Displaying publications 41 - 60 of 75 in total

Abstract:
Sort:
  1. Abedin MZ, Karim AA, Latiff AA, Gan CY, Ghazali FC, Barzideh Z, et al.
    Nat Prod Res, 2014;28(16):1302-5.
    PMID: 24670209 DOI: 10.1080/14786419.2014.900617
    The molecular mass distribution, amino acid composition and radical-scavenging activity of collagen hydrolysates prepared from collagen isolated from the sea cucumber Stichopus vastus were investigated. β and α1 chains of the collagen were successfully hydrolysed by trypsin. The molecular mass distribution of the hydrolysates ranged from 5 to 25 kDa, and they were rich in glycine, alanine, glutamate, proline and hydroxyproline residues. The hydrolysates exhibited excellent radical-scavenging activity. These results indicate that collagen hydrolysates from S. vastus can be used as a functional ingredient in food and nutraceutical products.
    Matched MeSH terms: Free Radical Scavengers/chemistry
  2. Tan JJ, Azmi SM, Yong YK, Cheah HL, Lim V, Sandai D, et al.
    PLoS One, 2014;9(5):e96800.
    PMID: 24802273 DOI: 10.1371/journal.pone.0096800
    Stem cells with enhanced resistance to oxidative stress after in vitro expansion have been shown to have improved engraftment and regenerative capacities. Such cells can be generated by preconditioning them with exposure to an antioxidant. In this study we evaluated the effects of Tualang honey (TH), an antioxidant-containing honey, on human corneal epithelial progenitor (HCEP) cells in culture. Cytotoxicity, gene expression, migration, and cellular resistance to oxidative stress were evaluated. Immunofluorescence staining revealed that HCEP cells were holoclonal and expressed epithelial stem cell marker p63 without corneal cytokeratin 3. Cell viability remained unchanged after cells were cultured with 0.004, 0.04, and 0.4% TH in the medium, but it was significantly reduced when the concentration was increased to 3.33%. Cell migration, tested using scratch migration assay, was significantly enhanced when cells were cultured with TH at 0.04% and 0.4%. We also found that TH has hydrogen peroxide (H2O2) scavenging ability, although a trace level of H2O2 was detected in the honey in its native form. Preconditioning HCEP cells with 0.4% TH for 48 h showed better survival following H2O2-induced oxidative stress at 50 µM than untreated group, with a significantly lower number of dead cells (15.3 ± 0.4%) were observed compared to the untreated population (20.5 ± 0.9%, p<0.01). Both TH and ascorbic acid improved HCEP viability following induction of 100 µM H2O2, but the benefit was greater with TH treatment than with ascorbic acid. However, no significant advantage was demonstrated using 5-hydroxymethyl-2-furancarboxaldehyde, a compound that was found abundant in TH using GC/MS analysis. This suggests that the cellular anti-oxidative capacity in HCEP cells was augmented by native TH and was attributed to its antioxidant properties. In conclusion, TH possesses antioxidant properties and can improve cell migration and cellular resistance to oxidative stress in HCEP cells in vitro.
    Matched MeSH terms: Free Radical Scavengers/chemistry
  3. Samaram S, Mirhosseini H, Tan CP, Ghazali HM, Bordbar S, Serjouie A
    Food Chem, 2015 Apr 1;172:7-17.
    PMID: 25442517 DOI: 10.1016/j.foodchem.2014.08.068
    The present study aimed to investigate the effects of ultrasound-assisted extraction (UAE) condition on the yield, antioxidant activity and stability of the oil from papaya seed. The studied ultrasound variables were time, temperature, ultrasound power and solvent to sample ratio. The main goal was to optimise UAE condition providing the highest recovery of papaya seed oil with the most desirable antioxidant activity and stability. The interaction of ultrasound variables had the most and least significant effects on the antioxidant activity and stability, respectively. Ultrasound-assisted extraction provided a relatively high oil recovery (∼ 73%) from papaya seed. The strongest antioxidant activity was achieved by the extraction at the elevated temperature using low solvent to sample ratio. The optimum ultrasound extraction was set at the elevated temperature (62.5 °C) for 38.5 min at high ultrasound power (700 W) using medium solvent to sample ratio (∼ 7:1 v/w). The optimum point was practically validated.
    Matched MeSH terms: Free Radical Scavengers/chemistry
  4. Ghasemzadeh A, Jaafar HZ, Juraimi AS, Tayebi-Meigooni A
    Molecules, 2015 Jun 11;20(6):10822-38.
    PMID: 26111171 DOI: 10.3390/molecules200610822
    Secondary metabolite contents (total phenolic, flavonoid, tocopherol, and tocotrienol) and antioxidant activities of Hashemi rice bran extracts obtained by ultrasound-assisted and traditional solvent (ethanol and 50:50 (v/v) ethanol-water) extraction techniques were compared. Phenolic and, flavonoid compounds were identified using ultra-high performance liquid chromatography and method validation was performed. Significant differences (p < 0.05) were observed among the different extraction techniques upon comparison of phytochemical contents and antioxidant activities. The extracts obtained using the ethanol-water (50:50 v/v) ultrasonic technique showed the highest amounts of total phenolics (288.40 mg/100 g dry material (DM)), total flavonoids (156.20 mg/100 g DM), and total tocotrienols (56.23 mg/100 g DM), and the highest antioxidant activity (84.21% 1,1-diphenyl-2-picrylhydrazyl (DPPH), 65.27% β-carotene-linoleic bleaching and 82.20% nitric oxide scavenging activity). Secondary metabolite contents and antioxidant activities of the rice bran extracts varied depending of the extraction method used, and according to their effectiveness, these were organized in a decreasing order as follows: ethanol-water (50:50 v/v) ultrasonic, ethanol-water (50:50 v/v) maceration, ethanol ultrasonic and ethanol maceration methods. Ferulic, gallic and chlorogenic acids were the most abundant phenolic compounds in rice bran extracts. The phytochemical constituents of Hashemi rice bran and its antioxidant properties provides insights into its potential application to promote health.
    Matched MeSH terms: Free Radical Scavengers/chemistry
  5. Lim CK, Subramaniam H, Say YH, Jong VY, Khaledi H, Chee CF
    Nat Prod Res, 2015;29(21):1970-7.
    PMID: 25716662 DOI: 10.1080/14786419.2015.1015020
    A new chromanone acid, namely caloteysmannic acid (1), along with three known compounds, calolongic acid (2), isocalolongic acid (3) and stigmasterol (4) were isolated from the stem bark of Calophyllum teysmannii. All these compounds were evaluated for their cytotoxic and antioxidant activities in the MTT and DPPH assays, respectively. The structure of compound 1 was determined by means of spectroscopic methods including 1D and 2D NMR experiments as well as HR-EIMS spectrometry. The stereochemical assignment of compound 1 was done based on the NMR results and X-ray crystallographic analysis. The preliminary assay results revealed that all the test compounds displayed potent inhibitory activity against HeLa cancer cell line, in particular with compound 1 which exhibited the highest cytotoxic activity comparable to the positive control used, cisplatin. However, no significant antioxidant activity was observed for all the test compounds in the DPPH radical scavenging capacity assay.
    Matched MeSH terms: Free Radical Scavengers/chemistry
  6. Chidan Kumar CS, Loh WS, Chandraju S, Win YF, Tan WK, Quah CK, et al.
    PLoS One, 2015;10(3):e0119440.
    PMID: 25742494 DOI: 10.1371/journal.pone.0119440
    A series of N-ethyl phthalimide esters 4(a-n) were synthesized and characterized by spectroscopic studies. Further, the molecular structure of majority of compounds were analysed by single crystal X-ray diffraction studies. The X-ray analysis revealed the importance of substituents on the crystal stability and molecular packing. All the synthesized compounds were tested for in vitro antioxidant activity by DPPH radical scavenging, FRAP and CUPRAC methods. Few of them have shown good antioxidant activity.
    Matched MeSH terms: Free Radical Scavengers/chemistry
  7. Khorasani Esmaeili A, Mat Taha R, Mohajer S, Banisalam B
    Biomed Res Int, 2015;2015:643285.
    PMID: 26064936 DOI: 10.1155/2015/643285
    In the present study the extracts of in vivo and in vitro grown plants as well as callus tissue of red clover were tested for their antioxidant activities, using different extraction solvent and different antioxidant assays. The total flavonoid and phenolic contents as well as extraction yield of the extracts were also investigated to determine their correlation with the antioxidant activity of the extracts. Among all the tested extracts the highest amounts of total phenolic and total flavonoids content were found in methanol extract of in vivo grown plants. The antioxidant activity of tested samples followed the order in vivo plant extract > callus extract > in vitro extract. The highest reducing power, 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging, and chelating power were found in methanol extracts of in vivo grown red clover, while the chloroform fraction of in vivo grown plants showed the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, superoxide anion radical scavenging and hydrogen peroxide scavenging compared to the other tested extracts. A significant correlation was found between the antioxidant activity of extracts and their total phenolic and total flavonoid content. According to the findings, the extract of in vitro culture of red clover especially the callus tissue possesses a comparable antioxidant activity to the in vivo cultured plants' extract.
    Matched MeSH terms: Free Radical Scavengers/chemistry
  8. Al-Amiery AA, Al-Majedy YK, Kadhum AA, Mohamad AB
    PLoS One, 2015;10(7):e0132175.
    PMID: 26147722 DOI: 10.1371/journal.pone.0132175
    New derivatives of 7-hydroxy-4-methylcoumarin were synthesized using a chemical method and a microwave-assisted method to compare the feasibility, reaction times, and yields of the product. The newly synthesized coumarins were characterized by different spectroscopic techniques (FT-IR and NMR) and micro-elemental analysis (CHNS). In vitro antioxidant activities of these compounds were evaluated against hydrogen peroxide and were compared with standard natural antioxidant, vitamin C. Our results reveal that these compounds exhibit excellent radical scavenging activities.
    Matched MeSH terms: Free Radical Scavengers/chemistry*
  9. Musa KH, Abdullah A, Al-Haiqi A
    Food Chem, 2016 Mar 1;194:705-11.
    PMID: 26471610 DOI: 10.1016/j.foodchem.2015.08.038
    A new computational approach for the determination of 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity (DPPH-RSA) in food is reported, based on the concept of machine learning. Trolox standard was mix with DPPH at different concentrations to produce different colors from purple to yellow. Artificial neural network (ANN) was trained on a typical set of images of the DPPH radical reacting with different levels of Trolox. This allowed the neural network to classify future images of any sample into the correct class of RSA level. The ANN was then able to determine the DPPH-RSA of cinnamon, clove, mung bean, red bean, red rice, brown rice, black rice and tea extract and the results were compared with data obtained using a spectrophotometer. The application of ANN correlated well to the spectrophotometric classical procedure and thus do not require the use of spectrophotometer, and it could be used to obtain semi-quantitative results of DPPH-RSA.
    Matched MeSH terms: Free Radical Scavengers/chemistry*
  10. Yehye WA, Abdul Rahman N, Saad O, Ariffin A, Abd Hamid SB, Alhadi AA, et al.
    Molecules, 2016 Jun 28;21(7).
    PMID: 27367658 DOI: 10.3390/molecules21070847
    A new series of multipotent antioxidants (MPAOs), namely Schiff base-1,2,4-triazoles attached to the oxygen-derived free radical scavenging moiety butylated hydroxytoluene (BHT) were designed and subsequently synthesized. The structure-activity relationship (SAR) of the designed antioxidants was established alongside the prediction of activity spectra for substances (PASS). The antioxidant activities of the synthesized compounds 4-10 were tested by the DPPH bioassay. The synthesized compounds 4-10 inhibited stable DPPH free radicals at a level that is 10(-4) M more than the well-known standard antioxidant BHT. Compounds 8-10 with para-substituents were less active than compounds 4 and 5 with trimethoxy substituents compared to those with a second BHT moiety (compounds 6 and 7). With an IC50 of 46.13 ± 0.31 µM, compound 6 exhibited the most promising in vitro inhibition at 89%. Therefore, novel MPAOs containing active triazole rings, thioethers, Schiff bases, and BHT moieties are suggested as potential antioxidants for inhibiting oxidative stress processes and scavenging free radicals, hence, this combination of functions is anticipated to play a vital role in repairing cellular damage, preventing various human diseases and in medical therapeutic applications.
    Matched MeSH terms: Free Radical Scavengers/chemistry
  11. Tan WN, Khairuddean M, Wong KC, Tong WY, Ibrahim D
    J Asian Nat Prod Res, 2016 Aug;18(8):804-11.
    PMID: 26999039 DOI: 10.1080/10286020.2016.1160071
    A new xanthone, namely garcinexanthone G (1), along with eight known compounds, stigmasta-5,22-dien-3β-ol (2), stigmasta-5,22-dien-3-O-β-glucopyranoside (3), 3β-acetoxy-11α,12α-epoxyoleanan-28,13β-olide (4), 2,6-dimethoxy-p-benzoquinone (5), 1,3,5-trihydroxy-2-methoxyxanthone (6), 1,3,7-trihydroxyxanthone (7), kaempferol (8) and quercetin (9), were isolated from the stem bark of Garcinia atroviridis. Their structures were elucidated based on spectroscopic methods including nuclear magnetic resonance (NMR-1D and 2D), UV, IR, and mass spectrometry. All the isolated compounds were evaluated for their antioxidant properties based on the DPPH radical scavenging activities. Results showed that 1,3,7-trihydroxyxanthone and quercetin showed significant antioxidant activities with EC50 values of 16.20 and 12.68 μg/ml, respectively, as compared to the control, ascorbic acid (7.4 μg/ml).
    Matched MeSH terms: Free Radical Scavengers/chemistry
  12. Somasundaram SN, Shanmugam S, Subramanian B, Jaganathan R
    Int J Biol Macromol, 2016 Oct;91:1215-23.
    PMID: 27370748 DOI: 10.1016/j.ijbiomac.2016.06.084
    The present study was aimed to investigate the antioxidant and cytotoxicity activity against HCT-15 of fucoidan from Sargassum cinereum. Purification of fucoidan was done by DEAE cellulose and dialysis. Physicochemical characterization of fucoidan was analysed by calorimetric assay, FT-IR, HPLC and NMR. The extracted fucoidan contains 65.753% of fucose and 3.7±1.54% of sulphate respectively. HPLC results showed that the fucoidan contains the monosaccharide composition such as fucose, galactose, mannose and xylose. Antioxidant effect of fucoidan in Sargassum Cinereum was determined by DPPH. The maximum DPPH activity was found at the concentration of 100μg, where as the crude extract showed the scavenging activity was 63.58±0.56%. Cytotoxicity effect was done by MTT assay. Fucoidan extract caused about 50% of cell death after 24h of incubation with 75±0.9037μg/ml against HCT-15.
    Matched MeSH terms: Free Radical Scavengers/chemistry
  13. Agatonovic-Kustrin S, Morton DW, Ristivojević P
    J Chromatogr A, 2016 Oct 14;1468:228-235.
    PMID: 27670751 DOI: 10.1016/j.chroma.2016.09.041
    The aim of this study was to develop and validate a rapid and simple high performance thin layer chromatographic (HPTLC) method to screen for antioxidant activity in algal samples. 16 algal species were collected from local Victorian beaches. Fucoxanthin, one of the most abundant marine carotenoids was quantified directly from the HPTLC plates before derivatization, while derivatization either with 2,2-diphenyl-1-picrylhydrazyl (DPPH) or ferric chloride (FeCl3) was used to analyze antioxidants in marine algae, based on their ability to scavenge non biological stable free radical (DPPH) or to chelate iron ions. Principal component analysis of obtained HPTLC fingerprints has classified algae species into 5 groups according to their chemical/antioxidant profiles. The investigated brown algae samples were found to be rich in non-and moderate-polar compounds and phenolic compounds with antioxidant activity. Most of the phenolic iron chelators also have shown free radical scavenging activity. Strong positive and significant correlations between total phenolic content and DPPH radical scavenging activity showed that, phenolic compounds, including flavonoids are the main contributors of antioxidant activity in these species. The results suggest that certain brown algae possess significantly higher antioxidant potential when compared to red or green algae and could be considered for future applications in medicine, dietary supplements, cosmetics or food industries. Cystophora monilifera extract was found to have the highest antioxidant concentration, followed by Zonaria angustata, Cystophora pectinate, Codium fragile, and Cystophora pectinata. Fucoxanthin was found mainly in the brown algae species. The proposed methods provide an edge in terms of screening for antioxidants and quantification of antioxidant constituents in complex mixtures. The current application also demonstrates flexibility and versatility of a standard HPTLC system in the drug discovery. Proposed methods could be used for the bioassay-guided isolation of unknown natural antioxidants and subsequent identification if combined with spectroscopic identification.
    Matched MeSH terms: Free Radical Scavengers/chemistry*
  14. Al-Majedy YK, Al-Amiery AA, Kadhum AA, Mohamad AB
    PLoS One, 2016;11(5):e0156625.
    PMID: 27243231 DOI: 10.1371/journal.pone.0156625
    The synthesis of derivatives of 4-Methylumbelliferone (4-MUs), which are structurally interesting antioxidants, was performed in this study. The modification of 4-Methylumbelliferone (4-MU) by different reaction steps was performed to yield the target compounds, the 4-MUs. The 4-MUs were characterized by different spectroscopic techniques (Fourier transform infrared; FT-IR and Nuclear magnetic resonance; NMR) and micro-elemental analysis (CHNS). The in vitro antioxidant activity of the 4-MUs was evaluated in terms of their free radical scavenging activities against 2,2-diphenyl-1-picrylhydrazyl (DPPH), Nitric oxide radical scavenging activity assay, chelating activity and their (FRAP) ferric-reducing antioxidant power, which were compared with a standard antioxidant. Our results reveal that the 4-MUs exhibit excellent radical scavenging activities. The antioxidant mechanisms of the 4-MUs were also studied. Density Function Theory (DFT)-based quantum chemical studies were performed with the basis set at 3-21G. Molecular models of the synthesized compounds were studied to understand the antioxidant activity. The electron levels, namely HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital), for these synthesized antioxidants were also studied.
    Matched MeSH terms: Free Radical Scavengers/chemistry*
  15. Uthaya Kumar US, Chen Y, Kanwar JR, Sasidharan S
    Oxid Med Cell Longev, 2016;2016:6841348.
    PMID: 28053693 DOI: 10.1155/2016/6841348
    The therapeutic potential of Cassia surattensis in reducing free radical-induced oxidative stress and inflammation particularly in hepatic diseases was evaluated in this study. The polyphenol rich C. surattensis seed extract showed good in vitro antioxidant. C. surattensis seed extract contained total phenolic content of 100.99 mg GAE/g dry weight and there was a positive correlation (r > 0.9) between total phenolic content and the antioxidant activities of the seed extract. C. surattensis seed extract significantly (p < 0.05) reduced the elevated levels of serum liver enzymes (ALT, AST, and ALP) and relative liver weight in paracetamol-induced liver hepatotoxicity in mice. Moreover, the extract significantly (p < 0.05) enhanced the antioxidant enzymes and glutathione (GSH) contents in the liver tissues, which led to decrease of malondialdehyde (MDA) level. The histopathological examination showed the liver protective effect of C. surattensis seed extract against paracetamol-induced histoarchitectural alterations by maximum recovery in the histoarchitecture of the liver tissue. Furthermore, histopathological observations correspondingly supported the biochemical assay outcome, that is, the significant reduction in elevated levels of serum liver enzymes. In conclusion, C. surattensis seed extract enhanced the in vivo antioxidant status and showed antihepatotoxic activities, which is probably due to the presence of phenolic compounds.
    Matched MeSH terms: Free Radical Scavengers/chemistry
  16. Karthivashan G, Masarudin MJ, Kura AU, Abas F, Fakurazi S
    Int J Nanomedicine, 2016;11:3417-34.
    PMID: 27555765 DOI: 10.2147/IJN.S112045
    This study involves adaptation of bulk or sequential technique to load multiple flavonoids in a single phytosome, which can be termed as "flavonosome". Three widely established and therapeutically valuable flavonoids, such as quercetin (Q), kaempferol (K), and apigenin (A), were quantified in the ethyl acetate fraction of Moringa oleifera leaves extract and were commercially obtained and incorporated in a single flavonosome (QKA-phosphatidylcholine) through four different methods of synthesis - bulk (M1) and serialized (M2) co-sonication and bulk (M3) and sequential (M4) co-loading. The study also established an optimal formulation method based on screening the synthesized flavonosomes with respect to their size, charge, polydispersity index, morphology, drug-carrier interaction, antioxidant potential through in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics, and cytotoxicity evaluation against human hepatoma cell line (HepaRG). Furthermore, entrapment and loading efficiency of flavonoids in the optimal flavonosome have been identified. Among the four synthesis methods, sequential loading technique has been optimized as the best method for the synthesis of QKA-phosphatidylcholine flavonosome, which revealed an average diameter of 375.93±33.61 nm, with a zeta potential of -39.07±3.55 mV, and the entrapment efficiency was >98% for all the flavonoids, whereas the drug-loading capacity of Q, K, and A was 31.63%±0.17%, 34.51%±2.07%, and 31.79%±0.01%, respectively. The in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics of the flavonoids indirectly depicts the release kinetic behavior of the flavonoids from the carrier. The QKA-loaded flavonosome had no indication of toxicity toward human hepatoma cell line as shown by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide result, wherein even at the higher concentration of 200 µg/mL, the flavonosomes exert >85% of cell viability. These results suggest that sequential loading technique may be a promising nanodrug delivery system for loading multiflavonoids in a single entity with sustained activity as an antioxidant, hepatoprotective, and hepatosupplement candidate.
    Matched MeSH terms: Free Radical Scavengers/chemistry
  17. Ibrahim MH, Chee Kong Y, Mohd Zain NA
    Molecules, 2017 Oct 12;22(10).
    PMID: 29023367 DOI: 10.3390/molecules22101623
    A randomized complete block (RCBD) study was designed to investigate the effects of cadmium (Cd) and copper (Cu) on the growth, bioaccumulation of the two heavy metals, metabolite content and antibacterial activities in Gyanura procumbens (Lour.) Merr. Nine treatments including (1) control (no Cd and Cu); (2) Cd 2 = cadmium 2 mg/L; (3) Cd 4 = cadmium 4 mg/L; (4) Cu 70 = copper 70 mg/L; (5) Cu 140 = copper 140 mg/L); (6) Cd 2 + Cu 70 = cadmium 2 mg/L + copper 70 mg/L); (7) Cd 2 + Cu 140 = cadmium 2 mg/L + copper 70 mg/L); (8) Cd 4 + Cu 70 = cadmium 4 mg/L+ copper 70 mg/L and (9) Cd 4 + Cu 140 = cadmium 4 mg/L + copper 140 mg/L) were evaluated in this experiment. It was found that the growth parameters (plant dry weight, total leaf area and basal diameter) were reduced with the exposure to increased concentrations of Cd and Cu and further decreased under interaction between Cd and Cu. Production of total phenolics, flavonoids and saponin was observed to be reduced under combined Cd and Cu treatment. The reduction in the production of plant secondary metabolites might be due to lower phenyl alanine lyase (PAL) activity under these conditions. Due to that, the 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant potential (FRAP) and antibacterial activities was also found to be reduced by the combined treatments. The current experiments show that the medicinal properties of G. procumbens are reduced by cadmium and copper contamination. The accumulation of heavy metal also was found to be higher than the safety level recommended by the WHO in the single and combined treatments of Cd and Cu. These results indicate that exposure of G. procumbens to Cd and Cu contaminated soil may potentially harm consumers due to bioaccumulation of metals and reduced efficacy of the herbal product.
    Matched MeSH terms: Free Radical Scavengers/chemistry
  18. Salar U, Khan KM, Chigurupati S, Taha M, Wadood A, Vijayabalan S, et al.
    Sci Rep, 2017 12 05;7(1):16980.
    PMID: 29209017 DOI: 10.1038/s41598-017-17261-w
    Current research is based on the identification of novel inhibitors of α-amylase enzyme. For that purpose, new hybrid molecules of hydrazinyl thiazole substituted chromones 5-27 were synthesized by multi-step reaction and fully characterized by various spectroscopic techniques such as EI-MS, HREI-MS, 1H-NMR and 13C-NMR. Stereochemistry of the iminic bond was confirmed by NOESY analysis of a representative molecule. All compounds 5-27 along with their intervening intermediates 1-4, were screened for in vitro α-amylase inhibitory, DPPH and ABTS radical scavenging activities. All compounds showed good inhibition potential in the range of IC50 = 2.186-3.405 µM as compared to standard acarbose having IC50 value of 1.9 ± 0.07 µM. It is worth mentioning that compounds were also demonstrated good DPPH (IC50 = 0.09-2.233 µM) and ABTS (IC50 = 0.584-3.738 µM) radical scavenging activities as compared to standard ascorbic acid having IC50 = 0.33 ± 0.18 µM for DPPH and IC50 = 0.53 ± 0.3 µM for ABTS radical scavenging activities. In addition to that cytotoxicity of the compounds were checked on NIH-3T3 mouse fibroblast cell line and found to be non-toxic. In silico studies were performed to rationalize the binding mode of compounds (ligands) with the active site of α-amylase enzyme.
    Matched MeSH terms: Free Radical Scavengers/chemistry
  19. Sarian MN, Ahmed QU, Mat So'ad SZ, Alhassan AM, Murugesu S, Perumal V, et al.
    Biomed Res Int, 2017;2017:8386065.
    PMID: 29318154 DOI: 10.1155/2017/8386065
    The best described pharmacological property of flavonoids is their capacity to act as potent antioxidant that has been reported to play an important role in the alleviation of diabetes mellitus. Flavonoids biochemical properties are structure dependent; however, they are yet to be thoroughly understood. Hence, the main aim of this work was to investigate the antioxidant and antidiabetic properties of some structurally related flavonoids to identify key positions responsible, their correlation, and the effect of methylation and acetylation on the same properties. Antioxidant potential was evaluated through dot blot, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ABTS+ radical scavenging, ferric reducing antioxidant power (FRAP), and xanthine oxidase inhibitory (XOI) assays. Antidiabetic effect was investigated through α-glucosidase and dipeptidyl peptidase-4 (DPP-4) assays. Results showed that the total number and the configuration of hydroxyl groups played an important role in regulating antioxidant and antidiabetic properties in scavenging DPPH radical, ABTS+ radical, and FRAP assays and improved both α-glucosidase and DPP-4 activities. Presence of C-2-C-3 double bond and C-4 ketonic group are two essential structural features in the bioactivity of flavonoids especially for antidiabetic property. Methylation and acetylation of hydroxyl groups were found to diminish the in vitro antioxidant and antidiabetic properties of the flavonoids.
    Matched MeSH terms: Free Radical Scavengers/chemistry*
  20. Ali A, Chong CH, Mah SH, Abdullah LC, Choong TSY, Chua BL
    Molecules, 2018 Feb 23;23(2).
    PMID: 29473847 DOI: 10.3390/molecules23020484
    The phenolic constituents in Piper betle are well known for their antioxidant potential; however, current literature has very little information on their stability under the influence of storage factors. Present study evaluated the stability of total phenolic content (TPC) and antioxidant activity together with individual phenolic constituents (hydroxychavicol, eugenol, isoeugenol and allylpyrocatechol 3,4-diacetate) present in dried Piper betle's extract under different storage temperature of 5 and 25 °C with and without light for a period of six months. Both light and temperature significantly influenced TPC and its corresponding antioxidant activity over time. More than 95% TPC and antioxidant activity was retained at 5 °C in dark condition after 180 days of storage. Hydroxychavicol demonstrated the best stability with no degradation while eugenol and isoeugenol displayed moderate stability in low temperature (5 °C) and dark conditions. 4-allyl-1,2-diacetoxybenzene was the only compound that underwent complete degradation. A new compound, 2,4-di-tert-butylphenol, was detected after five weeks of storage only in the extracts exposed to light. Both zero-order and first-order kinetic models were adopted to describe the degradation kinetics of the extract's antioxidant activity. Zero-order displayed better fit with higher correlation coefficients (R² = 0.9046) and the half-life was determined as 62 days for the optimised storage conditions (5 °C in dark conditions).
    Matched MeSH terms: Free Radical Scavengers/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links