Displaying publications 41 - 60 of 101 in total

Abstract:
Sort:
  1. Micky, V., Nur Quraitu’ Aini, T., Velnetti, L., Patricia Rowena, M.B., Christy, C., Lesley Maurice, B.
    MyJurnal
    Vibrio parahaemolyticus is a foodborne pathogen and their human infection is regularly associated with the consumption of raw or undercooked seafood and contaminated water supplies. Many conventional biochemical identification and confirmation procedures are performed to detect the presence of this pathogen, both from seafood or environmental samples. However, these procedures not only require two or more days to complete, they do not have the capabilities to determine the number of V. parahaemolyticus cells in any given samples. Thus, in this study we describe the development of a rapid SYBR green based real-time PCR assay, targeting the thermo labile (tl) gene of V. parahaemolyticus for the detection and enumeration of this bacterium from seafood and environmental samples. We report that the real-time PCR assay and the primers designed are highly specific, and only generated the desired amplicons with V. parahaemolyticus DNA samples against other bacteria and fungi species. Our assay is also highly sensitive, and, is able to detect V. parahaemolyticus with high coefficient values in concentrations as low as 1.0 pg/μl DNA for pure genomic DNA solutions and 10 cells/ml in serially diluted cell suspension and spiked samples. This assay can be completed in less than 3 hours and may be used as a tool for rapid determination of V. parahaemolyticus densities in the food industries, environmental risk assessment and for clinical diagnostics purposes.
    Matched MeSH terms: Food Industry
  2. Kristanti, R.A., Hadibarata, T., Punbusayakul, N.
    MyJurnal
    Natural preservatives having the great antioxidant and antimicrobial activity have been utilized in the food industry for many years. In the present study, the effect of of two brands of commercial Assam green tea infusion (represented by A and B) and 0.02% BHA/BHT on microbial growth, anti-lipid oxidation and color change were investigated in cooked beef. The green tea concentration has influenced to the results. It was found that A and B at the concentration of 250 mg/mL significantly reduced the population of Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium and E. coli in the cooked beef to an undetectable level within 2 days of storage at 4oC. A and B also exhibited higher anti-lipid oxidation activity compared to 0.02% BHA/BHT, and control. Assam green tea infusions in cooked beef significantly increased ∆ L*
    value and decreased ∆ a* and ∆ b* value (p ≤ 0.05). These indicate that Assam green tea infusion might be a potential candidate as a natural preservative for beef and other types of food.
    Matched MeSH terms: Food Industry
  3. Azizah Othman, Nor Juwariah Mukhtar, Nurul Syakirin Ismail, Sui Kiat Chang
    MyJurnal
    Water and ethanolic extracts of four Malaysian local herbs, Tenggek burung (Melicope Iunu-ankenda), Kesum (Polygonum minus), Curry leave (Murraya Koenigii) and Salam (Eugenia polyantha) were investigated for their total phenolic content (TPC), total flavonoids content (TFC) and antioxidant activities (AA). Total phenolic content (TPC) of the herbs was determined using Folin-Ciocalteu reagent assay while the total flavonoid content (TFC) was determined based on aluminium chloride-flavonoid assay. The determination of AA was done using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activitiy and β-carotene bleaching assays (BCB). Different extraction solvents significantly affected the TPC, TFC and AA of all herbs studied (p < 0.05). Both Tenggek burung and Kesum showed highest TPC, TFC and AA regardless of extraction solvents compared to Curry leave and Salam. All herbs showed strong positive correlation between TPC and DPPH assay. However, negative and low correlation between TFC and AA were obtained for all herbs studied. This showed that phenolic compounds of certain structures were responsible for the AA of all the herbs in this study. In conclusion, all herbs in this study except curry leave could be inexpensive sources of good natural antioxidants with nutraceutical potential in food industry.
    Matched MeSH terms: Food Industry
  4. Jumbri K, Al-Haniff Rozy MF, Ashari SE, Mohamad R, Basri M, Fard Masoumi HR
    PLoS One, 2015;10(12):e0144664.
    PMID: 26657030 DOI: 10.1371/journal.pone.0144664
    Kojic acid is widely used to inhibit the browning effect of tyrosinase in cosmetic and food industries. In this work, synthesis of kojic monooleate ester (KMO) was carried out using lipase-catalysed esterification of kojic acid and oleic acid in a solvent-free system. Response Surface Methodology (RSM) based on central composite rotatable design (CCRD) was used to optimise the main important reaction variables, such as enzyme amount, reaction temperature, substrate molar ratio, and reaction time along with immobilised lipase from Candida Antarctica (Novozym 435) as a biocatalyst. The RSM data indicated that the reaction temperature was less significant in comparison to other factors for the production of a KMO ester. By using this statistical analysis, a quadratic model was developed in order to correlate the preparation variable to the response (reaction yield). The optimum conditions for the enzymatic synthesis of KMO were as follows: an enzyme amount of 2.0 wt%, reaction temperature of 83.69°C, substrate molar ratio of 1:2.37 (mmole kojic acid:oleic acid) and a reaction time of 300.0 min. Under these conditions, the actual yield percentage obtained was 42.09%, which is comparably well with the maximum predicted value of 44.46%. Under the optimal conditions, Novozym 435 could be reused for 5 cycles for KMO production percentage yield of at least 40%. The results demonstrated that statistical analysis using RSM can be used efficiently to optimise the production of a KMO ester. Moreover, the optimum conditions obtained can be applied to scale-up the process and minimise the cost.
    Matched MeSH terms: Food Industry
  5. Chen JX, Wong SF, Lim PK, Mak JW
    PMID: 26429550 DOI: 10.1080/19440049.2015.1101494
    Widespread food poisoning due to microbial contamination has been a major concern for the food industry, consumers and governing authorities. This study is designed to determine the levels of fungal contamination in edible bird nests (EBNs) using culture and molecular techniques. Raw EBNs were collected from five house farms, and commercial EBNs were purchased from five Chinese traditional medicine shops (companies A-E) in Peninsular Malaysia. The fungal contents in the raw and commercial EBNs, and boiled and unboiled EBNs were determined. Culturable fungi were isolated and identified. In this study, the use of these methods revealed that all EBNs had fungal colony-forming units (CFUs) that exceeded the limit set by Standards and Industrial Research Institute of Malaysia (SIRIM) for yeast and moulds in EBNs. There was a significant difference (p < 0.05) in the number of types of fungi isolated from raw and commercial EBNs, but no significant difference in the reduction of the number of types of fungi after boiling the EBNs (p > 0.05). The types of fungi isolated from the unboiled raw EBNs were mainly soil, plant and environmental fungi, while the types of fungi isolated from the boiled raw EBNs, unboiled and boiled commercial EBNs were mainly environmental fungi. Aspergillus sp., Candida sp., Cladosporium sp., Neurospora sp. and Penicillum sp. were the most common fungi isolated from the unboiled and boiled raw and commercial EBNs. Some of these fungi are mycotoxin producers and cause opportunistic infections in humans. Further studies to determine the mycotoxin levels and methods to prevent or remove these contaminations from EBNs for safe consumption are necessary. The establishment and implementation of stringent regulations for the standards of EBNs should be regularly updated and monitored to improve the quality of the EBNs and consumer safety.
    Matched MeSH terms: Food Industry
  6. So AD, Shah TA, Roach S, Ling Chee Y, Nachman KE
    J Law Med Ethics, 2015;43 Suppl 3:38-45.
    PMID: 26243242 DOI: 10.1111/jlme.12273
    The growing demand for animal products and the widespread use of antibiotics in bringing food animals to market have heightened concerns over cross-species transmission of drug resistance. Both the biology and emerging epidemiology strongly support the need for global coordination in stemming the generation and propagation of resistance, and the patchwork of global and country-level regulations still leaves significant gaps. More importantly, discussing such a framework opens the door to taking modular steps towards solving these challenges - for example, beginning among targeted parties rather than all countries, tying accountability to financial and technical support, or taxing antibiotic use in animals to deter low-value usage of these drugs. An international agreement would allow integrating surveillance data collection, monitoring and enforcement, research into antibiotic alternatives and more sustainable approaches to agriculture, technical assistance and capacity building, and financing under the umbrella of a One Health approach.
    Matched MeSH terms: Food Industry
  7. Siew, E.S., Chin, S.K., Soon, W.L.
    MyJurnal
    Dried kiwis are highly needed in food industries such as cereals, ice-cream, beverages and supplemental products. In this paper, drying characteristics and product quality of hot air dried kiwi slices were studied. Hot air drying of kiwi slices was investigated at drying temperature ranged from 40°C to 60°C and slice thickness of 0.3 cm and 0.6 cm. Results showed that drying of kiwi slices at higher drying temperature stimulates the drying rate, which leads to shorter total drying time required. The drying kinetics of kiwi slices was best fitted by approximation diffusion model. Increased in drying temperatures and slice thickness of kiwi enhanced the effective moisture diffusivity (Deff). The highest Deff of the kiwi slices was recorded as 1.5681 x 10-8 m2 /min at slice thickness of 0.6 cm. In terms of quality analysis, kiwi slices dried at temperature of 60°C with fastest drying rate retained most of the Total Phenolic Content (TPC) in the dried sample. However, drying of kiwi slices at high drying temperature deteriorated the vitamin C content of kiwi slices due to thermal degradation. Thinner kiwi slices could preserve higher amount of TPC and vitamin C during the drying process, yet the best hot air drying temperature for drying of kiwi slices could be relied on the consumers’ preference based on the dried product quality as reported in the current work.
    Matched MeSH terms: Food Industry
  8. Normah, I., Nur Anati, J.
    MyJurnal
    Threadfin bream (Nemipterus japonicas) muscle was hydrolysed using protease extracted from
    bilimbi (Averrhoa bilimbi L.) fruit. This study was performed in order to compare the efficiency of bilimbi protease in producing threadfin bream protein hydrolysate with the commercial protease; alcalase 2.4 L. Initially, protease was extracted and then purified using 40% ammonium sulfate precipitation method. The proteolytic activity of the crude extract and purified protease was determined. Precipitation using 40% ammonium sulfate resulted in bilimbi protease specific activity of 2.36 U/mg and 23.13% recovery. Threadfin bream hydrolysate was prepared based on the pH-stat method by hydrolysis for 2 hrs. Hydrolysis using bilimbi protease produced 34.76% degree of hydrolysis (DH) and 3.75% yield while hydrolysis using alcalase resulted in 86.6% DH with 22.78% yield. Alcalase hydrolysate showed higher solubility than bilimbi protease hydrolysate at pH 7 with 70.87 and 32.16% solubility, respectively. Results also showed that protein content of threadfin bream hydrolysate produced using alcalase was higher (86.86%) than those produced using bilimbi protease (22.12%). However, both hydrolysates showed low moisture content between 3.93 to 7.00%. The molecular weight distribution analysis using SDS–PAGE indicated the distribution of smaller peptides especially in alcalase hydrolysate. Overall, the results showed that alcalase is more efficient enzyme choice than bilimbi protease for preparing threadfin bream hydrolysates. However, both hydrolysates could play an important role thus contribute to the food industry.
    Matched MeSH terms: Food Industry
  9. Kohilavani, Zzaman, W., Abdullah, W.W.N., Tajul, A.Y.
    MyJurnal
    Since early 2000, Malaysian food-export industries have recognised the demand for food
    compliant with Islamic dietary law (halal), with primary consumer choices based on quality
    and safety. The lack of documented monitoring for health hazards and haram substances led
    to the withdrawal of certification. The HACCP-based halal quality-assurance standards were
    developed as a result, using the HACCP criteria for safety, religious dietary requirement and
    quality. Halal critical control points (HlCCP) are identified using HACCP criteria and a question
    tree on HALAL processing and storage. This approach harmonizes and unifies halal processing
    with the specific food industry via an HACCP–based halal quality-assurance system.
    Matched MeSH terms: Food Industry
  10. Geetha, P., Arivazhagan, R., Periyar Selvam, S., Ida, I.M.
    MyJurnal
    Chhana jalebi is a popular product in middle and northern parts of India and is prepared by frying of batter made from chhana, maida and water and finally soaking in sugar syrup. This chhana based fried sweet product is being prepared and sold by halwais in Indian sweet market. It has a coiled structure with syrupy interiors and chewy body. It has close resemblance to maida jalebi and khoa jalebi, but has firmer coils. The manufacturing procedure varies widely from manufacturer to manufacturer. There was no proper (standard) manufacturing method available for the preparation of chhana jalebi. Hence, a study was conducted to standardize a method for its manufacture consequently it will be helpful to produce the jalebi on a commercial scale. The chhana jalebi was standardized by various process parameters such as fat level in milk 3%, ratio of maida - chhana combination 1:1, water level in batter 45%, frying time and temperature 160-170°C, sugar syrup concentration 68°Brix and soaking time 2 min. Standardized product was analyzed by various physical, chemical, microbial, sensory and textural characteristics. The product had a light brown coloured coiled appearance, crispy body and texture. The nutritional composition percentage of chhana jalebi was protein 5.71±0.20, carbohydrate 67.11±0.19, fat 12.53±0.17 and moisture 20.23±0.25. The shelf life of the jalebi was found to be 5 days at 28°C. This was enhanced to 18 days by using potassium sorbate as preservative at the permitted levels. The optimized process and enhanced shelf life will pave way for commercialization and mechanization of chhana jalebi by food industry.
    Matched MeSH terms: Food Industry
  11. Ng, A.W.R., Wong, C.W.
    MyJurnal
    Polyphenol oxidase (PPO) catalyzes the conversion of phenolic compounds into o-quinones which will lead to food browning. This phenomenon causes huge implications on food industries, as it degrades food quality over time. By combining both ammonium sulphate precipitation and gel filtration chromatography, PPO was partially purified up to 5.26-fold with 11.23% yield. The enzyme activity was 5120 EU/mL using 4-methylcatechol as substrate. Maximal PPO activity was found at 30oC, pH 5.0 for 4-methylcatechol and 40°C, pH 6.0 for catechol. The PPO showed a higher affinity towards 4-methylcatechol but higher thermal stability when reacting with catechol. The Km and Vmax values were 5.00 mM, 2000 EU/ml for 4-methylcatechol and 10.79 mM, 526.32 EU/ml for catechol. Energy for inactivation (Ea) obtained using 4-methylcatechol and catechol were 12.57 kJ/mol and 14.23 kJ/mol from respective substrates. Sodium disulfite was a better inhibitor where 79.17% of PPO inhibition was achieved. The isolation and characterization of round brinjal PPO serves as a guideline to predict the behavior of enzyme, leading to effective prevention of its browning during processing and storage.
    Matched MeSH terms: Food Industry
  12. Hashim, P., Mohd Ridzwan, M.S., Bakar, J., Mat Hashim, D.
    MyJurnal
    This paper reviews the structure, function and applications of collagens in food industry. Collagen is the most abundant protein in animal origin. It helps maintaining the structure of various tissues and organs. It is a modern foodstuff and widely used in food and beverage industries to improve the elasticity, consistency and stability of products. Furthermore, it also enhances the quality, nutritional and health value of the products. Collagen has been applied as protein dietary supplements, carriers, food additive, edible film and coatings. Therefore, this paper will review the functions and applications of collagen in the food and beverage industries. The structure and composition of collagen are also included.
    Matched MeSH terms: Food Industry
  13. Khan, M.R.T., Chamhuri, S., Farah, H.S.
    MyJurnal
    The term ‘sustainable’ has become a buzz word in today’s business world. Consumption of green food is just one facet or ‘trip’ to the whole journey of sustainable development. This paper explores and synthesizes the findings of research on green food consumption in Malaysia. The already conducted studies in Malaysia have revealed various demographic and psychographic factors contributing to consumers’ intension to buy green food. This study revealed that majority of Malaysians consider food safety and health issue to be their prime reason for buying green food. To ensure the long term sustainability, the green food as well as the broad food industry in Malaysia must evidently understand the consumers’ buying motives of green food. Although mentionable limitation of the paper is the reliance on only published literature, this can be used as input for further large scale empirical research. The paper concludes with implications and suggestions for further research.
    Matched MeSH terms: Food Industry
  14. Mohd. Firdaus Siau, A., Son, R., Mohhiddin, O., Toh, P.S., Chai, L.C
    MyJurnal
    This cross sectional study aimed to explored the pattern of socio-demographic distribution, to assess the level of KAP of food safety; and the relationship with the level of premise cleanliness in the food courts at Putrajaya. Distribution of food handlers socio-demographic profile was Malaysian (62.0%), male (70.4%), working experienced in food industry (82.0%) and attended food handler training (85.0%). The mean age was 28.7 years and 85.4% having income not less than RM 1,500 monthly. 78.5% of the food handlers at educational level were found as primary/secondary school. 15.0% of the respondents had not attended the food sanitation training. The findings reveal that food handlers’ KAP were high with a mean percentage score more than 79.0%.The majority of the food courts in Putrajaya had consistently moderate level of cleanliness (63.5%) with the mean of 83.03%. Only 27.4% of the food courts were in the level of clean situation (>89% of premise cleanliness score) and 9.1% were not in the clean condition (
    Matched MeSH terms: Food Industry
  15. Thomas, R., Bhat, Rajeev, Kuang, Y.T.
    MyJurnal
    In this study, three popular, regionally grown rice varieties (Bario, brown and white) were compared with three of the most popular and highly marketed imported rice varieties (black, glutinous and basmati rice) in Penang region of Malaysia. Rice samples were evaluated for amino acids, fatty acids, minerals, heavy metals and dietary fiber composition. Overall, amino acids content among all the rice samples were comparable to each other. Results with regard to minerals showed potassium to be high in brown rice (197.41 mg/100g), while magnesium was recorded to be high in black rice (107.21 mg/100g). Heavy metals such as cadmium, nickel, mercury and lead, though present, they were in negligible amounts. Among all the rice varieties investigated, the total saturated fatty acid and unsaturated fatty acid content was highest in black rice (5.89%). The soluble dietary fiber was higher in white rice (16.39%), whereas insoluble dietary fiber was high in brown (16.51%) and black rice (14.49%), respectively. Results generated from this study is anticipated to benefit both the health wary consumers (based on their potential nutritional attributes) as well as the local food industries to choose the best rice variety while developing novel rice based food products.
    Matched MeSH terms: Food Industry
  16. Tan LT, Lee LH, Yin WF, Chan CK, Abdul Kadir H, Chan KG, et al.
    PMID: 26294929 DOI: 10.1155/2015/896314
    Ylang-ylang (Cananga odorata Hook. F. & Thomson) is one of the plants that are exploited at a large scale for its essential oil which is an important raw material for the fragrance industry. The essential oils extracted via steam distillation from the plant have been used mainly in cosmetic industry but also in food industry. Traditionally, C. odorata is used to treat malaria, stomach ailments, asthma, gout, and rheumatism. The essential oils or ylang-ylang oil is used in aromatherapy and is believed to be effective in treating depression, high blood pressure, and anxiety. Many phytochemical studies have identified the constituents present in the essential oils of C. odorata. A wide range of chemical compounds including monoterpene, sesquiterpenes, and phenylpropanoids have been isolated from this plant. Recent studies have shown a wide variety of bioactivities exhibited by the essential oils and the extracts of C. odorata including antimicrobial, antibiofilm, anti-inflammatory, antivector, insect-repellent, antidiabetic, antifertility and antimelanogenesis activities. Thus, the present review summarizes the information concerning the traditional uses, phytochemistry, and biological activities of C. odorata. This review is aimed at demonstrating that C. odorata not only is an important raw material for perfume industry but also considered as a prospective useful plant to agriculture and medicine.
    Matched MeSH terms: Food Industry
  17. Tan TB, Yussof NS, Abas F, Mirhosseini H, Nehdi IA, Tan CP
    Food Chem, 2016 Mar 1;194:416-23.
    PMID: 26471574 DOI: 10.1016/j.foodchem.2015.08.045
    A solvent displacement method was used to prepare lutein nanodispersions. The effects of processing parameters (addition method, addition rate, stirring time and stirring speed) and emulsifiers with different stabilizing mechanisms (steric, electrostatic, electrosteric and combined electrostatic-steric) on the particle size and particle size distribution (PSD) of the nanodispersions were investigated. Among the processing parameters, only the addition method and stirring time had significant effects (p<0.05) on the particle size and PSD. For steric emulsifiers, Tween 20, 40, 60 and 80 were used to produce nanodispersions successfully with particle sizes below 100nm. Tween 80 (steric) was then chosen for further comparison against sodium dodecyl sulfate (SDS) (electrostatic), sodium caseinate (electrosteric) and SDS-Tween 80 (combined electrostatic-steric) emulsifiers. At the lowest emulsifier concentration of 0.1%, all the emulsifiers invariably produced stable nanodispersions with small particle sizes (72.88-142.85nm) and narrow PSDs (polydispersity index<0.40).
    Matched MeSH terms: Food Industry/methods
  18. Darajeh N, Idris A, Fard Masoumi HR, Nourani A, Truong P, Sairi NA
    J Environ Manage, 2016 Oct 01;181:343-352.
    PMID: 27393941 DOI: 10.1016/j.jenvman.2016.06.060
    While the oil palm industry has been recognized for its contribution towards economic growth and rapid development, it has also contributed to environmental pollution due to the production of huge quantities of by-products from the oil extraction process. A phytoremediation technique (floating Vetiver system) was used to treat Palm Oil Mill Secondary Effluent (POMSE). A batch study using 40 L treatment tanks was carried out under different conditions and Response Surface Methodology (RSM) was applied to optimize the treatment process. A three factor central composite design (CCD) was used to predict the experimental variables (POMSE concentration, Vetiver plant density and time). An extraordinary decrease in organic matter as measured by BOD and COD (96% and 94% respectively) was recorded during the experimental duration of 4 weeks using a density of 30 Vetiver plants. The best and lowest final BOD of 2 mg/L was obtained when using 15 Vetiver plants after 13 days for low concentration POMSE (initial BOD = 50 mg/L). The next best result of BOD at 32 mg/L was obtained when using 30 Vetiver plants after 24 days for medium concentration POMSE (initial BOD = 175 mg/L). These results confirmed the validity of the model, and the experimental value was determined to be quite close to the predicted value, implying that the empirical model derived from RSM experimental design can be used to adequately describe the relationship between the independent variables and response. The study showed that the Vetiver system is an effective method of treating POMSE.
    Matched MeSH terms: Food Industry*
  19. Hassan, S.H., John Kua, S.B., Harun, H.
    MyJurnal
    The attention on genetically modified (GM) food industry is increasing due to the flourishing
    of biotechnology. However, there are some debates on the associated benefits and risks of
    employing modification technology in food industry. This study strives to examine the causes
    that determine consumers’ benefit and risk perceptions on GM foods. Besides, the influence of
    perceived benefit and risk of GM food on consumers’ attitude is investigated. The empirical
    results of this study showed that GM food knowledge, and GM food characteristics have been
    acting as important predictors of both benefits and risks perceptions. Further, it is also found
    that perceived benefits showed significant positive influence on attitude, and attitude affects
    purchase intention towards GM food. Research implications to policy makers, scientists, and
    market practitioners are covered, in which suggestions and recommendations are provided
    to these parties. Lastly, research implications and recommendations to future research are
    discussed.
    Matched MeSH terms: Food Industry
  20. He L, Mao Y, Zhang L, Wang H, Alias SA, Gao B, et al.
    BMC Biotechnol, 2017 02 28;17(1):22.
    PMID: 28245836 DOI: 10.1186/s12896-017-0343-8
    BACKGROUND: α-Amylase plays a pivotal role in a broad range of industrial processes. To meet increasing demands of biocatalytic tasks, considerable efforts have been made to isolate enzymes produced by extremophiles. However, the relevant data of α-amylases from cold-adapted fungi are still insufficient. In addition, bread quality presents a particular interest due to its high consummation. Thus developing amylases to improve textural properties could combine health benefits with good sensory properties. Furthermore, iron oxide nanoparticles provide an economical and convenient method for separation of biomacromolecules. In order to maximize the catalytic efficiency of α-amylase and support further applications, a comprehensive characterization of magnetic immobilization of α-amylase is crucial and needed.

    RESULTS: A novel α-amylase (AmyA1) containing an open reading frame of 1482 bp was cloned from Antarctic psychrotolerant fungus G. pannorum and then expressed in the newly constructed Aspergillus oryzae system. The purified recombinant AmyA1 was approximate 52 kDa. AmyA1 was optimally active at pH 5.0 and 40 °C, and retained over 20% of maximal activity at 0-20 °C. The K m and V max values toward soluble starch were 2.51 mg/mL and 8.24 × 10-2 mg/(mL min) respectively, with specific activity of 12.8 × 103 U/mg. AmyA1 presented broad substrate specificity, and the main hydrolysis products were glucose, maltose, and maltotetraose. The influence of AmyA1 on the quality of bread was further investigated. The application study shows a 26% increase in specific volume, 14.5% increase in cohesiveness and 14.1% decrease in gumminess in comparison with the control. AmyA1 was immobilized on magnetic nanoparticles and characterized. The immobilized enzyme showed improved thermostability and enhanced pH tolerance under neutral conditions. Also, magnetically immobilized AmyA1 can be easily recovered and reused for maximum utilization.

    CONCLUSIONS: A novel α-amylase (AmyA1) from Antarctic psychrotolerant fungus was cloned, heterologous expression in Aspergillus oryzae, and characterized. The detailed report of the enzymatic properties of AmyA1 gives new insights into fungal cold-adapted amylase. Application study showed potential value of AmyA1 in the food and starch fields. In addition, AmyA1 was immobilized on magnetic nanoparticles and characterized. The improved stability and longer service life of AmyA1 could potentially benefit industrial applications.

    Matched MeSH terms: Food Industry/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links