is regulated during puberty remains largely unknown. In this study, we found that the mRNA expression levels of lhb, fshb and cyp19a1b were up-regulated along with the puberty onset in zebrafish. Among the three nuclear estrogen receptors (nERs), the esr2b is the only type whose expression is significantly up-regulated during puberty onset in the pituitary. However, in situ hybridization results revealed that lhb mRNA was colocalized with esr1 and esr2a but not esr2b. Exposure to estradiol (E2) significantly stimulates LHb expression in both wild-type and kiss1-/-;kiss2-/-;gnrh3-/- triple knockout pubertal zebrafish. Moreover, exposure of cultured pituitary cells to E2 increased the LHb expression, indicating that the estrogenic effect on LHb expression could be acted at the pituitary level. Finally, we cloned and analyzed the promoter of lhb by luciferase assay. Our results indicated that the E2 responsive regions of lhb promoter for ERα and ERβ2 are identical, suggesting that ERα and ERβ2 could bind to the same half ERE region of the promoter of lhb, exhibiting a classical ERE-dependent pathway. In summary, we demonstrate that E2 could directly act on the pituitary level to stimulate LHb transcription during puberty in zebrafish.
    Matched MeSH terms: Promoter Regions, Genetic/genetics
  19. Kuan CS, Yee YH, See Too WC, Few LL
    PLoS One, 2014;9(12):e113485.
    PMID: 25490397 DOI: 10.1371/journal.pone.0113485
    Choline kinase is the most upstream enzyme in the CDP-choline pathway. It catalyzes the phosphorylation of choline to phosphorylcholine in the presence of ATP and Mg2+ during the biosynthesis of phosphatidylcholine, the major phospholipid in eukaryotic cell membranes. In humans, choline kinase (CK) is encoded by two separate genes, ckα and ckβ, which produce three isoforms, CKα1, CKα2, and CKβ. Previous studies have associated ckβ with muscle development; however, the molecular mechanism underlying the transcriptional regulation of ckβ has never been elucidated.
    Matched MeSH terms: Promoter Regions, Genetic/drug effects; Promoter Regions, Genetic/genetics*
  20. Tee CS, Marziah M, Tan CS, Abdullah MP
    Plant Cell Rep, 2003 Jan;21(5):452-8.
    PMID: 12789448
    Three different morphological callus types, identified as type A, B and C, and tips of in vitro inflorescences were used as target tissues for genetic transformation. Five different DNA plasmids carrying a synthetic green fluorescent protein (gfp) gene driven by different promoters, CaMV 35S, HBT, and Ubi1 were tested for the genetic transformation of Dendrobium Sonia 17. 35S-sgfp-TYG-nos (p35S) with the CaMV 35S promoter showed the highest GFP transient expression rate, while the HBT and Ubi1 promoters showed a relatively lower expression rate in all of the target tissues tested. The highest number of GFP-expressing cells was observed on day 2 post-bombardment, and the number declined gradually over the course of the next 2 weeks. Type A and B callus were found to be the best potential target tissues for genetic transformation.
    Matched MeSH terms: Promoter Regions, Genetic/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links