Displaying publications 41 - 60 of 317 in total

Abstract:
Sort:
  1. Shariff FM, Rahman RN, Basri M, Salleh AB
    Int J Mol Sci, 2011;12(5):2917-34.
    PMID: 21686158 DOI: 10.3390/ijms12052917
    A thermophilic lipolytic bacterium identified as Bacillus sp. L2 via 16S rDNA was previously isolated from a hot spring in Perak, Malaysia. Bacillus sp. L2 was confirmed to be in Group 5 of bacterial classification, a phylogenically and phenotypically coherent group of thermophilic bacilli displaying very high similarity among their 16S rRNA sequences (98.5-99.2%). Polymerase chain reaction (PCR) cloning of L2 lipase gene was conducted by using five different primers. Sequence analysis of the L2 lipase gene revealed an open reading frame (ORF) of 1251 bp that codes for 417 amino acids. The signal peptides consist of 28 amino acids. The mature protein is made of 388 amino acid residues. Recombinant lipase was successfully overexpressed with a 178-fold increase in activity compared to crude native L2 lipase. The recombinant L2 lipase (43.2 kDa) was purified to homogeneity in a single chromatography step. The purified lipase was found to be reactive at a temperature range of 55-80 °C and at a pH of 6-10. The L2 lipase had a melting temperature (Tm) of 59.04 °C when analyzed by circular dichroism (CD) spectroscopy studies. The optimum activity was found to be at 70 °C and pH 9. Lipase L2 was strongly inhibited by ethylenediaminetetraacetic acid (EDTA) (100%), whereas phenylmethylsulfonyl fluoride (PMSF), pepstatin-A, 2-mercaptoethanol and dithiothreitol (DTT) inhibited the enzyme by over 40%. The CD spectra of secondary structure analysis showed that the L2 lipase structure contained 38.6% α-helices, 2.2% ß-strands, 23.6% turns and 35.6% random conformations.
    Matched MeSH terms: Spectrum Analysis/methods
  2. Shameli K, Ahmad MB, Zargar M, Yunus WM, Ibrahim NA
    Int J Nanomedicine, 2011;6:331-41.
    PMID: 21383858 DOI: 10.2147/IJN.S16964
    Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12-3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO(3). The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller-Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications.
    Matched MeSH terms: Spectrum Analysis
  3. Zaidi Embong
    MyJurnal
    This review briefly describes some of the techniques available for analysing surfaces and illustrates their usefulness with a few examples such as a metal and alloy. In particular, Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and laser Raman spectroscopy are all described as advanced surface analytical techniques. In analysing a surface, AES and XPS would normally be considered first, with AES being applied where high spatial resolution is required and XPS where chemical state information is needed. Laser Raman spectroscopy is useful for determining molecular bonding. A combination of XPS, AES and Laser Raman spectroscopy can give quantitative analysis from the top few atomic layers with a lateral spatial resolution of
    Matched MeSH terms: Spectrum Analysis, Raman
  4. Fahmi Fariq Muhammad, Khaulah Sulaiman
    Dihexyl-sexithiophene (DH6T) was doped with tris (8-hydroxyquinolinate) aluminum (Alq3) to prepare blends of DH6T/ Alq3 by dissolving the mixture in the chloroform/hexane co-solvent. Solid films with different thickness deposited on quartz substrates were obtained from the blends via casting process. Optical absorption spectroscopy has been performed to measure the optical band gap of pure and doped DH6T as well as variations in the band gap with dopant concentration (weight %). This variation in optical band gap with dopant concentration was determined quantitatively with fitted and extrapolated techniques and observed qualitatively from the red shift appeared along the optical absorption spectra. The results showed that within a specific dopant content, the optical energy gap, Eg of DH6T decreases from 2.69 eV to 1.8 eV with increasing dopant concentration to 23.1%.
    Matched MeSH terms: Spectrum Analysis
  5. Nor Erma Shuhadah Abdul Razak, Shahrir Hashim, Abdul Razak Rahmat
    Sains Malaysiana, 2011;40:1179-1186.
    Oil palm empty fruit bunch graft poly (acrylic acid-co-acrylamide) superabsorbent composite (OPEFB-g-(PAA-co-PAM) SAPC) was synthesized by graft copolymerization of the acrylic acid (AA) and acrylamide (AM) comonomer onto OPEFB fibre using ammonium persulfate (APS) and N,N-methylene bisacarylamide (MBA) as an initiator and crosslinker, respectively. The absorbency in various chloride salt solutions indicated that the absorbency decreased with increasing ionic strength of the salt solutions. Moreover, the absorbency under load (AUL) of SAPC was investigated at various applied loading and results show that, AUL decreased with increasing applied loading. Infrared Spectroscopy (IR) and Thermogravimetric Analysis (TGA) were carried out to confirm the chemical structure and thermal properties of the synthesized superabsorbent, respectively.
    Matched MeSH terms: Spectrum Analysis
  6. Lim SH, Lee HB, Ho AS
    Photochem Photobiol, 2011 Sep-Oct;87(5):1152-8.
    PMID: 21534974 DOI: 10.1111/j.1751-1097.2011.00939.x
    In our screening for photosensitizers from natural resources, 15(1)-hydroxypurpurin-7-lactone ethyl methyl diester (compound 1) was isolated for the first time from an Araceae plant. To evaluate the efficacy of compound 1 as a photosensitizer for head and neck cancers, compound 1 was studied in reference to a known photosensitizer pheophorbide-a (Pha), in terms of photophysical properties, singlet oxygen generation and in in vitro experiments (intracellular uptake and phototoxicity assays) in two oral (HSC2 and HSC3) and two nasopharyngeal (HK1 and C666-1) cancer cell lines. In this study, compound 1 exhibited higher intracellular uptake over 24 h compared with Pha in both HSC3 and HK1 cells. When activated by ≥4.8 J cm(-2) of light, compound 1 was slightly more potent as a photosensitizer than Pha by consistently having marginally lower IC(50) values across different cell lines. In flow cytometry experiments to study the mechanism of photoactivated cell death in HSC3, compound 1 was observed to induce more pronounced apoptosis compared with Pha, which may have been driven by the transient G(2)/M cell cycle block which was also observed. These promising results on compound 1 warrant its further investigation as a clinically useful photodynamic therapy agent for head and neck cancer.
    Matched MeSH terms: Spectrum Analysis
  7. Behzad K, Mat Yunus WM, Talib ZA, Zakaria A, Bahrami A
    Materials (Basel), 2012 Jan 16;5(1):157-168.
    PMID: 28817037 DOI: 10.3390/ma5010157
    Porous silicon (PSi) layers were formed on a p-type Si wafer. Six samples were anodised electrically with a 30 mA/cm² fixed current density for different etching times. The samples were coated with a 50-60 nm gold layer and annealed at different temperatures under Ar flow. The morphology of the layers, before and after annealing, formed by this method was investigated by scanning electron microscopy (SEM). Photoacoustic spectroscopy (PAS) measurements were carried out to measure the thermal diffusivity (TD) of the PSi and Au/PSi samples. For the Au/PSi samples, the thermal diffusivity was measured before and after annealing to study the effect of annealing. Also to study the aging effect, a comparison was made between freshly annealed samples and samples 30 days after annealing.
    Matched MeSH terms: Spectrum Analysis
  8. Kamada T, Vairappan CS
    Molecules, 2012 Feb 21;17(2):2119-25.
    PMID: 22354189 DOI: 10.3390/molecules17022119
    Six populations of Laurencia nangii were found to produce three bromoallenes; dihydroitomanallene B (1), itomanallene B (2) and pannosallene (3). Prior to this report, L. nangii were only known to produce C(15)-acetogenins with acetylene functionality. This could be regarded as a new chemical race of L. nangii. The compound structures were elucidated on the basis of spectroscopic analysis and comparison with those previously reported in literature. Compound 1, dihydroitomanallene B, was isolated as a new compound representing a minor variation of itomanallene B (2).
    Matched MeSH terms: Spectrum Analysis/methods
  9. Ahmad H, Zulkifli MZ, Hassan NA, Harun SW
    Appl Opt, 2012 Apr 10;51(11):1811-5.
    PMID: 22505174 DOI: 10.1364/AO.51.001811
    We propose and demonstrate a tunable S-band multiwavelength Brillouin/Raman fiber laser (MBRFL) with a tuning range of between 1490 to 1530 nm. The proposed MBRFL is designed around a 7.7 km long dispersion compensating fiber in a simple ring configuration, acting as a nonlinear medium for the generation of multiple wavelengths from stimulated Brillouin scattering (SBS) and also as a nonlinear gain medium for stimulated Raman scattering (SRS) amplification. A laser source with a maximum power of 12 dBm acts as the Brillouin pump (BP), while two 1420 nm laser diodes with a total power of 26 dBm act as the Raman pumps (RPs). The MBRFL can generate a multiwavelength comb consisting of even and odd Stokes at an average power of -12 dBm and -14 dBm respectively, and by separating the even and odd Stokes outputs, a 20 GHz channel spacing is obtained between two consecutive wavelengths. Due to the four-wave mixing (FWM) effect, anti-Stokes lines are also observed. The multiwavelength comb generated is not dependent on the BP, thus providing high stability and repeatability and making it a highly potential source for many real-world applications. This is the first time, to the knowledge of the authors, that a tunable MBRFL has been developed using SRS to obtain gain in the S-band region.
    Matched MeSH terms: Spectrum Analysis, Raman
  10. Yahya N, Akhtar MN, Nasir N, Shafie A, Jabeli MS, Koziol K
    J Nanosci Nanotechnol, 2012 Oct;12(10):8100-9.
    PMID: 23421185
    In seabed logging the magnitude of electromagnetic (EM) waves for the detection of a hydrocarbon reservoir in the marine environment is very important. Having a strong EM source for exploration target 4000 m below the sea floor is a very challenging task. A new carbon nanotubes (CNT) fibres/aluminium based EM transmitter is developed and NiZn ferrite as magnetic feeders was used in a scaled tank to evaluate the presence of oil. Resistive scaled tank experiments with a scale factor of 2000 were carried out. X-ray Diffraction (XRD), Raman Spectroscopy and Field Emission Scanning Electron Microscope (FESEM) were done to characterize the synthesized magnetic feeders. Single phase Ni0.76Mg0.04Zn0.2Fe2O4, obtained by the sol-gel method and sintered at 700 degrees C in air, has a [311] major peak. FESEM results show nanoparticles with average diameters of 17-45 nm. Samples which have a high Q-factor (approximately 50) was used as magnetic feeders for the EM transmitter. The magnitude of the EM waves of this new EM transmitter increases up to 400%. A curve fitting method using MATLAB software was done to evaluate the performance of the new EM transmitter. The correlation value with CNT fibres/aluminium-NiZnFe2O4 base transmitter shows a 152.5% increase of the magnetic field strength in the presence of oil. Modelling of the scale tank which replicates the marine environment was done using the Finite Element Method (FEM). In conclusion, FEM was able to delineate the presence of oil with greater magnitude of E-field (16.89%) and the B field (4.20%) due to the new EM transmitter.
    Matched MeSH terms: Spectrum Analysis, Raman
  11. Teh AA, Ahmad R, Kara M, Rusop M, Awang Z
    J Nanosci Nanotechnol, 2012 Oct;12(10):8201-4.
    PMID: 23421197
    We report the use of a new precursor as active agents to promote the growth of carbon nanotubes (CNT) in methane ambient using a simple thermal chemical vapour deposition method. The agents consist of ammonia and methanol mixed at different ratios and was found to enhance the growth of CNTs. The optimum methanol to ammonia ratio was found to be 8 to 5, whereby longer and denser CNTs were produced compared to other ratios. The result was found otherwise when the experiment was done solely in methane ambient. In addition, CNT growth on substrates coated with double layer Ni catalyst was improved in terms of quality and density compared to a single coated substrates. This finding is supported by Raman spectrometry analysis.
    Matched MeSH terms: Spectrum Analysis, Raman
  12. Awang K, Loong XM, Leong KH, Supratman U, Litaudon M, Mukhtar MR, et al.
    Fitoterapia, 2012 Dec;83(8):1391-5.
    PMID: 23098876 DOI: 10.1016/j.fitote.2012.10.004
    A study on the leaves of Aglaia exima led to the isolation of one new and seven known compounds: six triterpenoids and two steroids. Their structures were elucidated and analyzed mainly by using spectroscopic methods; 1D and 2D NMR, mass spectrometry, UV spectrometry and X-ray. All the triterpenoids and steroids were measured in vitro for their cytotoxic activities against eight cancer cell lines; lung (A549), prostate (DU-145), skin (SK-MEL-5), pancreatic (BxPC-3), liver (Hep G2), colon (HT-29), breast (MCF-7) and (MDA-MB-231). The new cycloartane triterpenoid, 24(E)-cycloart-24-ene-26-ol-3-one 1, showed potent cytotoxic activity against colon (HT-29) cancer cell line (IC(50) 11.5μM).
    Matched MeSH terms: Spectrum Analysis
  13. Gharibshahi E, Saion E
    Int J Mol Sci, 2012;13(11):14723-41.
    PMID: 23203091 DOI: 10.3390/ijms131114723
    Attempts to produce colloidal platinum nanoparticles by using steady absorption spectra with various chemical-based reduction methods often resulted in the fast disappearance of the absorption maxima leaving reduced platinum nanoparticles with little information on their optical properties. We synthesized colloidal platinum nanoparticles in an aqueous solution of polyvinyl pyrrolidone by gamma radiolytic reduction method, which produced steady absorption spectra of fully reduced and highly pure platinum nanoparticles free from by-product impurities or reducing agent contamination. The average particle size was found to be in the range of 3.4–5.3 nm and decreased with increasing dose due to the domination of nucleation over ion association in the formation of metal nanoparticles by the gamma radiolytic reduction method. The platinum nanoparticles exhibit optical absorption spectra with two absorption peaks centered at about 216 and 264 nm and the peaks blue shifted to lower wavelengths with decreasing particle size. The absorption spectra of platinum nanoparticles were also calculated using quantum mechanical treatment and coincidently a good agreement was obtained between the calculated and measured absorption peaks at various particle sizes. This indicates that the 216 and 264-nm absorption peaks of platinum nanoparticles conceivably originated from the intra-band transitions of conduction electrons of (n = 5, l = 2) and (n = 6, l = 0) energy states respectively to higher energy states. The absorption energies, i.e., conduction band energies of platinum nanoparticles derived from the absorption peaks increased with increasing dose and decreased with increasing particle size.
    Matched MeSH terms: Spectrum Analysis
  14. Ridhuan NS, Razak KA, Lockman Z, Abdul Aziz A
    PLoS One, 2012;7(11):e50405.
    PMID: 23189199 DOI: 10.1371/journal.pone.0050405
    In this study, zinc oxide (ZnO) nanorod arrays were synthesized using a simple hydrothermal reaction on ZnO seeds/n-silicon substrate. Several parameters were studied, including the heat-treatment temperature to produce ZnO seeds, zinc nitrate concentration, pH of hydrothermal reaction solution, and hydrothermal reaction time. The optimum heat-treatment temperature to produce uniform nanosized ZnO seeds was 400°C. The nanorod dimensions depended on the hydrothermal reaction parameters. The optimum hydrothermal reaction parameters to produce blunt tip-like nanorods (770 nm long and 80 nm in top diameter) were 0.1 M zinc nitrate, pH 7, and 4 h of growth duration. Phase analysis studies showed that all ZnO nanorods exhibited a strong (002) peak. Thus, the ZnO nanorods grew in a c-axis preferred orientation. A strong ultraviolet (UV) emission peak was observed for ZnO nanorods grown under optimized parameters with a low, deep-level emission peak, which indicated high optical property and crystallinity of the nanorods. The produced ZnO nanorods were also tested for their UV-sensing properties. All samples responded to UV light but with different sensing characteristics. Such different responses could be attributed to the high surface-to-volume ratio of the nanorods that correlated with the final ZnO nanorods morphology formed at different synthesis parameters. The sample grown using optimum synthesis parameters showed the highest responsivity of 0.024 A/W for UV light at 375 nm under a 3 V bias.
    Matched MeSH terms: Spectrum Analysis, Raman
  15. Mei-Wo, Yii, Kamarozaman Ishak, Nooruzainah Abu Hassan, Maziah Mahmud, Khairul Nizam Razali
    Jurnal Sains Nuklear Malaysia, 2012;24(1):102-112.
    MyJurnal
    IAEA Soil-6 is a reference material with a certified value for 226Ra fall between 69.6 – 93.4 Bq/kg at 95% confidence level. This material has been used as a sample and performed repeat measurement weekly between years 2006 – 2009 using a same gamma spectrometry system. The activity concentration of this material is calculated automatically using the operational commercial software and compared with activity obtained from the manual calculation. Study found that only 76.9%, 64.1%, 56.3%, and 79.3% of the results from the software calculation lie within the confidence level for year 2006, 2007, 2008 and 2009, respectively. However, u-score calculation revealed that 94.9 %, 89.7%, 79.2% and 84.9% data set have no significant bias (u < 2.58) for year 2006, 2007, 2008 and 2009, respectively. On the other hand, all manual calculation data were found to be within the 95 % confidence level. Factors suspected to cause differences between these two approaches were discussed here. Manually peak search, marking and calculation still remains as the preferred option for calculating the gamma radionuclides activity unless limitations of the spectrum analysis software, as described in this paper can be resolved/improved upon.
    Matched MeSH terms: Spectrum Analysis
  16. Mohd Azmi Ismail, Mohammad Roston Zakaria
    MyJurnal
    An appraisal of the regional reconnaissance geophysical, geochemical and geological data obtained under the Central Belt Project in 1977 – 1978 appeared to constitute favourable uranium exploration targets. Follow-up surveys conducted until the year 1990 have proposed the exploration area to be divided into three transects. Transect 1 covers the western part of the state of Kelantan, northwest Pahang and the eastern half of Perak. Transect 2 covers southeastern tip of Perak, west Pahang, eastern half of Wilayah Persekutuan, eastern portion of Selangor, and the northwest portion of Negeri Sembilan. Transect 3 covers central Kelantan, northwestern of Terengganu and northern portion of Pahang. Results of the study indicate that the Main Range, Bujang Melaka, and Bukit Tinggi Plutons are most fertile with uranium spectrometric rock values range from 13 to 25 ppm. Further investigations to zero down the target areas for uranium mineralization are strongly recommended over these areas.
    Matched MeSH terms: Spectrum Analysis
  17. Mosadeghzad Z, Zuriati Zakaria, Asmat A, Gires U, Wickneswari R, Pittayakhajonwut P, et al.
    Sains Malaysiana, 2012;41:333-337.
    Marine fungus Fusarium proliferatum derived from marine sponge collected along Pulau Tinggi, Malaysia was cultivated on Potato Dextrose Broth and incubated for 7 days at 30oC. The liquid cultures were then extracted using ethyl acetate. The crude extract was investigated for its anti-microbial activity and was passed through Sephadex column and the fractions were collected. Reverse phase HPLC was used to monitor the component of crude extract. HPLC guided purification of crude extract resulted in the isolation of linoleic acid, 4-hydroxy phenethyl alcohol, 2,5-furandimethanol and adenosine. Their structures were elucidated by spectroscopic methods.
    Matched MeSH terms: Spectrum Analysis
  18. Nuruzatulifah Bt Asari @ Mansor, Tessonnier JP, Rinaldi A, Reiche S, Kutty M
    Sains Malaysiana, 2012;41:603-609.
    Surface functionalization of multi-walled carbon nanotubes (MWCNTs) was carried out using a gas phase treatment in a Universal Temperature Program (UTP) reactor by flowing SO3 gas onto the CNTs while being heated at different temperatures. The functionalized nanotubes were characterized using X-ray Fluorescence (XRF), Fourier Transform Infrared Spectroscopy (FT-IR) and Raman spectroscopy. The amount of oxyen and sulfur containing groups was determined by acid-base titration. The titration results were in good agreement with elemental analysis using x-ray fluorescence. FTIRanalysis showed the presence of oxygen and sulfur containing groups, S=O, C-S, C=O and -COOH. Raman spectroscopy confirmed that oxygen and sulfur containing acidic groups covalently attached to the sidewall of the MWCNTs.
    Matched MeSH terms: Spectrum Analysis, Raman
  19. Zen DI, Saidin N, Damanhuri SS, Harun SW, Ahmad H, Ismail MA, et al.
    Appl Opt, 2013 Feb 20;52(6):1226-9.
    PMID: 23434993 DOI: 10.1364/AO.52.001226
    We demonstrate mode locking of a thulium-bismuth codoped fiber laser (TBFL) operating at 1901.6 nm, using a graphene-based saturable absorber (SA). In this work, a single layer graphene is mechanically exfoliated using the scotch tape method and directly transferred onto the surface of a fiber pigtail to fabricate the SA. The obtained Raman spectrum characteristic indicates that the graphene on the core surface has a single layer. At 1552 nm pump power of 869 mW, the mode-locked TBFL self starts to generate an optical pulse train with a repetition rate of 16.7 MHz and pulse width of 0.37 ps. This is a simple, low-cost, stable, and convenient laser oscillator for applications where eye-safe and low-photon-energy light sources are required, such as sensing and biomedical diagnostics.
    Matched MeSH terms: Spectrum Analysis, Raman/methods
  20. Noordin R, Othman N
    Malays J Med Sci, 2013 Mar;20(2):1-2.
    PMID: 23983570
    "Proteomics" refers to the systematic analysis of proteins. It complements other "omics" technologies such as genomics and transcriptomics in elucidating the identity of proteins of an organism, and understanding their functions. Proteomics is used in many areas of research such as discovery of markers for diagnosis and vaccine candidates, understanding pathogenic mechanisms, in the study of expression patterns at different time points and in response to different stimuli, and in elucidating functional protein networks. Proteomics analysis involves sample preparation, protein separation, and protein identification. The 'heart' of current proteomics is mass-spectrometry, with LC-MS/MS and MALDI-TOF/TOF being commonly used equipment. However, the high costs of the equipment, software, databases, and the need for skilled personnel limit the wide utilization of this technology in the less developed countries. Therefore, there need to be sharing of facilities, better networking and collaborations among our scientists and laboratories to take advantage of this powerful technology.
    Matched MeSH terms: Spectrum Analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links