Displaying publications 41 - 60 of 120 in total

Abstract:
Sort:
  1. Choo CS, Wan Abdul Rahman WF, Jaafar H, Ramli RR
    BMJ Case Rep, 2019 Mar 09;12(3).
    PMID: 30852518 DOI: 10.1136/bcr-2018-228969
    Chondrosarcoma (CS) is a malignant tumour of long and flat bone characterised by the formation of cartilage. Mesenchymal chondrosarcoma (MCS) is a rare subtype of CS that is more aggressive and may lead to erroneous diagnosis in a limited biopsy. The diagnosis is mainly based on the histopathological appearance of biphasic pattern of undifferentiated small round cells separated by islands of well-differentiated hyaline cartilage. We report a case of 13-year-old boy who initially presented with gum swelling and the biopsy result suggested a benign fibrous lesion. Following an extensive lesion shown in radiologic findings, the tumour excision was done and finally was diagnosed as an MCS of the maxilla. The patient was given postoperative chemotherapy (EURO-EWING 99 regimen), and now on regular follow-up for monitoring of local recurrence or tumour metastasis.
    Matched MeSH terms: Tomography, X-Ray Computed/methods
  2. Jalalian A, Mashohor S, Mahmud R, Karasfi B, Iqbal Saripan M, Ramli AR
    J Digit Imaging, 2017 Dec;30(6):796-811.
    PMID: 28429195 DOI: 10.1007/s10278-017-9958-5
    Computed tomography laser mammography (Eid et al. Egyp J Radiol Nucl Med, 37(1): p. 633-643, 1) is a non-invasive imaging modality for breast cancer diagnosis, which is time-consuming and challenging for the radiologist to interpret the images. Some issues have increased the missed diagnosis of radiologists in visual manner assessment in CTLM images, such as technical reasons which are related to imaging quality and human error due to the structural complexity in appearance. The purpose of this study is to develop a computer-aided diagnosis framework to enhance the performance of radiologist in the interpretation of CTLM images. The proposed CAD system contains three main stages including segmentation of volume of interest (VOI), feature extraction and classification. A 3D Fuzzy segmentation technique has been implemented to extract the VOI. The shape and texture of angiogenesis in CTLM images are significant characteristics to differentiate malignancy or benign lesions. The 3D compactness features and 3D Grey Level Co-occurrence matrix (GLCM) have been extracted from VOIs. Multilayer perceptron neural network (MLPNN) pattern recognition has developed for classification of the normal and abnormal lesion in CTLM images. The performance of the proposed CAD system has been measured with different metrics including accuracy, sensitivity, and specificity and area under receiver operative characteristics (AROC), which are 95.2, 92.4, 98.1, and 0.98%, respectively.
    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  3. Khajotia RR, Raman S
    Aust Fam Physician, 2017 Nov;46(11):845-846.
    PMID: 29101921
    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  4. Pasha MF, Hong KS, Rajeswari M
    PMID: 22255503 DOI: 10.1109/IEMBS.2011.6091280
    Automating the detection of lesions in liver CT scans requires a high performance and robust solution. With CT-scan start to become the norm in emergency department, the need for a fast and efficient liver lesions detection method is arising. In this paper, we propose a fast and evolvable method to profile the features of pre-segmented healthy liver and use it to detect the presence of liver lesions in emergency scenario. Our preliminary experiment with the MICCAI 2007 grand challenge datasets shows promising results of a fast training time, ability to evolve the produced healthy liver profiles, and accurate detection of the liver lesions. Lastly, the future work directions are also presented.
    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  5. Nazimi AJ, Khoo SC, Nabil S, Nordin R, Lan TH, Rajandram RK, et al.
    J Craniofac Surg, 2019 Oct;30(7):2159-2162.
    PMID: 31232997 DOI: 10.1097/SCS.0000000000005667
    Orbital fractures pose specific challenge in its surgical management. One of the greatest challenges is to obtain satisfactory reconstruction by correct positioning of orbital implant. Intraoperative computed tomography (CT) scan may facilitate this procedure. The aim of this study was to describe the early use of intraoperative CT in orbital fractures repair in our center. The authors assessed the revision types and rates that have occurred with this technique. With the use of pre-surgical planning, optical intraoperative navigation, and intraoperative CT, the impact of intraoperative CT on the management of 5 cases involving a total number of 14 orbital wall fractures were described. There were 6 pure orbital blowout wall fractures reconstructed, involving both medial and inferior wall of the orbit fracturing the transition zone and 8 impure orbital wall fractures in orbitozygomaticomaxillary complex fracture. 4 patients underwent primary and 1 had delayed orbital reconstruction. Intraoperative CT resulted in intraoperative orbital implant revision, following final navigation planning position, in 40% (2/5) of patients or 14% (2/14) of the fractures. In revised cases, both implant repositioning was conducted at posterior ledge of orbit. Intraoperative CT confirmed true to original reconstruction of medial wall, inferior wall and transition zone of the orbit. Two selected cases were illustrated. In conclusion, intraoperative CT allows real-time assessment of fracture reduction and immediate orbital implant revision, especially at posterior ledge. As a result, no postoperative imaging was indicated in any of the patients. Long-term follow-ups for orbital fracture patients managed with intraoperative CT is suggested.
    Matched MeSH terms: Tomography, X-Ray Computed/methods
  6. Nordin AJ, Rossetti C, Rahim NA
    Eur. J. Nucl. Med. Mol. Imaging, 2009 May;36(5):882.
    PMID: 19296106 DOI: 10.1007/s00259-009-1107-z
    Matched MeSH terms: Tomography, X-Ray Computed/methods
  7. Chew YK, Noorizan Y, Khir A, Brito-Mutunayagam S, Prepageran N
    Singapore Med J, 2009 Nov;50(11):e374-5.
    PMID: 19960147
    The incidence of mucocoeles associated with a non-surgically treated nasal polyposis is rare. We report a rare case of nasal polyposis with asymptomatic frontal mucocoeles in a 28-year-old Malay man who presented with bilateral nasal obstruction with anosmia. Physical examination revealed bilateral grade III nasal polyps causing obstruction. Computed tomography revealed paranasal polyposis with a large polyp extending and expanding the posterior table of the frontal sinus causing erosion and thinning of its wall. Marsupialisation of the mucocoele and nasal polypectomy were done. Endoscopic sinus surgery and marsupialisation should be the treatment of choice for asymptomatic frontal mucocoele.
    Matched MeSH terms: Tomography, X-Ray Computed/methods
  8. Fallahpoor M, Chakraborty S, Heshejin MT, Chegeni H, Horry MJ, Pradhan B
    Comput Biol Med, 2022 Jun;145:105464.
    PMID: 35390746 DOI: 10.1016/j.compbiomed.2022.105464
    BACKGROUND: Artificial intelligence technologies in classification/detection of COVID-19 positive cases suffer from generalizability. Moreover, accessing and preparing another large dataset is not always feasible and time-consuming. Several studies have combined smaller COVID-19 CT datasets into "supersets" to maximize the number of training samples. This study aims to assess generalizability by splitting datasets into different portions based on 3D CT images using deep learning.

    METHOD: Two large datasets, including 1110 3D CT images, were split into five segments of 20% each. Each dataset's first 20% segment was separated as a holdout test set. 3D-CNN training was performed with the remaining 80% from each dataset. Two small external datasets were also used to independently evaluate the trained models.

    RESULTS: The total combination of 80% of each dataset has an accuracy of 91% on Iranmehr and 83% on Moscow holdout test datasets. Results indicated that 80% of the primary datasets are adequate for fully training a model. The additional fine-tuning using 40% of a secondary dataset helps the model generalize to a third, unseen dataset. The highest accuracy achieved through transfer learning was 85% on LDCT dataset and 83% on Iranmehr holdout test sets when retrained on 80% of Iranmehr dataset.

    CONCLUSION: While the total combination of both datasets produced the best results, different combinations and transfer learning still produced generalizable results. Adopting the proposed methodology may help to obtain satisfactory results in the case of limited external datasets.

    Matched MeSH terms: Tomography, X-Ray Computed/methods
  9. Hashim N, Jamalludin Z, Ung NM, Ho GF, Malik RA, Phua VC
    Asian Pac J Cancer Prev, 2014;15(13):5259-64.
    PMID: 25040985
    BACKGROUND: CT based brachytherapy allows 3-dimensional (3D) assessment of organs at risk (OAR) doses with dose volume histograms (DVHs). The purpose of this study was to compare computed tomography (CT) based volumetric calculations and International Commission on Radiation Units and Measurements (ICRU) reference-point estimates of radiation doses to the bladder and rectum in patients with carcinoma of the cervix treated with high-dose-rate (HDR) intracavitary brachytherapy (ICBT).

    MATERIALS AND METHODS: Between March 2011 and May 2012, 20 patients were treated with 55 fractions of brachytherapy using tandem and ovoids and underwent post-implant CT scans. The external beam radiotherapy (EBRT) dose was 48.6 Gy in 27 fractions. HDR brachytherapy was delivered to a dose of 21 Gy in three fractions. The ICRU bladder and rectum point doses along with 4 additional rectal points were recorded. The maximum dose (DMax) to rectum was the highest recorded dose at one of these five points. Using the HDR plus 2.6 brachytherapy treatment planning system, the bladder and rectum were retrospectively contoured on the 55 CT datasets. The DVHs for rectum and bladder were calculated and the minimum doses to the highest irradiated 2cc area of rectum and bladder were recorded (D2cc) for all individual fractions. The mean D2cc of rectum was compared to the means of ICRU rectal point and rectal DMax using the Student's t-test. The mean D2cc of bladder was compared with the mean ICRU bladder point using the same statistical test .The total dose, combining EBRT and HDR brachytherapy, were biologically normalized to the conventional 2 Gy/fraction using the linear-quadratic model. (α/β value of 10 Gy for target, 3 Gy for organs at risk).

    RESULTS: The total prescribed dose was 77.5 Gy α/β10. The mean dose to the rectum was 4.58 ± 1.22 Gy for D 2cc, 3.76 ± 0.65 Gy at D ICRU and 4.75 ± 1.01 Gy at DMax. The mean rectal D 2cc dose differed significantly from the mean dose calculated at the ICRU reference point (p<0.005); the mean difference was 0.82 Gy (0.48 -1.19 Gy). The mean EQD2 was 68.52 ± 7.24 Gy α/β3 for D 2cc, 61.71 ± 2.77 Gy α/β3 at D ICRU and 69.24 ± 6.02 Gy α/β3 at DMax. The mean ratio of D 2cc rectum to D ICRU rectum was 1.25 and the mean ratio of D 2cc rectum to DMax rectum was 0.98 for all individual fractions. The mean dose to the bladder was 6.00 ± 1.90 Gy for D 2cc and 5.10 ± 2.03 Gy at D ICRU. However, the mean D 2cc dose did not differ significantly from the mean dose calculated at the ICRU reference point (p=0.307); the mean difference was 0.90 Gy (0.49-1.25 Gy). The mean EQD2 was 81.85 ± 13.03 Gy α/β3 for D 2cc and 74.11 ± 19.39 Gy α/β3 at D ICRU. The mean ratio of D 2cc bladder to D ICRU bladder was 1.24. In the majority of applications, the maximum dose point was not the ICRU point. On average, the rectum received 77% and bladder received 92% of the prescribed dose.

    CONCLUSIONS: OARs doses assessed by DVH criteria were higher than ICRU point doses. Our data suggest that the estimated dose to the ICRU bladder point may be a reasonable surrogate for the D 2cc and rectal DMax for D 2cc. However, the dose to the ICRU rectal point does not appear to be a reasonable surrogate for the D 2cc.

    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  10. Ng BH, Nuratiqah NA, Andrea YLB, Faisal AH, Soo CI, Najma K, et al.
    Med J Malaysia, 2020 07;75(4):368-371.
    PMID: 32723996
    BACKGROUND AND OBJECTIVE: Coronavirus Disease 2019 (COVID- 19) was first reported in Malaysia in March 2020. We describe here the clinical characteristics and computed tomography (CT) patterns in asymptomatic young patients who had laboratory-confirmed COVID-19.

    METHODS: This is a retrospective observational study where 25 male in-patients with laboratory-confirmed COVID-19 in Hospital Canselor Tuanku Muhriz. Demographics, clinical data and CT images of these patients were reviewed by 2 senior radiologists.

    RESULTS: In total there were 25 patients (all males; mean age [±SD], 21.64±2.40 years; range, 18-27 years). Patients with abnormal chest CT showed a relatively low normal absolute lymphocytes count (median: 2.2 x 109/L) and absolute monocyte count (median: 0.5 x 109/L). Lactate dehydrogenase was elevated in 5 (20%) of the patients. The procalcitonin level was normal while elevated levels of alanine aminotransferase, total bilirubin, platelet and C-reactive protein were common. Baseline chest CT showed abnormalities in 6 patients. The distribution of the lesions were; upper lobe 3 (12%) lower lobe 3 (12%) with peripheral distribution 4 (16%). Of the 25 patients included, 4 (16%) had ground glass opacification (GGO), 1 (4%) had a small peripheral subpleural nodule, and 1 (4%) had a dense solitary granuloma. Four patients had typical CT features of COVID-19.

    CONCLUSION: We found that the CT imaging showed peripheral GGO in our patients. They remained clinically stable with no deterioration of their respiratory symptoms suggesting stability in lung involvement. We postulate that rapid changes in CT imaging may not be present in young, asymptomatic, non-smoking COVID-19 patients. Thus the use of CT thoraxfor early diagnosis may be reserved for patients in the older agegroups, and not in younger patients.

    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  11. Jasmine Pemeena Priyadarsini M, Kotecha K, Rajini GK, Hariharan K, Utkarsh Raj K, Bhargav Ram K, et al.
    J Healthc Eng, 2023;2023:3563696.
    PMID: 36776955 DOI: 10.1155/2023/3563696
    The primary objective of this proposed framework work is to detect and classify various lung diseases such as pneumonia, tuberculosis, and lung cancer from standard X-ray images and Computerized Tomography (CT) scan images with the help of volume datasets. We implemented three deep learning models namely Sequential, Functional & Transfer models and trained them on open-source training datasets. To augment the patient's treatment, deep learning techniques are promising and successful domains that extend the machine learning domain where CNNs are trained to extract features and offers great potential from datasets of images in biomedical application. Our primary aim is to validate our models as a new direction to address the problem on the datasets and then to compare their performance with other existing models. Our models were able to reach higher levels of accuracy for possible solutions and provide effectiveness to humankind for faster detection of diseases and serve as best performing models. The conventional networks have poor performance for tilted, rotated, and other abnormal orientation and have poor learning framework. The results demonstrated that the proposed framework with a sequential model outperforms other existing methods in terms of an F1 score of 98.55%, accuracy of 98.43%, recall of 96.33% for pneumonia and for tuberculosis F1 score of 97.99%, accuracy of 99.4%, and recall of 98.88%. In addition, the functional model for cancer outperformed with an accuracy of 99.9% and specificity of 99.89% and paves way to less number of trained parameters, leading to less computational overhead and less expensive than existing pretrained models. In our work, we implemented a state-of-the art CNN with various models to classify lung diseases accurately.
    Matched MeSH terms: Tomography, X-Ray Computed/methods
  12. Ng GYH, Nah SA, Teoh OH, Ong LY
    Pediatr Surg Int, 2020 Mar;36(3):383-389.
    PMID: 31993738 DOI: 10.1007/s00383-020-04619-x
    BACKGROUND: The risk factors for recurrence in primary spontaneous pneumothorax (PSP) in children are not well known. We aimed to identify possible risk factors, and to evaluate the utility of computerised tomography (CT) scans in predicting future episodes.

    METHODS: We reviewed children aged 

    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  13. Fijasri NH, Muhammad Asri NA, Mohd Shah MS, Abd Samad MR, Omar N
    Afr J Paediatr Surg, 2023;20(3):245-248.
    PMID: 37470566 DOI: 10.4103/ajps.AJPS_10_21
    Congenital pulmonary airway malformation (CPAM) together with oesophageal atresia and tracheoesophageal fistula (TOF) is a very rare condition in neonates. We presented a case of an infant with Gross type C oesophageal atresia with TOF coexisting with Stocker Type III CPAM in our centre. It is interesting to know that TOF associated with type III CPAM has never been reported in the literature. The child was delivered through caesarean section, and because of respiratory distress post-delivery, endotracheal intubation was carried out immediately. CPAM was diagnosed by a suspicious finding from the initial chest X-ray and the diagnosis was confirmed through computed tomography scan of the chest. The patient was initially stabilised in a neonatal intensive care unit (NICU), and after the successful ligation of fistula and surgical repair of TOF, lung recruitment was started by high flow oscillatory ventilation. The patient recovered well without complications and able to maintain good saturation without oxygen support through the stay in the neonatal unit. Early recognition of this rare association is essential for immediate transfer to NICU, the intervention of any early life-threatening complications, and for vigilant monitoring in the postoperative period.
    Matched MeSH terms: Tomography, X-Ray Computed/methods
  14. Jamaluddin S, Sulaiman AR, Imran MK, Juhara H, Ezane MA, Nordin S
    Singapore Med J, 2011 Sep;52(9):681-4.
    PMID: 21947147
    The aim of this study was to determine the reliability and accuracy of the tape measurement method (TMM) with a nearest reading of 5 mm in assessing leg length discrepancy (LLD).
    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  15. Rais NNM, Bradley DA, Hashim A, Osman ND, Noor NM
    Appl Radiat Isot, 2019 Nov;153:108810.
    PMID: 31351374 DOI: 10.1016/j.apradiso.2019.108810
    For a range of doses familiarly incurred in computed tomography (CT), study is made of the performance of Germanium (Ge)-doped fibre dosimeters formed into cylindrical and flat shapes. Indigenously fabricated 2.3 mol% and 6 mol% Ge-dopant concentration preforms have been used to produce flat- and cylindrical-fibres (FF and CF) of various size and diameters; an additional 4 mol% Ge-doped commercial fibre with a core diameter of 50 μm has also been used. The key characteristics examined include the linearity index f(d), dose sensitivity and minimum detectable dose (MDD), the performance of the fibres being compared against that of lithium-fluoride based TLD-100 thermoluminescence (TL) dosimeters. For doses in the range 2-40 milligray (mGy), delivered at constant potential of 120 kilovoltage (kV), both the fabricated and commercial fibres demonstrate supralinear behaviours at doses  4 mGy. In terms of dose sensitivity, all of the fibres show superior TL sensitivity when compared against TLD-100, the 2.3 mol% and 6 mol% Ge-doped FF demonstrating the greatest TL sensitivity at 84 and 87 times that of TLD-100. The TL yields for the novel Ge-doped silica glass render them appealing for use within the present medical imaging dose range, offering linearity at high sensitivity down to less than 2 mGy.
    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  16. Saffor A, bin Ramli AR, Ng KH
    Australas Phys Eng Sci Med, 2003 Jun;26(2):39-44.
    PMID: 12956184
    Wavelet-based image coding algorithms (lossy and lossless) use a fixed perfect reconstruction filter-bank built into the algorithm for coding and decoding of images. However, no systematic study has been performed to evaluate the coding performance of wavelet filters on medical images. We evaluated the best types of filters suitable for medical images in providing low bit rate and low computational complexity. In this study a variety of wavelet filters are used to compress and decompress computed tomography (CT) brain and abdomen images. We applied two-dimensional wavelet decomposition, quantization and reconstruction using several families of filter banks to a set of CT images. Discreet Wavelet Transform (DWT), which provides efficient framework of multi-resolution frequency was used. Compression was accomplished by applying threshold values to the wavelet coefficients. The statistical indices such as mean square error (MSE), maximum absolute error (MAE) and peak signal-to-noise ratio (PSNR) were used to quantify the effect of wavelet compression of selected images. The code was written using the wavelet and image processing toolbox of the MATLAB (version 6.1). This results show that no specific wavelet filter performs uniformly better than others except for the case of Daubechies and bi-orthogonal filters which are the best among all. MAE values achieved by these filters were 5 x 10(-14) to 12 x 10(-14) for both CT brain and abdomen images at different decomposition levels. This indicated that using these filters a very small error (approximately 7 x 10(-14)) can be achieved between original and the filtered image. The PSNR values obtained were higher for the brain than the abdomen images. For both the lossy and lossless compression, the 'most appropriate' wavelet filter should be chosen adaptively depending on the statistical properties of the image being coded to achieve higher compression ratio.
    Matched MeSH terms: Tomography, X-Ray Computed/methods*
  17. Ninomiya K, Arimura H, Tanaka K, Chan WY, Kabata Y, Mizuno S, et al.
    Comput Methods Programs Biomed, 2023 Jun;236:107544.
    PMID: 37148668 DOI: 10.1016/j.cmpb.2023.107544
    OBJECTIVES: To elucidate a novel radiogenomics approach using three-dimensional (3D) topologically invariant Betti numbers (BNs) for topological characterization of epidermal growth factor receptor (EGFR) Del19 and L858R mutation subtypes.

    METHODS: In total, 154 patients (wild-type EGFR, 72 patients; Del19 mutation, 45 patients; and L858R mutation, 37 patients) were retrospectively enrolled and randomly divided into 92 training and 62 test cases. Two support vector machine (SVM) models to distinguish between wild-type and mutant EGFR (mutation [M] classification) as well as between the Del19 and L858R subtypes (subtype [S] classification) were trained using 3DBN features. These features were computed from 3DBN maps by using histogram and texture analyses. The 3DBN maps were generated using computed tomography (CT) images based on the Čech complex constructed on sets of points in the images. These points were defined by coordinates of voxels with CT values higher than several threshold values. The M classification model was built using image features and demographic parameters of sex and smoking status. The SVM models were evaluated by determining their classification accuracies. The feasibility of the 3DBN model was compared with those of conventional radiomic models based on pseudo-3D BN (p3DBN), two-dimensional BN (2DBN), and CT and wavelet-decomposition (WD) images. The validation of the model was repeated with 100 times random sampling.

    RESULTS: The mean test accuracies for M classification with 3DBN, p3DBN, 2DBN, CT, and WD images were 0.810, 0.733, 0.838, 0.782, and 0.799, respectively. The mean test accuracies for S classification with 3DBN, p3DBN, 2DBN, CT, and WD images were 0.773, 0.694, 0.657, 0.581, and 0.696, respectively.

    CONCLUSION: 3DBN features, which showed a radiogenomic association with the characteristics of the EGFR Del19/L858R mutation subtypes, yielded higher accuracy for subtype classifications in comparison with conventional features.

    Matched MeSH terms: Tomography, X-Ray Computed/methods
  18. Chan RS, Abdul Aziz YF, Chandran P, Ng EK
    Singapore Med J, 2011 Nov;52(11):e232-5.
    PMID: 22173263
    A 62 year-old woman who presented with an atraumatic acute abdomen was discovered to have haemoperitoneum with splenic rupture on urgent computed tomography and was immediately referred for life-saving emergency splenectomy. Histopathological examination revealed secondary splenic amyloidosis. The patient was later found to be suffering from infective endocarditis secondary to her permanent cardiac pacemaker. This report describes a patient who could have suffered from a long-standing infected vegetation on a permanent cardiac pacemaker, which led to splenic amyloidosis and spontaneous splenic rupture.
    Matched MeSH terms: Tomography, X-Ray Computed/methods
  19. Balasingam S, Azman RR, Nazri M
    QJM, 2016 Feb;109(2):121-2.
    PMID: 26101228 DOI: 10.1093/qjmed/hcv121
    Matched MeSH terms: Tomography, X-Ray Computed/methods
  20. Abdulkareem KH, Mostafa SA, Al-Qudsy ZN, Mohammed MA, Al-Waisy AS, Kadry S, et al.
    J Healthc Eng, 2022;2022:5329014.
    PMID: 35368962 DOI: 10.1155/2022/5329014
    Coronavirus disease 2019 (COVID-19) is a novel disease that affects healthcare on a global scale and cannot be ignored because of its high fatality rate. Computed tomography (CT) images are presently being employed to assist doctors in detecting COVID-19 in its early stages. In several scenarios, a combination of epidemiological criteria (contact during the incubation period), the existence of clinical symptoms, laboratory tests (nucleic acid amplification tests), and clinical imaging-based tests are used to diagnose COVID-19. This method can miss patients and cause more complications. Deep learning is one of the techniques that has been proven to be prominent and reliable in several diagnostic domains involving medical imaging. This study utilizes a convolutional neural network (CNN), stacked autoencoder, and deep neural network to develop a COVID-19 diagnostic system. In this system, classification undergoes some modification before applying the three CT image techniques to determine normal and COVID-19 cases. A large-scale and challenging CT image dataset was used in the training process of the employed deep learning model and reporting their final performance. Experimental outcomes show that the highest accuracy rate was achieved using the CNN model with an accuracy of 88.30%, a sensitivity of 87.65%, and a specificity of 87.97%. Furthermore, the proposed system has outperformed the current existing state-of-the-art models in detecting the COVID-19 virus using CT images.
    Matched MeSH terms: Tomography, X-Ray Computed/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links