Displaying publications 41 - 60 of 128 in total

Abstract:
Sort:
  1. Hinwood AL, Stasinska A, Callan AC, Heyworth J, Ramalingam M, Boyce M, et al.
    Environ Pollut, 2015 Sep;204:256-63.
    PMID: 25984984 DOI: 10.1016/j.envpol.2015.04.024
    Most studies of metals exposure focus on the heavy metals. There are many other metals (the transition, alkali and alkaline earth metals in particular) in common use in electronics, defense industries, emitted via combustion and which are naturally present in the environment, that have received limited attention in terms of human exposure. We analysed samples of whole blood (172), urine (173) and drinking water (172) for antimony, beryllium, bismuth, cesium, gallium, rubidium, silver, strontium, thallium, thorium and vanadium using ICPMS. In general most metals concentrations were low and below the analytical limit of detection with some high concentrations observed. Few factors examined in regression models were shown to influence biological metals concentrations and explained little of the variation. Further study is required to establish the source of metals exposures at the high end of the ranges of concentrations measured and the potential for any adverse health impacts in children.
    Matched MeSH terms: Drinking Water/analysis
  2. Hussain A, Maitra J, Saifi A, Ahmed S, Ahmed J, Shrestha NK, et al.
    Environ Res, 2024 Mar 01;244:117952.
    PMID: 38113992 DOI: 10.1016/j.envres.2023.117952
    In developing countries like India, an economically viable and ecologically approachable strategy is required to safeguard the drinking water. Excessive fluoride intake through drinking water can lead to dental fluorosis, skeletal fluorosis, or both. The present study has been under with an objective to investigate the feasibility of using cellulose derived from coconut fiber as an adsorbent under varying pH conditions for fluoride elimination from water. The assessment of equilibrium concentration of metal ions using adsorption isotherms is an integral part of the study. This present finding indicates the considerable effect of variation of adsorbent dosages on the fluoride removal efficiency under constant temperature conditions of 25 ± 2 °C with a contact period of 24 h. It is pertinent to mention that maximum adsorption of 88% has been observed with a pH value of 6 with 6 h time duration with fluoride dosage of 50 mg/L. The equilibrium concentration dwindled to 0.4 mg/L at fluoride concentration of 20 mg/L. The Langmuir model designates the adsorption capacity value of 2.15 mg/L with initial fluoride concentration of 0.21 mg/g with R2 value of 0.660. Similarly, the adsorption capacity using Freundlich isotherms is found to be 0.58 L/g and 0.59 L/g with fluoride concentration of 1.84 mg/L and 2.15 mg/L respectively. The results from the present study confirm that coconut fiber possesses appropriate sorption capabilities of fluoride ion but is a pH dependent phenomenon. The outcomes of the study indicate the possible use of cellulose extracted from waste coconut fiber as a low-cost fluoride adsorbent. The present study can be well implemented on real scale systems as it will be beneficial economically as well as environmentally.
    Matched MeSH terms: Drinking Water*
  3. Ibrahim TNBT, Feisal NAS, Azmi NM, Nazli SN, Salehuddin ASM, Nasir NICM, et al.
    Med J Malaysia, 2024 Mar;79(Suppl 1):14-22.
    PMID: 38555880
    INTRODUCTION: A study on the quality of drinking water was conducted at Air Kuning Treatment Plant In Perak, Malaysia, based on a sanitary survey in 14 sampling points stations from the intake area to the auxiliary points. This was to ensure the continuous supply of clean and safe drinking water to the consumers for public health protection. The objective was to examine the physical, microbiological, and chemical parameters of the water, classification at each site based on National Drinking Water Standards (NDWQS) and to understand the spatial variation using environmetric technique; principal component analysis (PCA).

    MATERIALS AND METHODS: Water samples were subjected to in situ and laboratory water quality analyses and focused on pH, turbidity, chlorine, Escherichia coli, total coliform, total hardness, iron (Fe), aluminium (Al), zinc (Zn), magnesium (Mg) and sodium (Na). All procedures followed the American Public Health Association (APHA) testing procedures.

    RESULTS: Based on the results obtained, the values of each parameter were found to be within the safe limits set by the NDWQS except for total coliform and iron (Fe). PCA has indicated that turbidity, total coliform, E. coli, Na, and Al were the major factors that contributed to the drinking water contamination in river water intake.

    CONCLUSION: Overall, the water from all sampling point stations after undergoing water treatment process was found to be safe as drinking water. It is important to evaluate the drinking water quality of the treatment plant to ensure that consumers have access to safe and clean drinking water as well as community awareness on drinking water quality is essential to promote public health and environmental protection.

    Matched MeSH terms: Drinking Water*
  4. Idros N, Chu D
    ACS Sens, 2018 09 28;3(9):1756-1764.
    PMID: 30193067 DOI: 10.1021/acssensors.8b00490
    Heavy metals are highly toxic at trace levels and their pollution has shown great threat to the environment and public health worldwide where current detection methods require expensive instrumentation and laborious operation, which can only be accomplished in centralized laboratories. Herein, we report a low-cost, paper-based microfluidic analytical device (μPAD) for facile, portable, and disposable monitoring of mercury, lead, chromium, nickel, copper, and iron ions. Triple indicators or ligands that contain ions or molecules are preloaded on the μPADs and upon addition of a metal ion, the colorimetric indicators will elicit color changes observed by the naked eyes. The color features were quantitatively analyzed in a three-dimensional space of red, green, and blue or the RGB-space using digital imaging and color calibration techniques. The sensing platform offers higher accuracy for cross references, and is capable of simultaneous detection and discrimination of different metal ions in even real water samples. It demonstrates great potential for semiquantitative and even qualitative analysis with a sensitivity below the safe limit concentrations, and a controlled error range.
    Matched MeSH terms: Drinking Water/analysis
  5. Ismail S, Manaf RA, Mahmud A
    East Mediterr Health J, 2019 Jun 04;25(4):239-245.
    PMID: 31210344 DOI: 10.26719/emhj.19.011
    Background: Research on the health benefits of fasting is growing; this includes time-restricted feeding and Islamic fasting.

    Aims: This article aims to review and highlight the similarities and differences between time-restricted feeding and Islamic fasting during Ramadan.

    Methods: A scoping review was undertaken to identify relevant articles that answered the research question: what are the similarities and differences in characteristics of time-restricted feeding and Islamic fasting? MEDLINE/PubMed was searched using the terms: time-restricted feeding, and weight. Inclusion criteria were: original research and review articles; written in English; and published between the years 2000 and 2017.

    Results: A total of 25 articles that answered the research question were included in the review: 15 original research papers and 10 reviews. The findings suggest that Ramadan fasting is a form of time-restricted feeding in the contemporary context because of the period when eating is not allowed. The fasting duration reported in time-restricted feeding ranged from 4 to 24 hours, which is longer than that of Islamic fasting which is between 8 and 20 hours. Both time-restricted feeding and Islamic fasting have been found to have positive health effects, including weight reduction.

    Conclusion: Time-restricted feeding and Islamic fasting have many similar characteristics and reported positive health effects.

    Matched MeSH terms: Drinking Water
  6. Jaafar M, Marcilla AL, Felipe-Sotelo M, Ward NI
    Food Chem, 2018 Apr 25;246:258-265.
    PMID: 29291847 DOI: 10.1016/j.foodchem.2017.11.019
    Water from La Pampa, Argentina, was used for washing and cooking rice to examine the in-situ impact of using naturally-contaminated water for food preparation on the elemental dietary intake. Whilst washing with the control tap water (28 μg/L As) reduced the concentration of As in rice by 23%, the use of different well waters (281-1144 μg/L) increased As levels significantly (48-227%) in comparison with the original concentration in the rice (0.056 µg/g). Cooking the rice at a low water-to-rice ratio (2:1) using modern methods increased the levels of As in the cooked samples by 2-3 orders of magnitude for both pre-washed and un-washed rice. Similar trends were observed for vanadium. Although the levels of manganese, iron, copper, zinc and molybdenum in rice were reduced during washing and cooking for most water samples, the molybdenum concentration in the cooked rice doubled (2.2-2.9 µg/g) when using water containing >1 mg/L Mo.
    Matched MeSH terms: Drinking Water/chemistry*
  7. Jakovljevic M, Sugahara T, Timofeyev Y, Rancic N
    Risk Manag Healthc Policy, 2020;13:2261-2280.
    PMID: 33117004 DOI: 10.2147/RMHP.S266386
    Purpose: The goal of this study was to assess the effectiveness of healthcare spending among the leading Asian economies.

    Methods: We have selected a total of nine Asian nations, based on the strength of their economic output and long-term real GDP growth rates. The OECD members included Japan and the Republic of Korea, while the seven non-OECD nations were China, India, Indonesia, Malaysia, Pakistan, the Philippines, and Thailand. Healthcare systems efficiency was analyzed over the period 1996-2017. To assess the effectiveness of healthcare expenditure of each group of countries, the two-way fixed effects model (country- and year effects) was used.

    Results: Quality of governance and current health expenditure determine healthcare system performance. Population density and urbanization are positively associated with a healthy life expectancy in the non-OECD Asian countries. In this group, unsafe water drinking has a statistically negative effect on healthy life expectancy. Interestingly, only per capita consumption of carbohydrates is significantly linked with healthy life expectancy. In these non-OECD Asian countries, unsafe water drinking and per capita carbon dioxide emissions increase infant mortality. There is a strong negative association between GDP per capita and infant mortality in both sub-samples, although its impact is far larger in the OECD group. In Japan and South Korea, unemployment is negatively associated with infant mortality.

    Conclusion: Japan outperforms other countries from the sample in major healthcare performance indicators, while South Korea is ranked second. The only exception is per capita carbon dioxide emissions, which have maximal values in the Republic of Korea and Japan. Non-OECD nations' outcomes were led by China, as the largest economy. This group was characterized with substantial improvement in efficiency of health spending since the middle of the 1990s. Yet, progress was noted with remarkable heterogeneity within the group.

    Matched MeSH terms: Drinking Water
  8. Kato M, Azimi MD, Fayaz SH, Shah MD, Hoque MZ, Hamajima N, et al.
    Chemosphere, 2016 Dec;165:27-32.
    PMID: 27619645 DOI: 10.1016/j.chemosphere.2016.08.124
    Toxic elements in drinking water have great effects on human health. However, there is very limited information about toxic elements in drinking water in Afghanistan. In this study, levels of 10 elements (chromium, nickel, copper, arsenic, cadmium, antimony, barium, mercury, lead and uranium) in 227 well drinking water samples in Kabul, Afghanistan were examined for the first time. Chromium (in 0.9% of the 227 samples), arsenic (7.0%) and uranium (19.4%) exceeded the values in WHO health-based guidelines for drinking-water quality. Maximum chromium, arsenic and uranium levels in the water samples were 1.3-, 10.4- and 17.2-fold higher than the values in the guidelines, respectively. We next focused on uranium, which is the most seriously polluted element among the 10 elements. Mean ± SD (138.0 ± 1.4) of the (238)U/(235)U isotopic ratio in the water samples was in the range of previously reported ratios for natural source uranium. We then examined the effect of our originally developed magnesium (Mg)-iron (Fe)-based hydrotalcite-like compounds (MF-HT) on adsorption for uranium. All of the uranium-polluted well water samples from Kabul (mean ± SD = 190.4 ± 113.9 μg/L; n = 11) could be remediated up to 1.2 ± 1.7 μg/L by 1% weight of our MF-HT within 60 s at very low cost (<0.001 cents/day/family) in theory. Thus, we demonstrated not only elevated levels of some toxic elements including natural source uranium but also an effective depurative for uranium in well drinking water from Kabul. Since our depurative is effective for remediation of arsenic as shown in our previous studies, its practical use in Kabul may be encouraged.
    Matched MeSH terms: Drinking Water/analysis*
  9. Khairul Hasni NA, Anual ZF, Rashid SA, Syed Abu Thahir S, Veloo Y, Fang KS, et al.
    Environ Pollut, 2023 May 01;324:121095.
    PMID: 36682614 DOI: 10.1016/j.envpol.2023.121095
    Contamination of water systems with endocrine disrupting chemicals (EDCs) is becoming a major public health concern due to their toxicity and ubiquity. The intrusion of EDCs into water sources and drinking water has been associated with various adverse health effects on humans. However, there is no comprehensive overview of the occurrence of EDCs in Malaysia's water systems. This report aims to describe the occurrence of EDCs and their locations. Literature search was conducted electronically in two databases (PubMed and Scopus). A total of 41 peer-reviewed articles published between January 2000 and May 2021 were selected. Most of the articles dealt with pharmaceuticals (16), followed by pesticides (7), hormones (7), mixed compounds (7), and plasticisers (4). Most studies (40/41) were conducted in Peninsular Malaysia, with 60.9% in the central region and almost half (48.8%) in the Selangor State. Only one study was conducted in the northern region and East Malaysia. The Langat River, the Klang River, and the Selangor River were among the most frequently studied EDC-contaminated surface waters, while the Pahang River and the Skudai River had the highest concentrations of some of the listed compounds. Most of the risk assessments resulted in a hazard quotient (HQ) and a risk quotient (RQ)  1 in the Selangor River. An RQ > 1 for combined pharmaceuticals was found in Putrajaya tap water. Overall, this work provides a comprehensive overview of the occurrence of EDCs in Malaysia's water systems. The findings from this review can be used to mitigate risks and strengthen legislation and policies for safer drinking water.
    Matched MeSH terms: Drinking Water*
  10. Khoo KS, Lim AL, Sukiman Sarmani
    Sains Malaysiana, 2007;36:45-52.
    Characterisation of the leaching behaviour of coal fly ash from Tenaga Nasional Berhad (TNB) by using tank leaching test method has been reported. The leachability of the constituents such as major elements and toxic metals in the coal fly ash was studied. Eight renewed leachant solutions after 6 hours, 1, 2, 5, 8, 21, 36 and 64 days were investigated after filtration. The parameters namely pH, cumulative release regarding the major elements and toxic metals to duration were presented. The results showed that the pH solutions increased from pH 4 to neutral and remained stable during the test. It might have resulted from the large buffering capacity of the coal fly ashes. Five major elements namely Al, Ca, K, Mg and Na were detected with Ca concentration in the leachant solutions was the highest for all samples. Toxic metals such as As, Ba, Co, Cr, Mn, Ni, Pb, Se and Zn were found and the test showed consistent results on the As, Ba, Mn, Se and Zn in leachant solutions. The findings also showed that some of the toxic metal concentrations namely As, Ba, Cr, Pb and Se exceeded the maximum allowance of the guideline of drinking water quality in Malaysia and WHO. Obviously, proper waste management has to be applied in this scenario.
    Matched MeSH terms: Drinking Water
  11. Khoo, Hock-Eng, Azrina Azlan, Mohd Aizat Idris, Amin Ismail, Muhammad Rizal Razman
    MyJurnal
    The present study was carried out to determine the concentrations of selected metal elements (lead, copper, manganese, zinc and iron) in 51 samples of commercial drinking water and tap water available in Malaysia. The results indicated that low metal elements were found in the studied water samples. Lead, manganese, zinc and iron were not detected in some of the studied samples, except copper. The concentrations of the metal elements in the studied samples were well below the maximum permitted concentrations as recommended. Therefore these drinking water are safe for consumption and do not pose adverse effect to the health of consumers due to metal toxicity.
    Matched MeSH terms: Drinking Water
  12. Khor SW, Lee YK, Tay KS
    Analyst, 2019 Mar 21;144(6):1968-1974.
    PMID: 30694266 DOI: 10.1039/c8an02362j
    Preparation of selective magnetic adsorbents for dispersive micro-solid phase extraction often involves multi-step reactions which are time consuming. This study demonstrates a simplified method for the synthesis of a magnetic adsorbent, which is selective towards the adsorption of mercury(ii) ions (Hg2+). In this method, the incorporation of a metal capturing ligand (3-oxo-1,3-diphenylpropyl-2-(naphthalen-2-ylamino) ethylcarbamodithioate) and the coating of magnetic particles with silica gel was performed in a single step. This adsorbent was then used in solid-phase microextraction for the preconcentration of Hg2+ in water. In this study, a mercury analyzer was used to quantify the Hg2+. Under optimized conditions, the developed analytical method achieved a low detection limit (4.0 ng L-1), satisfactory enrichment factor (96.4) and wide linearity range (50.0-5000 ng L-1) with a good coefficient of determination (0.9985) and good repeatability (<7%). The preconcentration factor of this method was 100. This proposed method was also successfully utilized for the determination of Hg2+ in drinking water, tap water and surface water with good recovery (>91%) and high intra-day and inter-day precision.
    Matched MeSH terms: Drinking Water
  13. Kong YL, Anis-Syakira J, Fun WH, Balqis-Ali NZ, Shakirah MS, Sararaks S
    PMID: 33137998 DOI: 10.3390/ijerph17217933
    Access to improved water and sanitation is essential. We describe these practices in Malaysia using data from a nationwide community survey and used logistic regression to assess the determinants. Of the 7978 living quarters (LQs), 58.3% were in urban areas. About 2.4%, 0.5% and 27.4% of LQs had non-improved water sources, non-improved toilet types and improper domestic waste disposal, respectively. Open burning was practiced by 26.1%. Water source was a problem for long houses (10.5%), squatters (8.5%) and shared houses (4.0%). Non-improved toilet types were 11.9% for squatters and 4.8% for shared houses. Improper domestic waste disposal practices were higher for occupants of village houses (64.2%), long houses (54.4%), single houses (45.8%) and squatters (35.6%). An increase in education or income level was associated with a decrease in improper domestic waste disposal methods. House type significantly affected water and sanitation after adjusting for the effects of other variables. Lower household income was associated with non-improved toilet types and improper domestic waste disposal. Lower education and rural location influenced domestic waste disposal. The water and toilet facilities in Malaysia were generally good, while domestic waste management practices could be improved. There remain pockets of communities with environmental challenges for the nation.
    Matched MeSH terms: Drinking Water*
  14. Kumar M, RaoT S, Isloor AM, Ibrahim GPS, Inamuddin, Ismail N, et al.
    Int J Biol Macromol, 2019 May 15;129:715-727.
    PMID: 30738161 DOI: 10.1016/j.ijbiomac.2019.02.017
    Cellulose acetate (CA) and cellulose acetate phthalate (CAP) were used as additives (1 wt%, 3 wt%, and 5 wt%) to prepare polyphenylsulfone (PPSU) hollow fiber membranes. Prepared hollow fiber membranes were characterized by surface morphology using scanning electron microscopy (SEM), surface roughness by atomic force microscopy (AFM), the surface charge of the membrane was analyzed by zeta potential measurement, hydrophilicity by contact angle measurement and the functional groups by fourier transform infrared spectroscopy (FTIR). Fouling resistant nature of the prepared hollow fiber membranes was evaluated by bovine serum albumin (BSA) and molecular weight cutoff was investigated using polyethylene glycol (PEG). By total organic carbon (TOC), the percentage rejection of PEG was found to be 14,489 Da. It was found that the hollow fiber membrane prepared by the addition of 5 wt% of CAP in PPSU confirmed increased arsenic removal from water as compared to hollow fiber membrane prepared by 5 wt% of CA in PPSU. The removal percentages of arsenic with CA-5 and CAP-5 hollow fiber membrane was 34% and 41% with arsenic removal permeability was 44.42 L/m2h bar and 40.11 L/m2h bar respectively. The increased pure water permeability for CA-5 and CAP-5 hollow fiber membrane was 61.47 L/m2h bar and 69.60 L/m2 h bar, respectively.
    Matched MeSH terms: Drinking Water/chemistry*
  15. Kumar P, Lai SH, Mohd NS, Kamal MR, Afan HA, Ahmed AN, et al.
    PLoS One, 2020;15(9):e0239509.
    PMID: 32986717 DOI: 10.1371/journal.pone.0239509
    In the past few decades, there has been a rapid growth in the concentration of nitrogenous compounds such as nitrate-nitrogen and ammonia-nitrogen in rivers, primarily due to increasing agricultural and industrial activities. These nitrogenous compounds are mainly responsible for eutrophication when present in river water, and for 'blue baby syndrome' when present in drinking water. High concentrations of these compounds in rivers may eventually lead to the closure of treatment plants. This study presents a training and a selection approach to develop an optimum artificial neural network model for predicting monthly average nitrate-N and monthly average ammonia-N. Several studies have predicted these compounds, but most of the proposed procedures do not involve testing various model architectures in order to achieve the optimum predicting model. Additionally, none of the models have been trained for hydrological conditions such as the case of Malaysia. This study presents models trained on the hydrological data from 1981 to 2017 for the Langat River in Selangor, Malaysia. The model architectures used for training are General Regression Neural Network (GRNN), Multilayer Neural Network and Radial Basis Function Neural Network (RBFNN). These models were trained for various combinations of internal parameters, input variables and model architectures. Post-training, the optimum performing model was selected based on the regression and error values and plot of predicted versus observed values. Optimum models provide promising results with a minimum overall regression value of 0.92.
    Matched MeSH terms: Drinking Water
  16. Kumar T, Onichandran S, Lim YA, Sawangjaroen N, Ithoi I, Andiappan H, et al.
    Am J Trop Med Hyg, 2014 Apr;90(4):682-9.
    PMID: 24567315 DOI: 10.4269/ajtmh.13-0266
    This study investigated the distribution of parasites as main contaminants in water environments of peninsular Malaysia (October 2011-December 2011) and the southeastern coast of Thailand (June 2012). Sixty-four water samples, 33 from Malaysia and 31 from Thailand, of various water types were examined according to U.S. Environmental Protection Agency guidelines. Drinking or household water types from both countries were free from parasitic contamination. The recreational/environmental (except a swimming pool in Malaysia) and effluent water types from these two countries were contaminated with waterborne parasites: Giardia (0.04-4 cysts/L), Cryptosporidium (0.06-2.33 oocysts/L), hookworm (6.67-350 ova/L), Ascaris (0.33-33.33 ova/L), and Schistosoma (9.25-13.33 ova/L). The most contaminated sites were recreational lake garden 3 in Malaysia and river 2 in Thailand. Higher concentrations of Giardia, Cryptosporidium, and hookworm were found in samples from Malaysia than in samples from Thailand. The presence of Giardia cysts showed a significant association with the presence of Cryptosporidium oocysts (P < 0.005).
    Matched MeSH terms: Drinking Water/parasitology*
  17. Kumar T, Abd Majid MA, Onichandran S, Jaturas N, Andiappan H, Salibay CC, et al.
    Infect Dis Poverty, 2016 Jan 13;5:3.
    PMID: 26763230 DOI: 10.1186/s40249-016-0095-z
    Access to clean and safe drinking water that is free from pathogenic protozoan parasites, especially Cryptosporidium parvum and Giardia lamblia that cause gastrointestinal illness in humans, is still an issue in Southeast Asia (SEA). This study is the first attempt to detect the aforementioned protozoan parasites in water samples from countries in SEA, using real-time polymerase chain reaction (qPCR) assays.
    Matched MeSH terms: Drinking Water/parasitology*; Drinking Water/chemistry
  18. Kurniawan SB, Abdullah SRS, Imron MF, Said NSM, Ismail N', Hasan HA, et al.
    Int J Environ Res Public Health, 2020 Dec 12;17(24).
    PMID: 33322826 DOI: 10.3390/ijerph17249312
    The utilization of metal-based conventional coagulants/flocculants to remove suspended solids from drinking water and wastewater is currently leading to new concerns. Alarming issues related to the prolonged effects on human health and further pollution to aquatic environments from the generated nonbiodegradable sludge are becoming trending topics. The utilization of biocoagulants/bioflocculants does not produce chemical residue in the effluent and creates nonharmful, biodegradable sludge. The conventional coagulation-flocculation processes in drinking water and wastewater treatment, including the health and environmental issues related to the utilization of metal-based coagulants/flocculants during the processes, are discussed in this paper. As a counterpoint, the development of biocoagulants/bioflocculants for drinking water and wastewater treatment is intensively reviewed. The characterization, origin, potential sources, and application of this green technology are critically reviewed. This review paper also provides a thorough discussion on the challenges and opportunities regarding the further utilization and application of biocoagulants/bioflocculants in water and wastewater treatment, including the importance of the selection of raw materials, the simplification of extraction processes, the application to different water and wastewater characteristics, the scaling up of this technology to a real industrial scale, and also the potential for sludge recovery by utilizing biocoagulants/bioflocculants in water/wastewater treatment.
    Matched MeSH terms: Drinking Water*
  19. Lawson-Wood K, Jaafar M, Felipe-Sotelo M, Ward NI
    Environ Sci Pollut Res Int, 2021 Sep;28(35):48929-48941.
    PMID: 33928502 DOI: 10.1007/s11356-021-13902-w
    Some regions of Argentina are affected by high concentrations of molybdenum, arsenic and vanadium from natural sources in their groundwater. In particular, Mo levels in groundwater from Eduardo Castex (La Pampa, Argentina) typically exceed the guidelines for drinking water formerly established by WHO at 70 μg/L. Therefore, this study investigated the uptake of Mo in plants, using cress (Lepidium sativum L.) as a model using hydroponic experiments with synthetic solutions and groundwater from La Pampa. Cress grown from control experiments (150 μg/L Mo, pH 7) presented an average Mo concentration of 35.2 mg/kg (dry weight, d.w.), higher than the typical total plant range (0.7-2.5 mg/kg d.w.) in the literature. Using pooled groundwater samples (65.0-92.5 μg/L Mo) from wells of La Pampa (Argentina) as growth solutions resulted in significantly lower cress Mo levels (1.89-4.59 mg/kg d.w.) than were obtained for synthetic solutions of equivalent Mo concentration. This may be due to the high levels in these groundwater samples of As, V, Fe and Mn which are known to be associated with volcanic deposits. This research addressed the hitherto scarcity of data about the effect of various physicochemical parameters on the uptake of Mo in plants.
    Matched MeSH terms: Drinking Water*
  20. Lee CY
    J Anim Physiol Anim Nutr (Berl), 2015 Apr;99(2):317-25.
    PMID: 25196093 DOI: 10.1111/jpn.12247
    This study investigated the effect of repeated acute restraint stress and high-fat diet (HFD) on intestinal expression of nutrient transporters, concomitant to intestinal inflammation. The ability of adenosine to reverse any change was examined. Six-week-old male Sprague Dawley rats were divided into eight groups: control or non-stressed (C), rats exposed to restraint stress for 6 h per day for 14 days (S), control rats fed with HFD (CHF) and restraint-stressed rats fed with HFD (SHF); four additional groups received the same treatments and were also given 50 mg/l adenosine dissolved in drinking water. Fasting blood glucose, plasma insulin, adiponectin and corticosterone were measured. Intestinal expression of SLC5A1, SLC2A2, NPC1L1 and TNF-α was analysed. Histological evaluation was conducted to observe for morphological and anatomical changes in the intestinal tissues. Results showed that HFD feeding increased glucose and insulin levels, and repeated acute restraint stress raised the corticosterone level by 22%. Exposure to both stress and HFD caused a further increase in corticosterone to 41%, while decreasing plasma adiponectin level. Restraint stress altered intestinal expression of SLC5A1, SLC2A2 and NPC1L1. These changes were enhanced in SHF rats. Adenosine was found to alleviate HFD-induced increase in glucose and insulin levels, suppress elevation of corticosterone in S rats and improve the altered nutrient transporters expression profiles. It also prevented upregulation of TNF-α in the intestine of SHF rats. In summary, a combination of stress and HFD exaggerated stress- and HFD-induced pathophysiological changes in the intestine, and biochemical parameters related to obesity. Adenosine attenuated the elevation of corticosterone and altered expression of SLC5A1, NPC1L1 and TNF-α.
    Matched MeSH terms: Drinking Water
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links