Displaying publications 41 - 60 of 213 in total

Abstract:
Sort:
  1. Ariff AB, Rosfarizan M, Sobri MA, Karim MI
    Environ Technol, 2001 Jun;22(6):697-704.
    PMID: 11482390
    Research was undertaken to investigate the treatment of fishery washing water using Bacillus sphaericus, and to recover the spores for subsequent use as bioinsecticide to control the population of mosquitoes. This treatment method could reduce pollution due to organic matter by decreasing the value of Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD) by about 85% and 92%, respectively. The maximum concentration of spores (83.3 x 10(7) spores ml(-1)) using normal concentration of filtered fishery washing water was only about 27% lower than that obtained in fermentation using 0.25% (w/v) yeast extract. The larvicidal activity of the spores produced in fermentation using fishery washing water to Culex quinquefaciatus, as measured by LD50 after 48 h, was almost the same as the larvicidal activity of spores obtained from fermentation using yeast extract.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  2. Asaithambi P, Aziz ARA, Sajjadi B, Daud WMABW
    Environ Sci Pollut Res Int, 2017 Feb;24(6):5168-5178.
    PMID: 27221586 DOI: 10.1007/s11356-016-6909-5
    In the present work, the efficiency of the sonication, electrocoagulation, and sono-electrocoagulation process for removal of pollutants from the industrial effluent of the pulp and paper industry was compared. The experimental results showed that the sono-electrocoagulation process yielded higher pollutant removal percentage compared to the sonication and electrocoagulation process alone. The effect of the operating parameters in the sono-electrocoagulation process such as electrolyte concentration (1-5 g/L), current density (1-5 A/dm(2)), effluent pH (3-11), COD concentration (1500-6000 mg/L), inter-electrode distance (1-3 cm), and electrode combination (Fe and Al) on the color removal, COD removal, and power consumption were studied. The maximum color and COD removal percentages of 100 and 95 %, respectively, were obtained at the current density of 4 A/dm(2), electrolyte concentration of 4 g/L, effluent pH of 7, COD concentration of 3000 mg/L, electrode combination of Fe/Fe, inter-electrode distance of 1 cm, and reaction time of 4 h, respectively. The color and COD removal percentages were analyzed by using an UV/Vis spectrophotometer and closed reflux method. The results showed that the sono-electrocoagulation process could be used as an efficient and environmental friendly technique for complete pollutant removal.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  3. Asrami MR, Pirouzi A, Nosrati M, Hajipour A, Zahmatkesh S
    Chemosphere, 2024 Jan;347:140652.
    PMID: 37967679 DOI: 10.1016/j.chemosphere.2023.140652
    Although algal-based membrane bioreactors (AMBRs) have been demonstrated to be effective in treating wastewater (landfill leachate), there needs to be more research into the effectiveness of these systems. This study aims to determine whether AMBR is effective in treating landfill leachate with hydraulic retention times (HRTs) of 8, 12, 14, 16, 21, and 24 h to maximize AMBR's energy efficiency, microalgal biomass production, and removal efficiency using artificial neural network (ANN) models. Experimental results and simulations indicate that biomass production in bioreactors depends heavily on HRT. A decrease in HRT increases algal (Chlorella vulgaris) biomass productivity. Results also showed that 80% of chemical oxygen demand (COD) was removed from algal biomass by bioreactors. To determine the most efficient way to process the features as mentioned above, nondominated sorting genetic algorithm II (NSGA-II) techniques were applied. A mesophilic, suspended-thermophilic, and attached-thermophilic organic loading rate (OLR) of 1.28, 1.06, and 2 kg/m3/day was obtained for each method. Compared to suspended-thermophilic growth (3.43 kg/m3.day) and mesophilic growth (1.28 kg/m3.day), attached-thermophilic growth has a critical loading rate of 10.5 kg/m3.day. An energy audit and an assessment of the system's auto-thermality were performed at the end of the calculation using the Monod equation for biomass production rate (Y) and bacteria death constant (Kd). According to the results, a high removal level of COD (at least 4000 mg COD/liter) leads to auto-thermality.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  4. Azad SA, Vikineswary S, Chong VC, Ramachandran KB
    Lett Appl Microbiol, 2004;38(1):13-8.
    PMID: 14687209
    Rhodovulum sulfidophilum was grown in settled undiluted and nonsterilized sardine processing wastewater (SPW). The aims were to evaluate the effects of inoculum size and media on the biomass production with simultaneous reduction of chemical oxygen demand (COD).
    Matched MeSH terms: Waste Disposal, Fluid/methods
  5. Aziz HA, Alias S, Assari F, Adlan MN
    Waste Manag Res, 2007 Dec;25(6):556-65.
    PMID: 18229750
    Suspended solids, colour and chemical oxygen demand (COD) are among the main pollutants in landfill leachate. Application of physical or biological processes alone is normally not sufficient to remove these constituents, especially for leachate with a lower biochemical oxygen demand (BOD)/ COD ratio. The main objective of this research was to investigate the efficiency of coagulation and flocculation processes for removing suspended solids, colour and COD from leachate produced in a semi-aerobic landfill in Penang, Malaysia. A 12-month characterization study of the leachate indicated that it had a mean annual BOD/COD ratio of 0.15 and was partially stabilized, with little further biological degradation likely to occur. Particle size analysis of the raw leachate indicated that its 50th percentile (d50) was 11.68 microm. Three types of coagulants were examined in bench scale jar test studies: aluminium sulphate (alum), ferric chloride (FeCl3) and ferrous sulphate (FeSO4). The effects of agitation speed, settling time, pH, coagulant dosages and temperature were examined. At 300 rpm of rapid mixing, 50 rpm of slow mixing, and 60 min settling time, higher removals of suspended solids (over 95%), colour (90%) and COD (43%) were achieved at pH 4 and 12. FeCl3 was found to be superior to other coagulants tested. At pH 4 and 12, fair removal of suspended solids was observed at a reasonably low coagulant dose, i.e., 600 mg L(-1); hHowever, about 2500 mg L(-1) of coagulant was required to achieve good removals at pH 6. Better removals were achieved at higher temperature. The d50 of sludge after coagulation at pH 4 with a 2500 mg L(-1) FeCl3 dose was 60.16 microm, which indicated that the particles had been removed effectively from the leachate. The results indicate that coagulation and flocculation processes can be used effectively in integrated semi-aerobic leachate treatment systems, especially for removing suspended solids, colour and COD.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  6. Aziz HA, Adlan MN, Ariffin KS
    Bioresour Technol, 2008 Apr;99(6):1578-83.
    PMID: 17540556
    This paper presents the results of research on heavy metals removal from water by filtration using low cost coarse media which could be used as an alternative approach to remove heavy metals from water or selected wastewater. A series of batch studies were conducted using different particle media (particle size 2.36-4.75 mm) shaken with different heavy metal solutions at various pH values to see the removal behaviour for each metal. Each solution of cadmium (Cd), lead (Pb), zinc (Zn), nickel (Ni), copper (Cu) and chromium (Cr(III)) with a concentration of 2 mg/L was shaken with the media. At a final pH of 8.5, limestone has significantly removed more than 90% of most metals followed by 80% and 65% removals using crushed bricks and gravel, respectively. The removal by aeration and settlement methods without solid media was less than 30%. Results indicated that the removal of heavy metals was influenced by the media and not directly by the pH. Investigations on the removal behaviour of these metals indicated that rough solid media with the presence of carbonate were beneficial for the removal process. Adsorption and precipitation as metals oxide and probably as metals carbonate were among the two mechanisms that contributed to the removal of metals from solution.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  7. Aziz HA, Alias S, Adlan MN, Faridah, Asaari AH, Zahari MS
    Bioresour Technol, 2007 Jan;98(1):218-20.
    PMID: 16386895
    A study was conducted to investigate the efficiency of coagulation and flocculation processes for removing colour from a semi-aerobic landfill leachate from one of the landfill sites in Malaysia. Four types of coagulant namely aluminium (III) sulphate (alum), ferric (III) chloride, ferrous (II) sulphate and ferric (III) sulphate were studied using standard jar test apparatus. Results indicated that ferric chloride was superior to the other coagulants and removed 94% of colour at an optimum dose of 800 mg/l at pH 4. The effect of coagulant dosages on colour removal showed similar trend as for COD, turbidity and suspended solids. This suggested that colour in landfill leachate was mainly contributed by organic matters with some insoluble forms that exhibited turbidity and suspended solids readings. The results from this study suggested that ferric chloride could be a viable coagulant in managing colour problems associated with landfill leachate.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  8. Aziz HA, Othman OM, Abu Amr SS
    Waste Manag, 2013 Feb;33(2):396-400.
    PMID: 23158874 DOI: 10.1016/j.wasman.2012.10.016
    Leachate pollution is one of the main problems in landfilling. Researchers have yet to find an effective solution to this problem. The technology that can be used may differ based on the type of leachate produced. Coliform bacteria were recently reported as one of the most problematic pollutants in semi-aerobic (stabilized) leachate. In the present study, the performance of the Electro-Fenton process in removing coliform from leachate was investigated. The study focused on two types of leachate: Palau Borung landfill leachate with low Coliform content (200 MPN/100 m/L) and Ampang Jajar landfill leachate with high coliform content (>24 × 10(4)MPN/100 m/L). Optimal conditions for the Electro-Fenton treatment process were applied on both types of leachate. Then, the coliform was examined before and after treatment using the Most Probable Number (MPN) technique. Accordingly, 100% removal of coliform was obtained at low initial coliform content, whereas 99.9% removal was obtained at high initial coliform content. The study revealed that Electro-Fenton is an efficient process in removing high concentrations of pathogenic microorganisms from stabilized leachate.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  9. Aziz HA, Othman N, Yusuff MS, Basri DR, Ashaari FA, Adlan MN, et al.
    Environ Int, 2001 May;26(5-6):395-9.
    PMID: 11392757
    This paper discusses heavy metal removal from wastewater by batch study and filtration technique through low-cost coarse media. Batch study has indicated that more than 90% copper (Cu) with concentration up to 50 mg/l could be removed from the solution with limestone quantity above 20 ml (equivalent to 56 g), which indicates the importance of limestone media in the removal process. This indicates that the removal of Cu is influenced by the media and not solely by the pH. Batch experiments using limestone and activated carbon indicate that both limestone and activated carbon had similar metal-removal efficiency (about 95%). Results of the laboratory-scale filtration technique using limestone particles indicated that above 90% removal of Cu was achieved at retention time of 2.31 h, surface-loading rate of 4.07 m3/m2 per day and Cu loading of 0.02 kg/m3 per day. Analyses of the limestone media after filtration indicated that adsorption and absorption processes were among the mechanisms involved in the removal processes. This study indicated that limestone can be used as an alternative to replace activated carbon.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  10. Bani-Melhem K, Elektorowicz M, Tawalbeh M, Al Bsoul A, El Gendy A, Kamyab H, et al.
    Chemosphere, 2023 Oct;339:139693.
    PMID: 37536541 DOI: 10.1016/j.chemosphere.2023.139693
    Treating and reusing wastewater has become an essential aspect of water management worldwide. However, the increase in emerging pollutants such as polycyclic aromatic hydrocarbons (PAHs), which are presented in wastewater from various sources like industry, roads, and household waste, makes their removal difficult due to their low concentration, stability, and ability to combine with other organic substances. Therefore, treating a low load of wastewater is an attractive option. The study aimed to address membrane fouling in the submerged membrane bioreactor (SMBR) used for wastewater treatment. An aluminum electrocoagulation (EC) device was combined with SMBR as a pre-treatment to reduce fouling. The EC-SMBR process was compared with a conventional SMBR without EC, fed with real grey water. To prevent impeding biological growth, low voltage gradients were utilized in the EC deviceThe comparison was conducted over 60 days with constant transmembrane pressure and infinite solid retention time (SRT). In phase I, when the EC device was operated at a low voltage gradient (0.64 V/cm), no significant improvement in the pollutants removal was observed in terms of color, turbidity, and chemical oxygen demand (COD). Nevertheless, during phase II, a voltage gradient of 1.26 V/cm achieved up to 100%, 99.7%, 92%, 94.1%, and 96.5% removals in the EC-SMBR process in comparison with 95.1%, 95.4%, 85%, 91.7% and 74.2% removals in the SMBR process for turbidity, color, COD, ammonia nitrogen (NH3-N), total phosphorus (TP), respectively. SMBR showed better anionic surfactant (AS) removal than EC-SMBR. A voltage gradient of 0.64 V/cm in the EC unit significantly reduced fouling by 23.7%, while 1.26 V/cm showed inconsistent results. Accumulation of Al ions negatively affected membrane performance. Low voltage gradients in EC can control SMBR fouling if Al concentration is controlled. Future research should investigate EC-SMBR with constant membrane flux for large-scale applications, considering energy consumption and operating costs.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  11. Bashir MJ, Aziz HA, Yusoff MS, Huqe AA, Mohajeri S
    Water Sci Technol, 2010;61(3):641-9.
    PMID: 20150700 DOI: 10.2166/wst.2010.867
    Landfill leachate is one of the major contamination sources. In this study, the ability of synthetic ion exchange resins which carry different mobile ion for removing color, chemical oxygen demand (COD), and ammonia nitrogen (NH(3)-N) from stabilized leachate was investigated. The synthetic resin INDION 225 Na as a cationic exchanger and INDION FFIP MB as an anionic exchanger were used in this study. INDION 225 Na was used in hydrogen form (H(+)) and in sodium form (Na(+)), while INDION FFIP MB resin was used in hydroxide form (OH(-)) and in calcium form (Cl(-)) form. The results indicated better removal of color, COD and NH(3)-N by using INDION 225 Na in H(+) as compared with Na(+) form, while no performance differences were observed by using INDION FFIP MB in OH(-) or Cl(-) form. Applying cationic resin followed by anionic resin achieved 97, 88 and 94, percent removal of color, COD and NH(3)-N. The residual amounts were 160 Pt-Co, 290 mg/L and 110 mg/L of color, COD and NH(3)-N respectively.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  12. Birgani PM, Ranjbar N, Abdullah RC, Wong KT, Lee G, Ibrahim S, et al.
    J Environ Manage, 2016 Dec 15;184(Pt 2):229-239.
    PMID: 27717677 DOI: 10.1016/j.jenvman.2016.09.066
    Considering the chemical properties of batik effluents, an efficient and economical treatment process was established to treat batik wastewater containing not only high levels of Si and chemical oxygen demand (COD), but also toxic heavy metals. After mixing the effluents obtained from the boiling and soaking steps in the batik process, acidification using concentrated hydrochloric acid (conc. HCl) was conducted to polymerize the silicate under acidic conditions. Consequently, sludge was produced and floated. XRD and FT-IR analyses showed that wax molecules were coordinated by hydrogen bonding with silica (SiO2). The acidification process removed ∼78-95% of COD and ∼45-50% of Si, depending on the pH. In the next stage, magnesium oxide (MgO) was applied to remove heavy metals completely and almost 90% of the Si in the liquid phase. During this step, about 70% of COD was removed in the hydrogel that arose as a consequence of the crosslinking characteristics of the formed nano-composite, such as magnesium silicate or montmorillonite. The hydrogel was composed mainly of waxes with polymeric properties. Then, the remaining Si (∼300 mg/L) in the wastewater combined with the effluents from the rinsing steps was further treated using 50 mg/L MgO. As a final step, palm-shell activated carbon (PSAC) was used to remove the remaining COD to 
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  13. Bonakdari H, Ebtehaj I, Akhbari A
    Water Sci Technol, 2017 Jun;75(12):2791-2799.
    PMID: 28659519 DOI: 10.2166/wst.2017.158
    Electrocoagulation (EC) is employed to investigate the energy consumption (EnC) of synthetic wastewater. In order to find the best process conditions, the influence of various parameters including initial pH, initial dye concentration, applied voltage, initial electrolyte concentration, and treatment time are investigated in this study. EnC is considered the main criterion of process evaluation in investigating the effect of the independent variables on the EC process and determining the optimum condition. Evolutionary polynomial regression is combined with a multi-objective genetic algorithm (EPR-MOGA) to present a new, simple and accurate equation for estimating EnC to overcome existing method weaknesses. To survey the influence of the effective variables, six different input combinations are considered. According to the results, EPR-MOGA Model 1 is the most accurate compared to other models, as it has the lowest error indices in predicting EnC (MARE = 0.35, RMSE = 2.33, SI = 0.23 and R2 = 0.98). A comparison of EPR-MOGA with reduced quadratic multiple regression methods in terms of feasibility confirms that EPR-MOGA is an effective alternative method. Moreover, the partial derivative sensitivity analysis method is employed to analyze the EnC variation trend according to input variables.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  14. Chan CH, Lim PE
    Bioresour Technol, 2007 May;98(7):1333-8.
    PMID: 16822665
    Performance of the sequencing batch reactor (SBR) treating synthetic phenolic wastewater at influent phenol concentrations from 100 to 1000 mg/L was evaluated. Two identical SBRs were built and operated with FILL, REACT, SETTLE and DRAW periods in the ratio of 4:6:1:1 for a cycle time of 12h. One of the reactors was operated with aerated FILL (R1) and the other with unaerated FILL (R2). The treated effluent quality and the rate of degradation during REACT were the criteria for evaluating performance of the two reactors. The results showed that the FILL mode had no significant influence on the treatment efficiency of phenol and COD for the entire range of influent phenol concentrations investigated. However, reactor R1 required a relatively shorter REACT time for phenol removal as compared to R2. This meant that R1 had the advantage of providing treatment at a higher organic loading rate.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  15. Chan YJ, Chong MF, Law CL
    J Environ Manage, 2010 Aug;91(8):1738-46.
    PMID: 20430515 DOI: 10.1016/j.jenvman.2010.03.021
    The production of highly polluting palm oil mill effluent (POME) has resulted in serious environmental hazards. While anaerobic digestion is widely accepted as an effective method for the treatment of POME, anaerobic treatment of POME alone has difficulty meeting discharge limits due to the high organic strength of POME. Hence, subsequent post-treatment following aerobic treatment is vital to meet the discharge limits. The objective of the present study is to investigate the aerobic treatment of anaerobically digested POME by using a sequencing batch reactor (SBR). The SBR performance was assessed by measuring Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD) and Total Suspended Solids (TSS) removal as well as Sludge Volume Index (SVI). The operating pH and dissolved oxygen concentrations were found to be 8.25-9.14 and 1.5-6.4 mg/L, respectively, throughout the experiment. The experimental results demonstrate that MLVSS, OLR and sludge loading rate (SLR) play a significant role in the organic removal efficiency of SBR systems and therefore, further investigation on these parameters was conducted to attain optimum SBR performance. Maximum COD (95-96%), BOD (97-98%) and TSS (98-99%) removal efficiencies were achieved at optimum OLR, SLR and MLVSS concentration ranges of 1.8-4.2 kg COD/m(3)day, 2.5-4.6 kg TSS/m(3)day and 22,000-25,000 mg/L, respectively. The effluent quality remained stable and complied with the discharge limit. At the same time, the sludge showed good settling properties with average SVI of 65. It is envisaged that the SBR process could complement the anaerobic treatment to produce final treated effluent which meets the discharge limit.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  16. Cheng SY, Show PL, Juan JC, Chang JS, Lau BF, Lai SH, et al.
    Chemosphere, 2021 Jan;262:127829.
    PMID: 32768754 DOI: 10.1016/j.chemosphere.2020.127829
    Recent trend to recover value-added products from wastewater calls for more effective pre-treatment technology. Conventional landfill leachate treatment is often complex and thus causes negative environmental impacts and financial burden. In order to facilitate downstream processing of leachate wastewater for production of energy or value-added products, it is pertinent to maximize leachate treatment performance by using simple yet effective technology that removes pollutants with minimum chemical added into the wastewater that could potentially affect downstream processing. Hence, the optimization of coagulation-flocculation leachate treatment using multivariate approach is crucial. Central composite design was applied to optimize operating parameters viz. Alum dosage, pH and mixing speed. Quadratic model indicated that the optimum COD removal of 54% is achieved with low alum dosage, pH and mixing speed of 750 mgL-1, 8.5 and 100 rpm, respectively. Optimization result showed that natural pH of the mature landfill leachate sample is optimum for alum coagulation process. Hence, the cost of pH adjustment could be reduced for industrial application by adopting optimized parameters. The inherent mechanism of pollutant removal was elucidated by FTIR peaks at 3853 cm-1 which indicated that hydrogen bonds play a major role in leachate removal by forming well aggregated flocs. This is concordance with SEM image that the floc was well aggregated with the porous linkages and amorphous surface structure. The optimization of leachate treatment has been achieved by minimizing the usage of alum under optimized condition.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  17. Chow MF, Yusop Z, Mohamed M
    Water Sci Technol, 2011;63(6):1211-6.
    PMID: 21436558 DOI: 10.2166/wst.2011.360
    This paper examines the storm runoff quality from a commercial area in south Johor, Malaysia. Six storm events with a total of 68 storm runoff samples were analyzed. Event Mean Concentration (EMC) for all constituents analysed showed large inter-event variation. Site mean concentrations (SMC) for total suspended solids (TSS), oil and grease (O&G), biochemical oxygen demand (BOD), chemical oxygen demand (COD), nitrate-nitrogen (NO(3)-N), nitrite-nitrogen (NO(2)-N), ammonia-nitrogen (NH(3)-N), total phosphorus (Total P) and Soluble P are 261, 4.31, 74, 192, 1.5, 0.006, 1.9, 1.12 and 0.38 mg/L, respectively. The SMCs at the studied site are higher than those reported in many urban catchments. The mean baseflow concentrations were higher than the EMCs for COD, Soluble P, NH(3)-N, NO(3)-N, Total P and NO(2)-N. However, the reverse was observed for TSS and O&G. All pollutants showed the occurrence of first flush phenomenon with the highest strength was observed for TSS, COD and NH(3)-N.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  18. Chun TS, Malek MA, Ismail AR
    Water Sci Technol, 2015;71(4):524-8.
    PMID: 25746643 DOI: 10.2166/wst.2014.451
    The development of effluent removal prediction is crucial in providing a planning tool necessary for the future development and the construction of a septic sludge treatment plant (SSTP), especially in the developing countries. In order to investigate the expected functionality of the required standard, the prediction of the effluent quality, namely biological oxygen demand, chemical oxygen demand and total suspended solid of an SSTP was modelled using an artificial intelligence approach. In this paper, we adopt the clonal selection algorithm (CSA) to set up a prediction model, with a well-established method - namely the least-square support vector machine (LS-SVM) as a baseline model. The test results of the case study showed that the prediction of the CSA-based SSTP model worked well and provided model performance as satisfactory as the LS-SVM model. The CSA approach shows that fewer control and training parameters are required for model simulation as compared with the LS-SVM approach. The ability of a CSA approach in resolving limited data samples, non-linear sample function and multidimensional pattern recognition makes it a powerful tool in modelling the prediction of effluent removals in an SSTP.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  19. Chun TS, Malek MA, Ismail AR
    Environ Sci Process Impacts, 2014 Sep 20;16(9):2208-14.
    PMID: 25005632 DOI: 10.1039/c4em00282b
    Effluent discharge from septic tanks is affecting the environment in developing countries. The most challenging issue facing these countries is the cost of inadequate sanitation, which includes significant economic, social, and environmental burdens. Although most sanitation facilities are evaluated based on their immediate costs and benefits, their long-term performance should also be investigated. In this study, effluent quality-namely, the biological oxygen demand (BOD), chemical oxygen demand (COD), and total suspended solid (TSS)-was assessed using a biomimetics engineering approach. A novel immune network algorithm (INA) approach was applied to a septic sludge treatment plant (SSTP) for effluent-removal predictive modelling. The Matang SSTP in the city of Kuching, Sarawak, on the island of Borneo, was selected as a case study. Monthly effluent discharges from 2007 to 2011 were used for training, validating, and testing purposes using MATLAB 7.10. The results showed that the BOD effluent-discharge prediction was less than 50% of the specified standard after the 97(th) month of operation. The COD and TSS effluent removals were simulated at the 85(th) and the 121(st) months, respectively. The study proved that the proposed INA-based SSTP model could be used to achieve an effective SSTP assessment and management technique.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  20. Damayanti A, Ujang Z, Salim MR, Olsson G
    Water Sci Technol, 2011;63(8):1701-6.
    PMID: 21866771
    Biofouling is a crucial factor in membrane bioreactor (MBR) applications, particularly for high organic loading operations. This paper reports a study on biofouling in an MBR to establish a relationship between critical flux, Jc, mixed liquor suspended solids (MLSS) (ranging from 5 to 20 g L-1) and volumetric loading rate (6.3 kg COD m-3 h-1) of palm oil mill effluent (POME). A lab-scale 100 L hybrid MBR consisting of anaerobic, anoxic, and aerobic reactors was used with flat sheet microfiltration (MF) submerged in the aerobic compartment. The food-to-microorganism (F/M) ratio was maintained at 0.18 kg COD kg-1 MLSSd-1. The biofouling tendency of the membrane was obtained based on the flux against the transmembrane pressure (TMP) behaviour. The critical flux is sensitive to the MLSS. At the MLSS 20 g L-1 the critical flux is about four times lower than that for the MLSS concentration of 5 g L-1. The results showed high removal efficiency of denitrification and nitrification up to 97% at the MLSS concentration 20 g L-1. The results show that the operation has to compromise between a high and a low MLSS concentration. The former will favour a higher removal rate, while the latter will favour a higher critical flux.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links