Displaying publications 41 - 60 of 220 in total

Abstract:
Sort:
  1. Bhuiyan MK, Siddique MA, Zafar M, Mustafa Kamal AH
    Isotopes Environ Health Stud, 2014;50(1):134-41.
    PMID: 24090093 DOI: 10.1080/10256016.2013.830613
    Concentrations of natural and fall-out radionuclides in the offshore seawater and sediment from some parts of the Bay of Bengal, Bangladesh, were determined using a coaxial germanium detector. The average activities of (238)U, (232)Th, (40)K and (137)Cs were recorded as 31.2±5.8, 51.9±9.4, 686.4±170.5 and 0.5±0.6 Bq kg(-1) dry weight, respectively, for sediment, and 4.8±1.2, 5.4±1.2 and 39.1±8.6 Bq L(-1) for (238)U, (232)Th and (40)K, respectively, in seawater. The concentration of (137)Cs in seawater was below the detection limit. The concentration of sediment (238)U was found to be positively correlated with (232)Th ([Formula: see text], p<0.05) and (40)K (r=0.96, p<0.01), while (232)Th was positively correlated with (40)K (r=0.91, p<0.05). In sediment, the concentration of (238)U was negatively correlated (r=-0.86, p<0.05) with sea depth. In the seawater sample, the only significant relationship found was between concentration of (232)Th and water depth (r=-0.86, p<0.05). One-factor analysis of variance (ANOVA) showed that the level of radioisotope concentrations of seawater and sediment was highly significant for (238)U (F=122, df=11, p=0.01), (232)Th (F=143, df=11, p=0.01) and (40)K (F=86, df=11, p=0.01). The results showed that the level of radioactivity decreased from coast to open sea. Imminent threat due to radioactivity was not observed in these parts of the Bay of Bengal.
    Matched MeSH terms: Geologic Sediments/analysis*
  2. Adiana G, Shazili NA, Marinah MA, Bidai J
    Environ Monit Assess, 2014 Jan;186(1):421-31.
    PMID: 23974537 DOI: 10.1007/s10661-013-3387-9
    Concentrations of trace metals in the South China Sea (SCS) were determined off the coast of Terengganu during the months of May and November 2007. The concentrations of dissolved and particulate metals were in the range of 0.019-0.194 μg/L and 50-365 μg/g, respectively, for cadmium (Cd), 0.05-0.45 μg/L and 38-3,570 μg/g for chromium (Cr), 0.05-3.54 μg/L and 21-1,947 μg/g for manganese (Mn), and 0.03-0.49 μg/L and 2-56,982 μg/g for lead (Pb). The order of mean log K D found was Cd > Cr > Pb > Mn. The study suggests that the primary sources of these metals are discharges from the rivers which drain into the SCS, in particular the Dungun River, which flows in close proximity to agricultural areas and petrochemical industries. During the northeast monsoon, levels of particulate metals in the bottom water samples near the shore were found to be much higher than during the dry season, the probable result of re-suspension of the metals from the bottom sediments.
    Matched MeSH terms: Geologic Sediments/chemistry
  3. Saleh MA, Ramli AT, Alajeramie Y, Suhairul H, Aliyu AS, Basri NA
    Radiat Prot Dosimetry, 2013 Sep;156(2):246-52.
    PMID: 23538891 DOI: 10.1093/rpd/nct061
    An extensive survey was carried out for gamma dose rates (GDRs) in the Mersing district, Johor, Malaysia. The average value of GDR measured in the district was found to be 140 nGy h(-1), in the range of 40-355 nGy h(-1). The mean weighted dose rate to the population, annual effective dose equivalent, collective effective dose equivalent, lifetime cancer risk were 0.836 mSv y(-1), 0.171 mSv, 1.18 × 10(1) man Sv y(-1) and 6.98 × 10(-4) Sv y, respectively. An isodose map was produced for the district. One way analysis of variance was used to test for differences due to different geological formations present in the Mersing District.
    Matched MeSH terms: Geologic Sediments/analysis*
  4. Nagarajan R, Jonathan MP, Roy PD, Wai-Hwa L, Prasanna MV, Sarkar SK, et al.
    Mar Pollut Bull, 2013 Aug 15;73(1):369-73.
    PMID: 23790448 DOI: 10.1016/j.marpolbul.2013.05.036
    Forty-three sediment samples were collected from the beaches of Miri City, Sarawak, Malaysia to identify the enrichment of partially leached trace metals (PLTMs) from six different tourist beaches. The samples were analyzed for PLTMs Fe, Mn, Cr, Co, Cu, Ni, Pb, Sr and Zn. The concentration pattern suggest that the southern side of the study area is enriched with Fe (1821-6097 μg g(-1)), Mn (11.57-90.22 μg g(-1)), Cr (51.50-311 μg g(-1)), Ni (18-51 μg g(-1)), Pb (8.81-84.05 μg g(-1)), Sr (25.95-140.49 μg g(-1)) and Zn (12.46-35.04 μg g(-1)). Compared to the eco-toxicological values, Cr>Effects range low (ERL), Lowest effect level (LEL), Severe effect level (SEL); Cu>Unpolluted sediments, ERL, LEL; Pb>Unpolluted sediments and Ni>ERL and LEL. Comparative results with other regions indicate that Co, Cr, Cu, Ni and Zn are higher, indicating an external input rather than natural process.
    Matched MeSH terms: Geologic Sediments/chemistry*
  5. Hajeb P, Jinap S, Ismail A, Mahyudin NA
    PMID: 22610296 DOI: 10.1007/978-1-4614-3414-6_2
    Although several studies have been published on levels of mercury contamination of the environment, and of food and human tissues in Peninsular Malaysia, there is a serious dearth of research that has been performed in East Malaysia (Sabah and Sarawak). Industry is rapidly developing in East Malaysia, and, hence, there is a need for establishing baseline levels of mercury contamination in environmental media in that part of the country by performing monitoring studies. Residues of total mercury and inorganic in food samples have been determined in nearly all previous studies that have been conducted; however, few researchers have analyzed samples for the presence of methlymercury residues. Because methylmercury is the most toxic form of mercury, and because there is a growing public awareness of the risk posed by methylmercury exposure that is associated with fish and seafood consumption, further monitoring studies on methylmercury in food are also essential. From the results of previous studies, it is obvious that the economic development in Malaysia, in recent years, has affected the aquatic environment of the country. Primary areas of environmental concern are centered on the rivers of the west Peninsular Malaysian coast, and the coastal waters of the Straits of Malacca, wherein industrial activities are rapidly expanding. The sources of existing mercury input to both of these areas of Malaysia should be studied and identified. Considering the high levels of mercury that now exists in human tissues, efforts should be continued, and accelerated in the future, if possible, to monitor mercury contamination levels in the coastal states, and particularly along the west Peninsular Malaysian coast. Most studies that have been carried out on mercury residues in environmental samples are dated, having been conducted 20-30 years ago; therefore, the need to collect much more and more current data is urgent. Furthermore, establishing baseline levels of mercury exposure to humans in Malaysia will be useful in establishing the levels at which detrimental effects in both humans and marine life may occur, and therefore the levels at which warning should be raised or limits established. In particular, we believe that two or three monitoring centers should be established in Peninsular Malaysia, and one in East Malaysia for the specific purpose of monitoring for the presence of hazardous environmental chemicals, and particularly monitoring for heavy metals such as mercury that reach food that is subject to consistent human consumption.
    Matched MeSH terms: Geologic Sediments/analysis
  6. Lim WY, Aris AZ, Zakaria MP
    ScientificWorldJournal, 2012;2012:652150.
    PMID: 22919346 DOI: 10.1100/2012/652150
    This paper determines the controlling factors that influence the metals' behavior water-sediment interaction facies and distribution of elemental content ((75)As, (111)Cd, (59)Co, (52)Cr, (60)Ni, and (208)Pb) in water and sediment samples in order to assess the metal pollution status in the Langat River. A total of 90 water and sediment samples were collected simultaneously in triplicate at 30 sampling stations. Selected metals were analyzed using ICP-MS, and the metals' concentration varied among stations. Metal concentrations of water ranged between 0.08-24.71 μg/L for As, <0.01-0.53 μg/L for Cd, 0.06-6.22 μg/L for Co, 0.32-4.67 μg/L for Cr, 0.80-24.72 μg/L for Ni, and <0.005-6.99 μg/L for Pb. Meanwhile, for sediment, it ranged between 4.47-30.04 mg/kg for As, 0.02-0.18 mg/kg for Cd, 0.87-4.66 mg/kg for Co, 4.31-29.04 mg/kg for Cr, 2.33-8.25 mg/kg for Ni and 5.57-55.71 mg/kg for Pb. The average concentration of studied metals in the water was lower than the Malaysian National Standard for Drinking Water Quality proposed by the Ministry of Health. The average concentration for As in sediment was exceeding ISQG standards as proposed by the Canadian Sediment Quality Guidelines. Statistical analyses revealed that certain metals (As, Co, Ni, and Pb) were generally influenced by pH and conductivity. These results are important when making crucial decisions in determining potential hazardous levels of these metals toward humans.
    Matched MeSH terms: Geologic Sediments*
  7. Hasan ZA, Hamidon N, Yusof MS, Ghani AA
    Water Sci Technol, 2012;66(10):2170-6.
    PMID: 22949248 DOI: 10.2166/wst.2012.432
    Bukit Merah Reservoir is the main potable and irrigation water source for Kerian District, Perak State, Malaysia. For the past two decades, the reservoir has experienced water stress. Land-use activities have been identified as the contributor of the sedimentation. The Soil and Water Assessment Tool (SWAT) was used to simulate and quantify the impacts of land-use change in the reservoir watershed. The SWAT was calibrated and two scenarios were constructed representing projected land use in the year 2015 and hypothetical land use to represent extensive land-use change in the catchment area. The simulation results based on 17 years of rainfall records indicate that average water quantity will not be significantly affected but the ground water storage will decrease and suspended sediment will increase. Ground water decrease and sediment yield increase will exacerbate the Bukit Merah Reservoir operation problem.
    Matched MeSH terms: Geologic Sediments*
  8. Nemati K, Abu Bakar NK, Abas MR, Sobhanzadeh E
    J Hazard Mater, 2011 Aug 15;192(1):402-10.
    PMID: 21684080 DOI: 10.1016/j.jhazmat.2011.05.039
    The sequential extraction procedure proposed by the European Standard, Measurements and Testing (SM&T) program, formerly the Community Bureau of Reference (BCR), was applied for partitioning of heavy metals (HMs) in river sediments collected along the course of Sungai Buloh and the Straits of Malacca in Selangor, Malaysia. Eight elements (V, Pb, Cd, Cr, Co, Ni, Cu and Zn) from seven stations (S1-S7) and at different depths were analyzed using the modified BCR Sequential Extraction Procedure (SEP) in combination with ICP-MS to obtain the metal distribution patterns in this region. The results showed that heavy metal contaminations at S2 and S3 was more severe than at other sampling sites, especially for Zn, Cu, Ni and Pb. Nevertheless, the element concentrations from top to bottom layers decreased predominantly. The samples from the Straits of Malacca (S4-S7) the highest contamination factors obtained were for Co, Zn and Pb while the lowest were found for V and Cr, similar to Sungai Buloh sediments. The sediments showed a low risk for V, Cr, Cu and Pb with RAC values of less than 10%, but medium risk for Co, Zn (except S3), Cd at S1 and S2 and Ni at S1, S3 and S5. Zn at S3 and Cd at S3-S7 showed high risk to our sediment samples. There is not any element of very high risk conditions in the selected samples.
    Matched MeSH terms: Geologic Sediments/chemistry*
  9. Rezaee Ebrahim Saraee K, Abdi MR, Naghavi K, Saion E, Shafaei MA, Soltani N
    Environ Monit Assess, 2011 Dec;183(1-4):545-54.
    PMID: 21594644 DOI: 10.1007/s10661-011-1939-4
    The concentrations of arsenic, cadmium, chromium, copper, mercury, nickel, lead and zinc in surface sediments collected from the east coast of peninsular Malaysia, along the South China Sea, were measured by two methods instrumental neutron activation analysis and inductively coupled plasma mass spectroscopy. The obtained results were use to determine the areal distribution of the metals of in the east coast of peninsular Malaysia and potential sources of these metals to this environment. The geochemical data propose that most of the metals found in the east coast of peninsular Malaysia constitute a redistribution of territorial materials within the ecosystem. Then, the metal concentrations can be considered to be present at natural background levels in surface sediments.
    Matched MeSH terms: Geologic Sediments/analysis*
  10. Sohrabi T, Ismail A, Nabavi MB
    Bull Environ Contam Toxicol, 2010 Nov;85(5):502-8.
    PMID: 20957347 DOI: 10.1007/s00128-010-0112-z
    Surface sediments along the south of Caspian Sea were collected to evaluate the contamination of heavy metals. The result ranged (μg/g, Fe% dw): Pb(13.06-33.48); Ni(18.01-69.63); Cd(0.62-1.5); Zn(30.11-87.88); Cu(5.86-26.37) and Fe(1.8-4%) respectively. Cadmium showed higher EF when compared to other sites. Geoaccumulation Index value for Cd in most stations was classified as moderately contaminated and moderately to strongly contaminated, as well as the average of I(geo) of Cd (1.77 ± 0.35) suggested that surface sediments of Caspian coast were moderately polluted by this metal. The result of the Pearson correlation showed that there were significant positive associations between Ni, Cd and Zn (r = 0.44-0.76; p < 0.01).
    Matched MeSH terms: Geologic Sediments/chemistry*
  11. Zakaria NA, Azamathulla HM, Chang CK, Ghani AA
    Sci Total Environ, 2010 Oct 1;408(21):5078-85.
    PMID: 20708217 DOI: 10.1016/j.scitotenv.2010.07.048
    This paper presents Gene-Expression Programming (GEP), which is an extension to the genetic programming (GP) approach to predict the total bed material load for three Malaysian rivers. The GEP is employed without any restriction to an extensive database compiled from measurements in the Muda, Langat, and Kurau rivers. The GEP approach demonstrated a superior performance compared to other traditional sediment load methods. The coefficient of determination, R(2) (=0.97) and the mean square error, MSE (=0.057) of the GEP method are higher than those of the traditional method. The performance of the GEP method demonstrates its predictive capability and the possibility of the generalization of the model to nonlinear problems for river engineering applications.
    Matched MeSH terms: Geologic Sediments/chemistry*
  12. Zulkifli SZ, Ismail A, Mohamat-Yusuff F, Arai T, Miyazaki N
    Bull Environ Contam Toxicol, 2010 May;84(5):568-73.
    PMID: 20411236 DOI: 10.1007/s00128-010-9998-8
    Present study was conducted to evaluate current status of trace elements contamination in the surface sediments of the Johor Strait. Iron (2.54 +/- 1.24%) was found as the highest occurring element, followed by those of zinc (210.45 +/- 115.4 microg/g), copper (57.84 +/- 45.54 microg/g), chromium (55.50 +/- 31.24 microg/g), lead (52.52 +/- 28.41 microg/g), vanadium (47.76 +/- 25.76 microg/g), arsenic (27.30 +/- 17.11 microg/g), nickel (18.31 +/- 11.77 microg/g), cobalt (5.13 +/- 3.12 microg/g), uranium (4.72 +/- 2.52 microg/g), and cadmium (0.30 +/- 0.30 microg/g), respectively. Bioavailability of cobalt, nickel, copper, zinc, arsenic and cadmium were higher than 50% of total concentration. Vanadium, copper, zinc, arsenic and cadmium were found significantly different between the eastern and western part of the strait (p < 0.05). Combining with other factors, Johor Strait is suitable as a hotspot for trace elements contamination related studies.
    Matched MeSH terms: Geologic Sediments/chemistry*
  13. Yap CK, Pang BH
    Environ Monit Assess, 2011 Dec;183(1-4):23-39.
    PMID: 21340548 DOI: 10.1007/s10661-011-1903-3
    Surface sediments were collected from the north western aquatic area (13 intertidal sites and 5 river drainages) of Peninsular Malaysia, which were suspected to have received different anthropogenic sources. These sites included town areas, ports, fishing village, industrial areas, highway sides, jetties and some relatively unpolluted sites. The present study revealed that 4.79-32.91 μg/g dry weight for Cu, 15.85-61.56 μg/g dry weight for Pb, and 33.6-317.4 μg/g dry weight for Zn based on 13 intertidal surface sediments while those based on 5 river drainage surface sediments were 10.24-119.6 μg/g dry weight for Cu, 26.7-125.7 μg/g dry weight for Pb and 88.7-484.1 μg/g dry weight for Zn. In general, the metal levels in the drainage sediments are higher than in the intertidal sediments, suggesting dilution factor in the intertidal sediment and direct effluent from point sources in the drainage sediment. In particular, the total concentrations of Cu, Pb, and Zn for the sampling site at Kuala Kurau Town exceeded the Effect Range Median values for Cu, Pb, and Zn for assessments of sediment quality values for freshwater sediment as proposed by MacDonald et al. (Arch Environ Contam Toxicol 39:20-31, 2000), thus adverse biological effects would be observed above this level. Assessment using enrichment factor (using Fe as a normalizer) and geoaccumulation index showed that the three metals at Kuala Kurau Town and Juru Industry drainage were evidenced as having more enrichment and mostly due to non-natural sources. However, caution should be exercised that the interpretation can only become valid when the ratios, indices, and sediment quality values are combined. This is due to the fact that not all the established indices are applicable and, to a certain extent, some of them should be further revised and improved to suit a different metal for Malaysian sediment. Undoubtedly, sites near drainages at Kuala Kurau Town and Juru River Basin need greater attention to mitigate the heavy metal pollution in the future.
    Matched MeSH terms: Geologic Sediments/analysis*
  14. Wu YL, Wang XH, Li YY, Hong HS, Li HY, Yin MD
    Huan Jing Ke Xue, 2009 Sep 15;30(9):2512-9.
    PMID: 19927796
    Polycyclic aromatic hydrocarbons (PAHs) in a sediment core collected from Langkawi Island of the Andaman Sea, Malaysia were determined by GC/MS, the vertical variations of concentration and distributions of PAHs were investigated. In combining with 210Pb-dating, the PAHs sedimentary record in the last 100 years was reconstructed and their possible sources were also discussed. The sigmaPAH concentration ranged from 13.2-60.1 ng x g(-1) in the whole sedimentary section (0-56 cm) with the dominant compounds of phenanthrene, naphthalene and perylene. The sediments contaminated to a lesser extent comparing with the surrounding waters. Before the 1920s, the concentrations of PAHs were considered to be the background level, which was implied from the natural inputs. The historical records of PAHs in the core showed that two distinct peaks which represented the input time of 1960s and 1980s, respectively, inferred that there were some relatively dramatically land-based inputs, and human activities leaded a clear impact to these waters during these periods. Furthermore, PAHs diagnostic ratios indicated that PAHs in the core sediments were mainly of pyrolytic origin (combustion), accompanied with minor petroleum origin. These were related with agriculture, industry, ocean import and export, and shipping activities in the surrounding regions. Meanwhile as the vital communication line, the marine transportation of the Strait of Malacca had influenced the environmental quality of the Andaman Sea. Meanwhile, based on the sedimentary record, PAHs concentrations were found to correlate positively with humanism activities and socioeconomic development (Gross Domestic Production) in the surrounding regions.
    Matched MeSH terms: Geologic Sediments/chemistry*
  15. Harino H, Arai T, Ohji M, Ismail AB, Miyazaki N
    Arch Environ Contam Toxicol, 2009 Apr;56(3):468-78.
    PMID: 18979060 DOI: 10.1007/s00244-008-9252-0
    The concentrations of butyltins (BTs) in sediment from Peninsular Malaysia along the Strait of Malacca and their spatial distribution are discussed. The concentrations of BTs were high in the southern part of Peninsular Malaysia where there is a lot of ship traffic, because trade is prosperous. The concentrations of monobutyltin (MBT), dibutyltin (DBT), and tributyltin (TBT) in sediment from the coastal waters of Peninsular Malaysia were in the range 4.1-242 microg/kg dry weight (dw), 1.1-186 microg/kg dw, and 0.7-228 microg/kg dw, respectively. A higher percentage of TBT was observed in the area where TBT concentrations were high. The concentrations of monophenyltin (MPT), diphenyltin (DPT), and triphenyltin (TPT) were in the range <0.1-121 microg/kg dw, 0.4-27 microg/kg dw, and 0.1-34 microg/kg dw in sediment from Peninsular Malaysia, respectively. MPT was the dominant phenyltin species. MBT, DBT, and TBT in green mussel (Perna viridis) samples were detected in the range 41-102 microg/kg, 3-5 microg/kg, and 8-32 microg/kg, respectively. A tolerable average residue level (TARL) was estimated at 20.4 microg/kg from a tolerable daily intake (TDI) of 0.25 microg TBTO/kg body weight/day. The maximum value of TBT detected in green mussel samples was the value near the TARL. TPTs were not detected in green mussel samples. The concentrations of Diuron and Irgarol 1051 in sediment from Peninsular Malaysia were in the range <0.1-5 microg/kg dw and <0.1-14 microg/kg dw, respectively. High concentrations of these compounds were observed in locations where the concentrations of TBT were high. Sea Nine 211, Dichlofluanid, and Pyrithiones were not detected in sediment. The concentrations of antifouling biocides in Melaka and the Strait of Johor were investigated in detail. BTs were found in similar concentrations among all sampling sites from Melaka, indicating that BT contamination spread off the coast. However, Sea Nine 211, Diuron, and Irgarol 1051 in the sediment from Melaka were high at the mouth of the river. BT concentrations at the Strait of Johor were higher than those in Peninsular Malaysia and Melaka and were high at the narrowest locations with poor flushing of water. The concentrations of antifouling biocides were compared among Malaysia, Thailand, and Vietnam. A higher concentration and wide variations of TBT and TPT in sediment from Malaysia were observed among these countries. The Irgarol 1051 concentrations in sediment from Malaysia were higher than those in Thailand and Vietnam.
    Matched MeSH terms: Geologic Sediments/analysis*
  16. Amin B, Ismail A, Arshad A, Yap CK, Kamarudin MS
    Environ Monit Assess, 2009 Jan;148(1-4):291-305.
    PMID: 18274874 DOI: 10.1007/s10661-008-0159-z
    Concentrations of Cd, Cu, Pb, Zn, Ni and Fe were determined in the surface sediments to investigate the distributions, concentrations and the pollution status of heavy metals in Dumai coastal waters. Sediment samples from 23 stations, representing 5 different site groups of eastern, central and western Dumai and southern and northern Rupat Island, were collected in May 2005. The results showed that heavy metal concentrations (in microg/g dry weight; Fe in %) were 0.88 (0.46-1.89); 6.08 (1.61-13.84); 32.34 (14.63-84.90); 53.89 (31.49-87.11); 11.48 (7.26-19.97) and 3.01 (2.10-3.92) for Cd, Cu, Pb, Zn, Ni and Fe, respectively. Generally, metal concentrations in the coastal sediments near Dumai city center (eastern and central Dumai) which have more anthropogenic activities were higher than those at other stations. Average concentration of Cd in the eastern Dumai was slightly higher than effective range low (ERL) but still below effective range medium (ERM) value established by Long et al. (Environmental Management 19(1):81-97, 1995; Environmental Toxicology Chemistry 17(4):714-727, 1997). All other metals were still below ERL and ERM. Calculated enrichment factor (EF), especially for Cd and Pb, and the Pollution load index (PLI) value in the eastern Dumai were also higher than other sites. Cd showed higher EF when compared to other metals. Geo-accumulation indices (I(geo)) in most of the stations (all site groups) were categorized as class 1 (unpolluted to moderately polluted environment) and only Cd in Cargo Port was in class 2 (moderately polluted). Heavy metal concentrations found in the present study were comparable to other regions of the world and based on the calculated indices it can be classified as unpolluted to moderately polluted coastal environment.
    Matched MeSH terms: Geologic Sediments/chemistry*
  17. Lin C, Lee CJ, Mao WM, Nadim F
    J Hazard Mater, 2009 Jan 15;161(1):270-5.
    PMID: 18456397 DOI: 10.1016/j.jhazmat.2008.03.082
    Sediment samples were analyzed for di-(2-ethylhexyl) phthalate (DEHP), an organic endocrine disruptor, in Houjing River in southern Taiwan. The average DEHP concentration at 10 sampling locations, spanning from upper, middle, and lower segments of the stream, was calculated at 3.81+/-6.36mgkg(-1)drywt. Highest concentration was recorded at the Jhongsing Bridge (20.22mgkg(-1)drywt.) near the Dashe Industrial Park, followed by the Renwu Bridge (8.93mgkg(-1)drywt.) near the Renwu Industrial Park. The surface sediment concentration of DEHP was found to be higher in the dry season (October and December), and lower in the wet (flood) season (August), indicating that sources of DEHP remained active and continued to recharge the Houjing River. Vertical sediment core analysis revealed that highest concentration occurred at the depth of 40-60cm, indicating that historical discharges of DEPH may have been higher than recent years. Domestic comparison of DEHP concentrations in sediment from highest to lowest could be categorized as northern, southern, central, and eastern Taiwan, respectively, and seemed to be positively correlated with population density and/or industrial activity. Compared to other countries, DEHP concentration of the Houjing River was relatively higher than rivers studied in Japan, Germany, Italy, and Malaysia, and was relatively lower than the Aire and Trent Rivers in the United Kingdom.
    Matched MeSH terms: Geologic Sediments/chemistry*
  18. Ebrahimpour M, Mushrifah I
    Environ Monit Assess, 2008 Jun;141(1-3):297-307.
    PMID: 17891467
    The purpose of this paper are to determine the concentration of heavy metals namely cadmium (Cd), copper (Cu) and lead (Pb) in water and sediment; and to investigate the effect of sediment pH and sediment organic matter on concentration of cadmium, copper and lead in sediment at oxidation fraction. For this purpose the concentration of heavy metals were measured in water and sediments at 15 sites from Tasik Chini, Peninsular Malaysia. The sequential extraction procedure used in this study was based on defined fractions: exchangeable, acid reduction, oxidation, and residual. The concentration of heavy metals in residual fraction was higher than the other fractions. Among the non-residual fractions, the concentration of heavy metals in organic matter fraction was much higher than other fractions collected from all sampling sites. The pH of the sediment in all sites was acidic. The mean pH ranges from 4.8 to 5.5 with the higher value observed at site 15. Results of organic matter analysis showed that the percentage of organic matter present in sediment samples varies throughout the lake and all sites of sediments were relatively rich in organic matter ranging from 13.0% to 34.2%. The highest mean percentage of organic matter was measured at sampling site 15, with value of 31.78%.
    Matched MeSH terms: Geologic Sediments/chemistry*
  19. Cuong DT, Karuppiah S, Obbard JP
    Environ Monit Assess, 2008 Mar;138(1-3):255-72.
    PMID: 17562200
    Concentrations of heavy metals were determined in the water column (including the sea-surface microlayer, subsurface, mid-depth and bottom water) and sediments from Singapore's coastal environment. The concentration ranges for As, Cd, Cr, Cu, Ni, Pb and Zn in the seawater dissolved phase (DP) were 0.34-2.04, 0.013-0.109, 0.07-0.35, 0.23-1.16, 0.28-0.78, 0.009-0.062 and 0.97-3.66 microg L(-1) respectively. The ranges for Cd, Cr, Cu, Ni, Pb and Zn in the suspended particulate matter (SPM) were 0.16-0.73, 6.72-53.93, 12.87-118.29, 4.34-60.71, 1.10-6.08 and 43.09-370.49 microg g(-1), respectively. Heavy metal concentrations in sediments ranged between 0.054-0.217, 37.48-50.52, 6.30-21.01, 13.27-26.59, 24.14-37.28 and 48.20-62.36 microg g(-1) for Cd, Cr, Cu, Ni, Pb and Zn, respectively. The lowest concentrations of metals in the DP and SPM were most frequently found in the subsurface water while the highest concentrations were mostly observed in the SML and bottom water. Overall, heavy metals in both the dissolved and particulate fractions have depth profiles that show a decreasing trend of concentrations from the subsurface to the bottom water, indicating that the prevalence of metals is linked to the marine biological cycle. In comparison to data from Greece, Malaysia and USA, the levels of metals in the DP are considered to be low in Singapore. Higher concentrations of particulate metals were reported for the Northern Adriatic Sea and the Rhine/Meuse estuary in the Netherlands compared to values reported in this study. The marine sediments in Singapore are not heavily contaminated when compared to metal levels in marine sediments from other countries such as Thailand, Japan, Korea, Spain and China.
    Matched MeSH terms: Geologic Sediments/analysis*
  20. Sari SA, Ujang Z, Ahmad UK
    Water Sci Technol, 2006;54(11-12):289-99.
    PMID: 17302332
    The objective of this study was to investigate the cycling of arsenic in the water column of a post-mining lake. This study is part of a research project to develop health risk assessment for the surrounding population. Inductively Coupled Plasma-Mass Spectrophotometer (ICP-MS) and Capillary Electrophoresis (CE) have been used to analyze the total amount and speciation, respectively. A computer program, called MINTEOA2, which was developed by the United States Environmental Protection Agency (USEPA) was used for predicting arsenic, iron, and manganese as functions of pH and solubility. Studying the pH values and cycle of arsenic shows that the percentage of bound arsenate, As(V) species in the form of HAsO4- increases with range pH from 5 to 7, as well as Fe(II) and Mn(III). As expected phases of arsenic oxides are FeAsO4 and Mn3(AsO4), as a function of solubility, however none of these phases are over saturated and not precipitated. It means that the phases of arsenic oxides have a high solubility.
    Matched MeSH terms: Geologic Sediments/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links