Displaying publications 41 - 60 of 85 in total

Abstract:
Sort:
  1. Kim HJ, Lee SH, Chang BS, Lee CK, Lim TO, Hoo LP, et al.
    Spine (Phila Pa 1976), 2015 Jan 15;40(2):87-94.
    PMID: 25575085 DOI: 10.1097/BRS.0000000000000680
    Prospective randomized controlled trial.
    Matched MeSH terms: Robotics*
  2. Koh KH, Sreekumar M, Ponnambalam SG
    Materials (Basel), 2014 Jun 25;7(7):4963-4981.
    PMID: 28788114 DOI: 10.3390/ma7074963
    This paper investigates the effect of driving voltage on the attachment force of an electroadhesion actuator, as the existing literature on the saturation of the adhesive force at a higher electric field is incomplete. A new type of electroadhesion actuator using normally available materials, such as aluminum foil, PVC tape and a silicone rubber sheet used for keyboard protection, has been developed with a simple layered structure that is capable of developing adhesive force consistently. The developed actuator is subjected to the experiment for the evaluation of various test surfaces; aluminum, brick, ceramic, concrete and glass. The driving high voltage is varied in steps to determine the characteristics of the output holding force. Results show a quadratic relation between F (adhesion force) and V (driving voltage) within the 2 kV range. After this range, the F-V responses consistently show a saturation trend at high electric fields. Next, the concept of the leakage current that can occur in the dielectric material and the corona discharge through air has been introduced. Results show that the voltage level, which corresponds to the beginning of the supply current, matches well with the beginning of the force saturation. With the confirmation of this hypothesis, a working model for electroadhesion actuation is proposed. Based on the experimental results, it is proposed that such a kind of actuator can be driven within a range of optimum high voltage to remain electrically efficient. This practice is recommended for the future design, development and characterization of electroadhesion actuators for robotic applications.
    Matched MeSH terms: Robotics
  3. Lim MS, Melich G, Min BS
    Surg Endosc, 2013 Mar;27(3):1021.
    PMID: 23052525 DOI: 10.1007/s00464-012-2549-0
    Potential morbidities related to multiport laparoscopic surgeries have led to the current excitement about single-incision laparoscopic techniques. However, multiport laparoscopy is technically demanding and ergonomically challenging. We present our technique of using the Alexis wound retractor and a surgical glove to fashion an access port and the da Vinci surgical robot to perform single-incision anterior resection.
    Matched MeSH terms: Robotics/methods*
  4. Mehbodniya AH, Moghavvemi M, Narayanan V, Waran V
    World Neurosurg, 2019 Feb;122:e449-e454.
    PMID: 30347306 DOI: 10.1016/j.wneu.2018.10.069
    BACKGROUND: Navigation (image guidance) is an essential tool in modern neurosurgery, and most surgeons use an optical tracking system. Although the technology is accurate and reliable, one often is confronted by line of sight issues that interrupt the flow of an operation. There has been feedback on the matter, but the actual problem has not been accurately quantified, therefore making this the primary aim of this study. It is particularly important given that robotic technology is gradually making its way into neurosurgery and most of these devices depend on optical navigation when procedures are being conducted.

    METHODS: In this study, the frequency and causes of line of sight issues is assessed using recordings of Navigation probe locations and its synchronised video recordings.

    RESULTS: The mentioned experiment conducted for a series of 15 neurosurgical operations. This issue occured in all these surgeries except one. Maximum duration of issue presisting reached up to 56% of the navigation usage time.

    CONCLUSIONS: The arrangment of staff and equipment is a key factor in avoiding this issue.

    Matched MeSH terms: Robotics
  5. Mohd Khairuddin I, Sidek SN, P P Abdul Majeed A, Mohd Razman MA, Ahmad Puzi A, Md Yusof H
    PeerJ Comput Sci, 2021;7:e379.
    PMID: 33817026 DOI: 10.7717/peerj-cs.379
    Electromyography (EMG) signal is one of the extensively utilised biological signals for predicting human motor intention, which is an essential element in human-robot collaboration platforms. Studies on motion intention prediction from EMG signals have often been concentrated on either classification and regression models of muscle activity. In this study, we leverage the information from the EMG signals, to detect the subject's intentions in generating motion commands for a robot-assisted upper limb rehabilitation platform. The EMG signals are recorded from ten healthy subjects' biceps muscle, and the movements of the upper limb evaluated are voluntary elbow flexion and extension along the sagittal plane. The signals are filtered through a fifth-order Butterworth filter. A number of features were extracted from the filtered signals namely waveform length (WL), mean absolute value (MAV), root mean square (RMS), standard deviation (SD), minimum (MIN) and maximum (MAX). Several different classifiers viz. Linear Discriminant Analysis (LDA), Logistic Regression (LR), Decision Tree (DT), Support Vector Machine (SVM) and k-Nearest Neighbour (k-NN) were investigated on its efficacy to accurately classify the pre-intention and intention classes based on the significant features identified (MIN and MAX) via Extremely Randomised Tree feature selection technique. It was observed from the present investigation that the DT classifier yielded an excellent classification with a classification accuracy of 100%, 99% and 99% on training, testing and validation dataset, respectively based on the identified features. The findings of the present investigation are non-trivial towards facilitating the rehabilitation phase of patients based on their actual capability and hence, would eventually yield a more active participation from them.
    Matched MeSH terms: Robotics
  6. Mohd Romlay MR, Mohd Ibrahim A, Toha SF, De Wilde P, Venkat I
    PLoS One, 2021;16(8):e0256665.
    PMID: 34432855 DOI: 10.1371/journal.pone.0256665
    Low-end LiDAR sensor provides an alternative for depth measurement and object recognition for lightweight devices. However due to low computing capacity, complicated algorithms are incompatible to be performed on the device, with sparse information further limits the feature available for extraction. Therefore, a classification method which could receive sparse input, while providing ample leverage for the classification process to accurately differentiate objects within limited computing capability is required. To achieve reliable feature extraction from a sparse LiDAR point cloud, this paper proposes a novel Clustered Extraction and Centroid Based Clustered Extraction Method (CE-CBCE) method for feature extraction followed by a convolutional neural network (CNN) object classifier. The integration of the CE-CBCE and CNN methods enable us to utilize lightweight actuated LiDAR input and provides low computing means of classification while maintaining accurate detection. Based on genuine LiDAR data, the final result shows reliable accuracy of 97% through the method proposed.
    Matched MeSH terms: Robotics
  7. MohdIsa W, Hunt A, HosseinNia SH
    Sensors (Basel), 2019 Sep 14;19(18).
    PMID: 31540032 DOI: 10.3390/s19183967
    Ionic polymer-metal composites (IPMC) are smart material transducers that bend in response to low-voltage stimuli and generate voltage in response to bending. IPMCs are mechanically compliant, simple in construction, and easy to cut into desired shape. This allows the designing of novel sensing and actuation systems, e.g., for soft and bio-inspired robotics. IPMC sensing can be implemented in multiple ways, resulting in significantly different sensing characteristics. This paper will review the methods and research efforts to use IPMCs as deformation sensors. We will address efforts to model the IPMC sensing phenomenon, and implementation and characteristics of different IPMC sensing methods. Proposed sensing methods are divided into active sensing, passive sensing, and self-sensing actuation (SSA), whereas the active sensing methods measure one of IPMC-generated voltage, charge, or current; passive methods measure variations in IPMC impedances, or use it in capacitive sensor element circuit, and SSA methods implement simultaneous sensing and actuation on the same IPMC sample. Frequency ranges for reliable sensing vary among the methods, and no single method has been demonstrated to be effective for sensing in the full spectrum of IPMC actuation capabilities, i.e., from DC to ∼100 Hz. However, this limitation can be overcome by combining several sensing methods.
    Matched MeSH terms: Robotics
  8. Mousavi M, Yap HJ, Musa SN, Tahriri F, Md Dawal SZ
    PLoS One, 2017;12(3):e0169817.
    PMID: 28263994 DOI: 10.1371/journal.pone.0169817
    Flexible manufacturing system (FMS) enhances the firm's flexibility and responsiveness to the ever-changing customer demand by providing a fast product diversification capability. Performance of an FMS is highly dependent upon the accuracy of scheduling policy for the components of the system, such as automated guided vehicles (AGVs). An AGV as a mobile robot provides remarkable industrial capabilities for material and goods transportation within a manufacturing facility or a warehouse. Allocating AGVs to tasks, while considering the cost and time of operations, defines the AGV scheduling process. Multi-objective scheduling of AGVs, unlike single objective practices, is a complex and combinatorial process. In the main draw of the research, a mathematical model was developed and integrated with evolutionary algorithms (genetic algorithm (GA), particle swarm optimization (PSO), and hybrid GA-PSO) to optimize the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while considering the AGVs' battery charge. Assessment of the numerical examples' scheduling before and after the optimization proved the applicability of all the three algorithms in decreasing the makespan and AGV numbers. The hybrid GA-PSO produced the optimum result and outperformed the other two algorithms, in which the mean of AGVs operation efficiency was found to be 69.4, 74, and 79.8 percent in PSO, GA, and hybrid GA-PSO, respectively. Evaluation and validation of the model was performed by simulation via Flexsim software.
    Matched MeSH terms: Robotics
  9. Muhamad Khuzaifah Ismail, Meng Cheng Lau, Mohammad Faidzul Nasrudin, Haslina Arsha
    MyJurnal
    The walking of a humanoid robot needs to be robust enough in order to maintain balance in a dynamic environment especially on uneven terrain. A walking model based on multi-sensor is proposed for a Robotis DARwIn-OP robot named as Leman. Two force sensitive resistor (FSRs) on both feet equipped to Leman to estimate the zero moment point (ZMP) alongside with accelerometer and gyrosensor embedded in the body for body state estimation. The results show that the FSRs can successfully detect the unbalanced walking event if the protuberance exists on the floor surface and the accelerometer and gyrosensor (Inertial Measurement Unit, IMU) data are recorded to tune the balancing parameter in the model.
    Matched MeSH terms: Robotics
  10. Mustaza SM, Elsayed Y, Lekakou C, Saaj C, Fras J
    Soft Robot, 2019 06;6(3):305-317.
    PMID: 30917093 DOI: 10.1089/soro.2018.0032
    Robot-assisted surgery is gaining popularity worldwide and there is increasing scientific interest to explore the potential of soft continuum robots for minimally invasive surgery. However, the remote control of soft robots is much more challenging compared with their rigid counterparts. Accurate modeling of manipulator dynamics is vital to remotely control the diverse movement configurations and is particularly important for safe interaction with the operating environment. However, current dynamic models applied to soft manipulator systems are simplistic and empirical, which restricts the full potential of the new soft robots technology. Therefore, this article provides a new insight into the development of a nonlinear dynamic model for a soft continuum manipulator based on a material model. The continuum manipulator used in this study is treated as a composite material and a modified nonlinear Kelvin-Voigt material model is utilized to embody the visco-hyperelastic dynamics of soft silicone. The Lagrangian approach is applied to derive the equation of motion of the manipulator. Simulation and experimental results prove that this material modeling approach sufficiently captures the nonlinear time- and rate-dependent behavior of a soft manipulator. Material model-based closed-loop trajectory control was implemented to further validate the feasibility of the derived model and increase the performance of the overall system.
    Matched MeSH terms: Robotics
  11. Norhafizan Ahmad, Raja Ariffin Raja Ghazilla, Muhammad Zikril Hakim Md Azizi
    MyJurnal
    Brain Computer Interfaces (BCI) provide a vast possibility in enabling the brain to communicate directly with the computer, hence providing an alternative in controlling the machines without much effort. In fields of rehabilitations robotics, the applications of an exoskeletons in assisting a spinal cord injured (SCI) patients were growing. Steady state visually evoked potentials (SSVEP) based BCIs that utilizes the human visual reactions to the constant flickered stimulus quickly showed its potentials among the BCIs used in rehabilitations devices because of its advantages such as a higher immunity to noises and artefacts and also its robustness compared to other BCIs. Rehabilitation exoskeletons demands an approach that are more user friendly and the aspects of control scheme and mechanical parts that are more focused on assisting the patients in rehabilitations and providing a SCI patients an alternatives to explore their surroundings in a more intuitive ways. This paper highlights the current development trends in SSVEP based BCIs for rehabilitation exoskeletons and proposed the potential research scopes in the future that can improve the effectiveness, and its potential applications in rehabilitations.
    Matched MeSH terms: Robotics
  12. Obaid, Kadhim Jawad, Sood, Suneet
    Medical Health Reviews, 2009;2009(1):59-73.
    MyJurnal
    Robotic surgery is a technique that uses mechanical, computercontrolled arms to conduct surgical operations. It carries the advantages of minimal access associated with laparoscopic surgery, and of precision associated with open surgery. It is also feasible to conduct robotic surgery with the surgeon far away, by “telerobotics”. The robot is more versatile than the human arm, and less susceptible to tremors. The view is excellent, and it is possible to conduct more intricate procedures than are possible with the human hand. Robotics has been in use for over seven years, and the initial experience shows that the success rate is over 90%, with only about 10% of cases needing to be converted to open surgery. Blood loss is low, and tumour margins in cancer surgery are satisfactory. Surgeons have used robotics for procedures in urology, gastrointestinal surgery, gynecology, cardiac surgery, neurosurgery, orthopedics, and other specialties. Presently, robotics suffers from two major disadvantages: one, that it is very expensive, and two, that robotic procedures take significantly longer than do open or laparoscopic procedures.
    Matched MeSH terms: Robotics
  13. Pahl C, Ebelt H, Sayahkarajy M, Supriyanto E, Soesanto A
    J Med Syst, 2017 Aug 15;41(10):148.
    PMID: 28812247 DOI: 10.1007/s10916-017-0786-4
    This paper proposes a robotic Transesophageal Echocardiography (TOE) system concept for Catheterization Laboratories. Cardiovascular disease causes one third of all global mortality. TOE is utilized to assess cardiovascular structures and monitor cardiac function during diagnostic procedures and catheter-based structural interventions. However, the operation of TOE underlies various conditions that may cause a negative impact on performance, the health of the cardiac sonographer and patient safety. These factors have been conflated and evince the potential of robot-assisted TOE. Hence, a careful integration of clinical experience and Systems Engineering methods was used to develop a concept and physical model for TOE manipulation. The motion of different actuators of the fabricated motorized system has been tested. It is concluded that the developed medical system, counteracting conflated disadvantages, represents a progressive approach for cardiac healthcare.
    Matched MeSH terms: Robotics
  14. Pai YS, Yap HJ, Md Dawal SZ, Ramesh S, Phoon SY
    Sci Rep, 2016 06 07;6:27380.
    PMID: 27271840 DOI: 10.1038/srep27380
    This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively.
    Matched MeSH terms: Robotics
  15. Patil NN, Mottrie A, Sundaram B, Patel VR
    Urology, 2008 Jul;72(1):47-50; discussion 50.
    PMID: 18384858 DOI: 10.1016/j.urology.2007.12.097
    To report the collective experience of three multinational institutions with the use of robotics to evaluate and treat complex distal ureteral obstruction.
    Matched MeSH terms: Robotics/methods*
  16. Pirouzi G, Abu Osman NA, Oshkour AA, Ali S, Gholizadeh H, Abas WA
    Sensors (Basel), 2014;14(9):16754-65.
    PMID: 25207872 DOI: 10.3390/s140916754
    The suspension system and socket fitting of artificial limbs have major roles and vital effects on the comfort, mobility, and satisfaction of amputees. This paper introduces a new pneumatic suspension system that overcomes the drawbacks of current suspension systems in donning and doffing, change in volume during daily activities, and pressure distribution in the socket-stump interface. An air pneumatic suspension system (APSS) for total-contact sockets was designed and developed. Pistoning and pressure distribution in the socket-stump interface were tested for the new APSS. More than 95% of the area between each prosthetic socket and liner was measured using a Tekscan F-Scan pressure measurement which has developed matrix-based pressure sensing systems. The variance in pressure around the stump was 8.76 kPa. APSS exhibits less pressure concentration around the stump, improved pressure distribution, easy donning and doffing, adjustability to remain fitted to the socket during daily activities, and more adaptability to the changes in stump volume. The volume changes were adjusted by utility of air pressure sensor. The vertical displacement point and reliability of suspension were assessed using a photographic method. The optimum pressure in every level of loading weight was 55 kPa, and the maximum displacement was 6 mm when 90 N of weight was loaded.
    Matched MeSH terms: Robotics/instrumentation*
  17. Rafizah Musa, Mohamad Syazli Fathib
    MyJurnal
    Industries in Malaysia are entering a period of major disruption caused by new technologies such as Artificial Intelligent, Robotics, Blockchain, Nanotechnology as well as Building Information Modelling (BIM) and the Internet of Things (IoT). In this fourth industrial revolution where information is generated and exchanged at a rapid and huge scale, its reliability is of paramount importance. The success of Occupational Safety & Health Management System (OSHMS) is highly dependent on the reliability of the information gathered and used, where a large number of intermediaries authenticate the information to establish trust between the stakeholders. Blockchain technology is able to do verification by virtue of secured distributed storage brings about a paradigm shift in the way we establish trust. This paper gives an overview of the potential use of Blockchain technology for Occupational Safety & Health Management System. The discussions focused on the benefits and challenges of implementing the Blockchain technology in OSHMS. The conclusion is drawn based on the strength in the characteristics provided by the Blockchain technology itself.
    Matched MeSH terms: Robotics
  18. Sahabudin RM, Arni T, Ashani N, Arumuga K, Rajenthran S, Murali S, et al.
    World J Urol, 2006 Jun;24(2):161-4.
    PMID: 16607550
    Robotic surgery was started in the Department of Urology, Hospital Kuala Lumpur, in April 2004. We present our experience in developing the program and report the results of our first 50 cases of robotic radical prostatectomy. A three-arm da Vinci robotic system was installed in our hospital in March 2004. Prior to installation, the surgeons underwent training at various centers in the United States and Paris. The operating theatre was renovated to house the system. Subsequently, the initial few cases were done with the help of proctors. Data were prospectively collected on all patients who underwent robot-assisted radical prostatectomy for localized carcinoma of the prostate. Fifty patients underwent robot assisted radical prostatectomy from March 2004 to June 2005. Their ages ranged from 52 to 75 years, (average age 60.2 years). PSA levels ranged from 2.5 to 35 ng/ml (mean 10.6 ng/ml). Prostate volume ranged from 18 to 130 cc (average 32.4 cc). Average operating time for the first 20 cases was 4 h and for the next 30 cases was 2.5 h. Patients were discharged 1-3 days post-operatively. Catheters were removed on the fifth day following a cystogram. The positive margin rate as defined by the presence of cancer cells at the inked margin was 30%. Twenty-one patients had T1c disease and one had T1b on clinical staging. Of these, two were apical margin positive. Twenty-six patients had T2 disease and eight of them were apical margin positive. Two patients had T3 disease, one of whom was apical margin positive. Five patients (10%) had PSA recurrence. Five patients had a poorly differentiated carcinoma and the rest had Gleason 6 or 7. Eighty percent of the patients were continent on follow-up at 3 months. Of those who were potent before the surgery, 50% were potent at 3-6 months. The robotic surgery program was successfully implemented at our center on the lines of a structured program, developed at Vattikuti Urology Institute (VUI). We succeeded in creating a team and safely implemented the robotic program in our system. Adequate funding and extensive training followed by a short term proctoring are essential for this implementation.
    Matched MeSH terms: Robotics*
  19. Saleh MA, Hanapiah FA, Hashim H
    Disabil Rehabil Assist Technol, 2021 08;16(6):580-602.
    PMID: 32706602 DOI: 10.1080/17483107.2019.1685016
    PURPOSE: Technological advances in robotics have brought about exciting developments in different areas such as education, training, and therapy. Recent research has suggested that the robot can be even more effective in rehabilitation, therapy, and education for individuals with Autism Spectrum Disorder (ASD). In this paper, a comprehensive review of robotic technology for children with ASD is presented wherein a large number of journals and conference proceedings in science and engineering search engines' databases were implicated.

    MATERIALS AND METHODS: A search for related literature was conducted in three search engines' databases, Web of Science, Scopus, and IEEE Xplore. Thematic keywords were used to identify articles in the recent ten years in titles, keywords, and abstracts. The retrieved articles were filtered, analysed, and evaluated based on specific inclusion and exclusion criteria.

    RESULTS: A total of 208 studies were retrieved, while 166 met the inclusion criteria. The selected studies were reviewed according to the type of robot, the participants, objectives, and methods. 68 robots were used in all studies, NAO robot was used in 30.5% of those studies. The total number of participants in all studies was 1671. The highest percentage of the studies reviewed were dedicated to augmenting the learning skills.

    CONCLUSIONS: Robots and the associated schemes were used to determine their feasibility and validity for augmenting the learning skills of autistic children. Most of the studies reviewed were focused on improving the social communication skills of autistic children and measuring the extent of robot mitigation of stereotyped autistic behaviours.Implications for rehabilitationSocial robots are not considered as promising tools to be utilized for rehabilitation of autistic children only, but also has been used for children and young people with severe intellectual disability.Rehabilitation for individuals with ASD using robots can augment their cognitive and social skills, but further studies should be conducted to clarify its effectiveness based on other factors such as sex, age and IQ of the participates.Robotic-based rehabilitation is not limited to the physical robots only, but virtual robots have been used also, whereas each of which can be used individually or simultaneously. However, further study is required to assess the extent of its efficiency and effectiveness for both cases.

    Matched MeSH terms: Robotics*
  20. Salleh, N.M., Shauri, R.L.A., Nasir, K., Remeli, N.H., Kamal, M.M.
    MyJurnal
    In an earlier study, a three-fingered robot hand was developed for assembly work. Proportional Integral Derivative (PID) control was used to control the position of a DC micromotor measured by an encoder. However, PID control alone could not cater the nonlinearities due to friction of gears and varying loads applied to the finger. Therefore, in order to develop an intelligent control algorithm in future, the effects of varying PID gains need to be investigated to distinguish the optimal value that could produce the best transient response performance. This paper discusses the effect of varying PID gains on position transient response of the joint motor of robot hand through real-time experiments. Several ranges of KP, KI and KD were identified based on the required transient response parameters such as percentage overshoot (%OS), settling time (TS) of within 2%, steady state error (SSE) and rise time (TR). The gains are tuned across the range by a fixed interval with the tuning order starting from KP, KI and KD. It can be observed that the suitable ranges of PID are 0.3 to 0.5 for KP, 1.15 to 1.45 for KI and 0.10 to 0.14 for KD. Meanwhile, the optimum value of 0.4, 1.45 and 0.10 for KP, KI and KD respectively is found to produce 0 of % OS, 5.09 sec of TS and 2.48 sec of TR. Hence, the gains can be applied to the development of an improved position control using intelligent method for the robot hand in future works.
    Matched MeSH terms: Robotics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links