METHODS: Kinetic studies were used to investigate the interactions between the three GSTs and each of glutathione, 1-chloro-2,4-dinitrobenzene, cibacron blue, ethacrynic acid, S-hexyl glutathione, hemin and protoporphyrin IX. Since hemin displacement is intended for PfGST inhibitors, the interactions between hemin and other ligands at PfGST binding sites were studied kinetically. Computationally determined binding modes and energies were interlinked with the kinetic results to resolve enzymes-ligands interaction models at atomic level.
RESULTS: The results showed that hemin and cibacron blue have different binding modes in the three GSTs. Hemin has two binding sites (A and B) with two binding modes at site-A depending on presence of GSH. None of the ligands were able to compete hemin binding to PfGST except ethacrynic acid. Besides bind differently in GSTs, the isolated anthraquinone moiety of cibacron blue is not maintaining sufficient interactions with GSTs to be used as a lead. Similarly, the ethacrynic acid uses water bridges to mediate interactions with GSTs and at least the conjugated form of EA is the true hemin inhibitor, thus EA may not be a suitable lead.
CONCLUSIONS: Glutathione analogues with bulky substitution at thiol of cysteine moiety or at γ-amino group of γ-glutamine moiety may be the most suitable to provide GST inhibitors with hemin competition.
AIMS: This study was performed to evaluate and compare the oxidative changes in patients with varying severity of HI in the early posttraumatic period using erythrocyte indicators.
SETTINGS AND DESIGN: Head injury patients were divided into two groups based on their Glasgow Coma Scale (GCS) scores recorded at admission to the hospital on the day of trauma itself. Accordingly, the study included 30 severe HI (SHI, GCS scores 8 or less) and 25 Mild HI (MHI, GCS scores more than 8) patients. Thirty age and sex-matched healthy individuals were included in this comparative study as controls.
MATERIALS AND METHODS: Blood samples were obtained from controls and HI patients (within 24 h of trauma onset). Erythrocyte oxidative changes were studied by estimating thiobarbituric acid reactive substances (TBARS), glutathione (GSH), superoxide dismutase (SOD) and glutathione reductase (GR).
RESULTS: Erythrocyte TBARS levels were significantly higher and GSH levels were significantly lower in SHI and MHI patients as compared to controls. The SOD activity was significantly increased only in SHI patients and remained unchanged in MHI patients as compared to controls. As compared to MHI patients, erythrocyte TBARS levels were significantly higher, GSH levels were significantly lower and SOD activity was markedly elevated in SHI patients. Erythrocyte GR activity did not show significant changes in both groups of patients as compared to controls.
CONCLUSION: Oxidative stress is evident in both SHI and MHI patients in the early posttraumatic period as reflected by their erythrocyte indicators, but the severity of oxidative stress has varied relatively with the severity of head injury. The present findings provide indications that early oxidative changes could influence the neurological recovery of HI patients.