Displaying publications 41 - 60 of 279 in total

Abstract:
Sort:
  1. Masni-Azian, Tanaka M
    Comput Biol Med, 2018 07 01;98:26-38.
    PMID: 29758454 DOI: 10.1016/j.compbiomed.2018.05.010
    Intervertebral disc degeneration involves changes in its material properties that affect the mechanical functions of the spinal system. However, the alteration of the biomechanics of a spinal segment through specific material degradation in a specific region is poorly understood. In this study, the influence of the constitutive material degeneration of disc tissues on the mechanics of a lower lumbar spinal unit was examined using a three-dimensional nonlinear finite element model of the L4-L5 functional spinal unit. Different grades of disc degeneration were simulated by introducing a degeneration factor to the corresponding material properties to represent fibrous nucleus, increased fibre and ground substance laxity, increased fibre stiffness and total annular fracture along posterior and posterolateral regions. The model was loaded with an axial compression of 500 N and pure moments of up to 10 Nm to simulate extension, flexion, lateral bending and axial rotation. To validate the model, the spinal motion and intradiscal pressure of healthy and degenerated discs with existing in vitro data were compared. The disc with a fibrous nucleus and the presence of intradiscal pressure increase the spinal instability during flexion and axial rotation, and the absence of intradiscal pressure increases the spinal instability in all directions. Bulging displacement and shear strains in the disc with total fracture and ground substance laxity are high in all of the loading cases. Our study could provide useful information to enhance our understanding of the influence of each constitutive component of the intervertebral disc on the mechanics of the spinal segment.
    Matched MeSH terms: Range of Motion, Articular/physiology
  2. Jamaludin NI, Sahabuddin FNA, Raja Ahmad Najib RKM, Shamshul Bahari MLH, Shaharudin S
    PMID: 32575511 DOI: 10.3390/ijerph17124418
    The study investigated the influence of ankle strength and its range of motion (ROM) on knee kinematics during drop landing. Fifteen male and fifteen female university athletes with a normal range of dynamic knee valgus (DKV) (knee frontal plane projection angle: men = 3° to 8°, females = 7° to 13°) were recruited. They performed drop landing at height 30 cm and 45 cm with three-dimensional motion capture and analysis. Knee angles were compared at specific landing phases. Isokinetic ankle strength was tested at 60°/s angular velocity while the weight-bearing lunge test was conducted to evaluate ankle ROM. For males, strength for both plantarflexors and dorsiflexors were associated with knee kinematics at both heights (30 cm: r = -0.50, p = 0.03; 45 cm: r = -0.45, p = 0.05) during maximum vertical ground reaction force (MVGRF) phase. For females, ankle invertor strength and knee kinematics were associated at both 30cm (r = 0.53; p = 0.02,) and 45 cm landing heights (r = 0.49, p = 0.03), while plantarflexor strength and knee kinematics showed a significant association during initial contact (r = 0.70, p < 0.01) and MVGRF (r = 0.55, p = 0.02) phases at height 30 cm only. Male and female athletes with normal range of DKV showed a significant relationship between ankle strength and knee kinematics at specific landing phases. These relationships varied with increased landing height.
    Matched MeSH terms: Range of Motion, Articular*
  3. Sulaiman AR, Simbak N, Wan Ismail WF, Wan Z, Halim AS
    J Orthop Surg (Hong Kong), 2011 Aug;19(2):250-3.
    PMID: 21857057
    We report 2 patients with congenital pseudoarthrosis of the tibia who underwent intramedullary Rush rod transfixation through the ankle joint following refracture and nonunion of vascularised fibular grafting 6 and 8 months earlier. After 9 and 5 years, both Rush rods were broken at the level of the ankle joints, while the reconstructed area was solidly united. The growth of the distal tibia increased the distance of the tips of the broken rod and hence the ankle joint motion. The broken tips may damage the articular cartilage and result in valgus deformity of the ankle and limb length discrepancy.
    Matched MeSH terms: Range of Motion, Articular
  4. Vijayakumar, P., Leonard, H.J., Ayiesah, H.R.
    MyJurnal
    Traumatic knee crush injuries of degloving nature carries a greater risk for the multitude of complications rendering emergency surgical intervention the treatment of choice in the majority of such injuries. These types of injuries commonly result in a unique post- operative complication such as arthrofibrosis and it presents overly challenge for Physiotherapists managing it. In this retrospective single-case report, we describe the challenges of in – and out- patient physiotherapy treatment planning for a 16-year old boy throughout the continuum of care for his knee arthrofibrosis following a series of surgical procedures. As result of his complex medical situation, the time-specific physiotherapy intervention during the immediate post-operative period failed to improve our patient’s knee function. The knee function with regard to range of motion ( especially extension), muscle strength(quadriceps) improved considerably with the adoption of an aggressive physiotherapy intervention approach that included specific quadriceps muscle strengthening, joint mobilization (rotation/traction) in sitting position with legs over the edge of table and contract-relax quadriceps stretching in prone position using theraband.
    Matched MeSH terms: Range of Motion, Articular
  5. Loh PY, Hayashi K, Nasir N, Muraki S
    J Mot Behav, 2020;52(5):634-642.
    PMID: 31571525 DOI: 10.1080/00222895.2019.1670128
    This study investigated the muscle activity and force variability in response to perturbation of assistive force during isometric elbow flexion. Sixteen healthy right-handed young men (age: 22.0 ± 1.1 years; height: 171.9 ± 4.8 cm; weight 68.4 ± 11.2 kg) were recruited and the muscle activity of biceps brachii and triceps brachii were assessed using surface electromyography. Workload force and assistive force applied on isometric elbow flexion significantly affected the changes in both biceps and triceps muscle activities. A higher assistive force was shown to result in reduced biceps muscle activity compared to the unassisted period. In contrast, the efficiency of the assistive force acting on the biceps decreased as the assistive force increased. In general, the force variability of the biceps muscle remained approximately the same at lower workload force conditions than that at higher workload force conditions. In conclusion, higher assistive force may not yield a higher performance efficiency in human-assistive force interaction.
    Matched MeSH terms: Range of Motion, Articular/physiology
  6. Hasan H, Davids K, Chow JY, Kerr G
    Eur J Sport Sci, 2017 Apr;17(3):294-302.
    PMID: 27739339 DOI: 10.1080/17461391.2016.1241829
    This study investigated effects of wearing compression garments and textured insoles on modes of movement organisation emerging during performance of lower limb interceptive actions in association football. Participants were six skilled (age = 15.67 ± 0.74 years) and six less-skilled (age = 15.17 ± 1.1 years) football players. All participants performed 20 instep kicks with maximum velocity in four randomly organised insoles and socks conditions, (a) Smooth Socks with Smooth Insoles (SSSI); (b) Smooth Socks with Textured Insoles (SSTI); (c) Compression Socks with Smooth Insoles (CSSI); and (d), Compression Socks with Textured Insoles (CSTI). Results showed that, when wearing textured and compression materials (CSSI condition), less-skilled participants displayed significantly greater hip extension and flexion towards the ball contact phase, indicating larger ranges of motion in the kicking limb than in other conditions. Less-skilled participants also demonstrated greater variability in knee-ankle intralimb (angle-angle plots) coordination modes in the CSTI condition. Findings suggested that use of textured and compression materials increased attunement to somatosensory information from lower limb movement, to regulate performance of dynamic interceptive actions like kicking, especially in less-skilled individuals.
    Matched MeSH terms: Range of Motion, Articular/physiology
  7. Keller M, Kastenberger T, Anoar AF, Kaiser P, Schmidle G, Gabl M, et al.
    Arch Orthop Trauma Surg, 2020 Jun;140(6):835-842.
    PMID: 32124031 DOI: 10.1007/s00402-020-03386-7
    INTRODUCTION: This study evaluated the use of a free vascularized bone graft with and without cartilage from the medial femoral condyle (MFC) in patients with recalcitrant scaphoid non-union, with a special focus on union rates and the osteochondral graft for proximal pole destruction.

    MATERIALS AND METHODS: Thirty-eight avascular scaphoid non-unions in 37 patients who were treated with a free osteoperiosteal or osteochondral MFC graft were retrospectively evaluated (mean follow-up 16 months). Bone union, the scapholunate and the radiolunate angles were evaluated on X-ray images. The range of motion, grip strength, VAS, DASH and PRWE scores were evaluated clinically.

    RESULTS: The overall union rate was 95%. Bone union was achieved in 27 out of 29 (93%) scaphoids treated with a free osteoperiosteal MFC grafts and in 9 out of 9 (100%) scaphoids treated with a free osteochondral MFC graft. The range of motion remained almost unchanged, while grip strength increased significantly (34 kg vs. 44 kg) and the VAS (22-5), DASH (59-19) and PRWE (62-30) score decreased significantly. The scapholunate (71°-65°) and radiolunate (28°-18°) angle decreased. No major donor site morbidity was observed. Postoperative complications were observed in eight cases (21%).

    CONCLUSIONS: The vascularized medial femoral bone graft leads to a good functional outcome in the treatment of scaphoid non-unions. The graft provides adequate blood supply and structural stability to the scaphoid. A proximal pole destruction can be replaced using an osteochondral graft with promising short-term results preventing carpal osteoarthritis and collapse.

    Matched MeSH terms: Range of Motion, Articular
  8. Khan SJ, Khan SS, Usman J, Mokhtar AH, Abu Osman NA
    Prosthet Orthot Int, 2019 Apr;43(2):148-157.
    PMID: 30192706 DOI: 10.1177/0309364618796849
    BACKGROUND:: Knee osteoarthritis is a major contributor to the global burden of disease. There is a need of reducing knee joint load and to improve balance and physical function among knee osteoarthritis patients.

    OBJECTIVES:: To test the hypothesis that toe-out gait will reduce second peak knee adduction moment further and increase fall risk when combined with knee brace and laterally wedged insole in knee osteoarthritis patients.

    STUDY DESIGN:: Single visit study with repeated measures.

    METHODS:: First and second peak knee adduction moments, fall risk and comfort level. First and second peak knee adduction moments were determined from three-dimensional gait analysis, completed under six randomized conditions: (1) natural, (2) knee brace, (3) knee brace + toe-out gait, (4) laterally wedged insole, (5) laterally wedged insole + toe-out gait, and (6) knee brace + laterally wedged insole + toe-out gait. Fall risk was assessed by Biodex Balance System using three randomized stability settings: (1) static, (2) moderate dynamic setting (FR12), and (3) high dynamic setting (FR8).

    RESULTS:: The reduction in first peak knee adduction moment and second peak knee adduction moment was greatest (7.16% and 25.55%, respectively) when toe-out gait combine with knee brace and laterally wedged insole. Significant increase in fall risk was observed with knee brace + laterally wedged insole + toe-out gait (42.85%) at FR12. Similar significant balance reductions were found at FR8 condition for knee brace + toe-out gait (35.71%), laterally wedged insole + toe-out gait (28.57%), and knee brace + laterally wedged insole + toe-out gait (50%) as compared to natural. However, knee brace decreased fall risk at FR12 by 28.57%.

    CONCLUSION:: There is a synergistic effect of toe-out when combined with knee brace and laterally wedged insole concurrently in second peak knee adduction moment reduction but with a greater degree of fall risk. Simultaneous use of conservative treatments also decreases comfort level.

    CLINICAL RELEVANCE: Patients with mild and moderate knee osteoarthritis are usually prescribed conservative treatment techniques. This study will provide an insight whether or not a combination of these techniques have a synergistic effect in reducing knee joint load.

    Matched MeSH terms: Range of Motion, Articular/physiology*
  9. Nur Husna Md. Yusoff, Md. Jashim Uddin, Ahmad Izani Md. Ismail
    Sains Malaysiana, 2014;43:151-159.
    A combined similarity-numerical solution of the magnetohydrodynamic boundary layer slip flow of an electrically conducting non-Newtonian power-law nanofluid along a heated radiating moving vertical plate is explored. Our nanofluid model incorporates the influences of the thermophoresis and the Brownian motion. The basic transport equations are made dimensionless first and then suitable similarity transformations are applied to reduce them into a set of nonlinear ordinary differential equations with the associated boundary conditions. The reduced equations are then solved numerically. Graphical results for the non-dimensional flow velocity, the temperature and the nanoparticles volume fraction profiles as well as for the friction factor, the local Nusselt and the Sherwood numbers are exhibited and examined for various values of the controlling parameters to display the interesting aspects of the solutions. It was found that the friction factor increases with the increase of the magnetic field (M), whilst it is decreased with the linear momentum slip parameter (a). The linear momentum slip parameter (a) reduces the heat transfer rates and the nanoparticles volume fraction rates. Our results are compatible with the existing results for a special case.
    Matched MeSH terms: Motion
  10. Yoon KH, Kim JS, Park JY, Park SY, Kiat RYD, Kim SG
    Orthop J Sports Med, 2021 Feb;9(2):2325967120985153.
    PMID: 33709007 DOI: 10.1177/2325967120985153
    Background: There is currently no consensus on the optimal placement of the tibial tunnel for remnant-preserving posterior cruciate ligament (PCL) reconstruction.

    Purpose/Hypothesis: The purpose of this study was to compare the clinical and radiologic outcomes of remnant-preserving PCL reconstruction using anatomic versus low tibial tunnels. We hypothesized that the outcomes of low tibial tunnel placement would be superior to those of anatomic tibial tunnel placement at the 2-year follow-up after remnant-preserving PCL reconstruction.

    Study Design: Cohort study; Level of evidence, 3.

    Methods: We retrospectively reviewed the data for patients who underwent remnant-preserving PCL reconstruction between March 2011 and January 2018 with a minimum follow-up of 2 years (N = 63). On the basis of the tibial tunnel position on postoperative computed tomography, the patients were divided into those with anatomic placement (group A; n = 31) and those with low tunnel placement (group L; n = 32). Clinical scores (International Knee Documentation Committee subjective score, Lysholm score, and Tegner activity level), range of motion, complications, and stability test outcomes at follow-up were compared between the 2 groups. Graft signal on 1-year follow-up magnetic resonance imaging scans was compared between 22 patients in group A and 17 patients in group L.

    Results: There were no significant differences between groups regarding clinical scores or incidence of complications, no between-group differences in posterior drawer test results, and no side-to-side difference on Telos stress radiographs (5.2 ± 2.9 mm in group A vs 5.1 ± 2.8 mm in group L; P = .900). Postoperative 1-year follow-up magnetic resonance imaging scans showed excellent graft healing in both groups, with no significant difference between them.

    Conclusion: The clinical and radiologic outcomes and complication rate were comparable between anatomic tunnel placement and low tibial tunnel placement at 2-year follow-up after remnant-preserving PCL reconstruction. The findings of this study suggest that both tibial tunnel positions are clinically feasible for remnant-preserving PCL reconstruction.

    Matched MeSH terms: Range of Motion, Articular
  11. Yoon KH, Kim JS, Park JY, Park SY, Kiat RYD, Kim SG
    Knee Surg Sports Traumatol Arthrosc, 2021 Jun;29(6):1936-1943.
    PMID: 32914218 DOI: 10.1007/s00167-020-06266-0
    PURPOSE: To compare clinical and radiological outcomes and failure rates between anatomical and high femoral tunnels in remnant-preserving single-bundle posterior cruciate ligament (PCL) reconstruction.

    METHODS: 63 patients who underwent remnant-preserving single-bundle PCL reconstruction between 2011 and 2018 with a minimum 2-year follow-up were retrospectively reviewed. Patients were divided into two groups according to the femoral tunnel position: group A (33 patients with anatomical femoral tunnel) and group H (30 patients with high femoral tunnels). The femoral tunnel was positioned at the center (group A) or upper margin (group H) of the remnant anterolateral bundle. The position of the femoral tunnel was evaluated using the grid method on three-dimensional computed tomography. Clinical and radiological outcomes and failure rates were compared between the groups at the 2-year follow-up.

    RESULTS: The position of the femoral tunnel was significantly high in group H than in group A (87.4% ± 4.2% versus 76.1% ± 3.7%, p motion, and posterior drawer test. Radiological outcomes also showed no intergroup differences in the side-to-side differences of posterior tibial translation and osteoarthritis progression. Side-to-side difference on the Telos stress radiograph was 5.2 ± 2.9 mm in group A and 5.2 ± 2.7 mm in group H (n.s.). There were four failures in group A (12.1%) and one in group H (3.3%). The differences between the groups were not statistically significant.

    CONCLUSION: The clinical and radiological outcomes and failure rates of the high femoral tunnels were comparable with those of the anatomical femoral tunnels at the 2-year follow-up after remnant-preserving single-bundle PCL reconstruction. The findings of this study suggest that high femoral tunnels can be considered an alternative in remnant-preserving single-bundle PCL reconstruction.

    LEVEL OF EVIDENCE: III.

    Matched MeSH terms: Range of Motion, Articular
  12. Siow WM, Chin PL, Chia SL, Lo NN, Yeo SJ
    Clin Orthop Relat Res, 2013 May;471(5):1451-7.
    PMID: 23299954 DOI: 10.1007/s11999-012-2776-7
    There is marked racial disparity in TKA use rates, demographics, and outcomes between white and Afro-Caribbean Americans. Comparative studies of ethnicity in patients undergoing TKAs have been mostly in American populations with an underrepresentation of Asian groups. It is unclear whether these disparities exist in Chinese, Malays, and Indians.
    Matched MeSH terms: Range of Motion, Articular
  13. Yousefi B, Loo CK
    ScientificWorldJournal, 2014;2014:723213.
    PMID: 25276860 DOI: 10.1155/2014/723213
    Research on psychophysics, neurophysiology, and functional imaging shows particular representation of biological movements which contains two pathways. The visual perception of biological movements formed through the visual system called dorsal and ventral processing streams. Ventral processing stream is associated with the form information extraction; on the other hand, dorsal processing stream provides motion information. Active basic model (ABM) as hierarchical representation of the human object had revealed novelty in form pathway due to applying Gabor based supervised object recognition method. It creates more biological plausibility along with similarity with original model. Fuzzy inference system is used for motion pattern information in motion pathway creating more robustness in recognition process. Besides, interaction of these paths is intriguing and many studies in various fields considered it. Here, the interaction of the pathways to get more appropriated results has been investigated. Extreme learning machine (ELM) has been implied for classification unit of this model, due to having the main properties of artificial neural networks, but crosses from the difficulty of training time substantially diminished in it. Here, there will be a comparison between two different configurations, interactions using synergetic neural network and ELM, in terms of accuracy and compatibility.
    Matched MeSH terms: Motion; Motion Perception/physiology*
  14. Mohd Firdaus Abdul Razak, Mohd Saiful Aizat Mohd Shafie, Muhamad Sharafee Shamsudin, Muhamad Faris Che Aminudin
    MyJurnal
    The main objective of this study is to compare the execution times produced by fending off techniques of Seni Silat Cekak Malaysia (SSCM), Kaedah A for different movement trajectories. Three kind of movement trajectories for Kaedah A were carried out, which were Trajectory A (normal path), Trajectory B (curve path) and Trajectory C (starting by pulling the hand to the back and continue as Trajectory A). The experiments were conducted using a motion capture system. The movement position of the left hand during the execution of Kaedah A were recorded by a Kinect sensor, prior to storing and processing via Virtual Sensei (VS) Lite software. A total of four (4) experienced practitioners from SSCM were selected to perform Kaedah A techniques. The data acquired were further analyzed to determine their kinematic characteristics. The results showed that the execution of Kaedah A using Trajectory A produced the shortest time and highest velocity with averages of 0.071±0.007s and 6.438±0.863ms-1 respectively, compared to Trajectory B (0.087±0.011s, 5.230±0.578 ms-1) and Trajectory C (0.149±0.015s, 2.903±0.273ms-1). Therefore, Trajectory A is considered to be more efficient than Trajectory B and Trajectory C in terms of execution times and maximum velocity produced by Kaedah A.
    Matched MeSH terms: Motion
  15. Lan BL
    Chaos, 2006 Sep;16(3):033107.
    PMID: 17014212
    The dynamics of a periodically delta-kicked Hamiltonian system moving at low speed (i.e., at speed much less than the speed of light) is studied numerically. In particular, the trajectory of the system predicted by Newtonian mechanics is compared with the trajectory predicted by special relativistic mechanics for the same parameters and initial conditions. We find that the Newtonian trajectory, although close to the relativistic trajectory for some time, eventually disagrees completely with the relativistic trajectory, regardless of the nature (chaotic, nonchaotic) of each trajectory. However, the agreement breaks down very fast if either the Newtonian or relativistic trajectory is chaotic, but very much slower if both the Newtonian and relativistic trajectories are nonchaotic. In the former chaotic case, the difference between the Newtonian and relativistic values for both position and momentum grows, on average, exponentially. In the latter nonchaotic case, the difference grows much slower, for example, linearly on average.
    Matched MeSH terms: Motion
  16. Foead A, Penafort R, Saw A, Sengupta S
    J Orthop Surg (Hong Kong), 2004 Jun;12(1):76-82.
    PMID: 15237126
    To conduct a prospective randomised controlled study to compare the stability and risk of nerve injury between fractures treated by medial-lateral pin fixation and those treated by 2-lateral pin fixation.
    Matched MeSH terms: Range of Motion, Articular/physiology
  17. Mani S, Sharma S, Singh DK
    J Telemed Telecare, 2021 Feb;27(2):88-97.
    PMID: 31272309 DOI: 10.1177/1357633X19861802
    INTRODUCTION: The aim of this study was to determine the concurrent validity and reliability of telerehabilitation (TR)-based evaluation of the cervical spine among adults with non-specific neck pain (NS-NP).

    METHODS: A total of 11 participants with NS-NP were recruited. Pain intensity, active range of motion (AROM), posture, deep neck flexor (DNF) endurance, combined neck movements and disability were measured using face-to-face and TR methods, with a one-hour break in between. TelePTsys, an image-based TR system, was used for TR assessment.

    RESULTS: A high degree of concurrent validity for pain (bias = 0.90), posture (bias = 0.96°), endurance (bias = -2.3 seconds), disability (bias = 0.10), AROM (extension bias = -0.60 cm, flexion bias = 1.2 cm, side flexion bias = -1.00, rotation bias = -0.30 cm) was found. Standard error of measurement and coefficient of variation (CV) values were within the acceptable level for concurrent validity, except the CV for cervical flexion and endurance. There was a high degree of reliability demonstrated for pain, posture, AROM, endurance and disability measurements. The average-measure interclass correlation coefficient (ICC(3,1)) ranged from 0.96 to 0.99 for inter-rater, and 0.93 to 0.99 for intra-rater reliabilities. There was moderate agreement for combination movement for validity (78.5%, p 

    Matched MeSH terms: Range of Motion, Articular
  18. ManickamAchari V, Bryce RA, Hashim R
    PLoS One, 2014;9(6):e101110.
    PMID: 24978205 DOI: 10.1371/journal.pone.0101110
    The rational design of a glycolipid application (e.g. drug delivery) with a tailored property depends on the detailed understanding of its structure and dynamics. Because of the complexity of sugar stereochemistry, we have undertaken a simulation study on the conformational dynamics of a set of synthetic glycosides with different sugar groups and chain design, namely dodecyl β-maltoside, dodecyl β-cellobioside, dodecyl β-isomaltoside and a C12C10 branched β-maltoside under anhydrous conditions. We examined the chain structure in detail, including the chain packing, gauche/trans conformations and chain tilting. In addition, we also investigated the rotational dynamics of the headgroup and alkyl chains. Monoalkylated glycosides possess a small amount of gauche conformers (∼20%) in the hydrophobic region of the lamellar crystal (LC) phase. In contrast, the branched chain glycolipid in the fluid Lα phase has a high gauche population of up to ∼40%. Rotational diffusion analysis reveals that the carbons closest to the headgroup have the highest correlation times. Furthermore, its value depends on sugar type, where the rotational dynamics of an isomaltose was found to be 11-15% and more restrained near the sugar, possibly due to the chain disorder and partial inter-digitation compared to the other monoalkylated lipids. Intriguingly, the present simulation demonstrates the chain from the branched glycolipid bilayer has the ability to enter into the hydrophilic region. This interesting feature of the anhydrous glycolipid bilayer simulation appears to arise from a combination of lipid crowding and the amphoteric nature of the sugar headgroups.
    Matched MeSH terms: Motion
  19. Ali F, Khan I, Samiulhaq, Shafie S
    PLoS One, 2013;8(6):e65223.
    PMID: 23840321 DOI: 10.1371/journal.pone.0065223
    The aim of this study is to present an exact analysis of combined effects of radiation and chemical reaction on the magnetohydrodynamic (MHD) free convection flow of an electrically conducting incompressible viscous fluid over an inclined plate embedded in a porous medium. The impulsively started plate with variable temperature and mass diffusion is considered. The dimensionless momentum equation coupled with the energy and mass diffusion equations are analytically solved using the Laplace transform method. Expressions for velocity, temperature and concentration fields are obtained. They satisfy all imposed initial and boundary conditions and can be reduced, as special cases, to some known solutions from the literature. Expressions for skin friction, Nusselt number and Sherwood number are also obtained. Finally, the effects of pertinent parameters on velocity, temperature and concentration profiles are graphically displayed whereas the variations in skin friction, Nusselt number and Sherwood number are shown through tables.
    Matched MeSH terms: Motion
  20. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2018 Aug 10;121(6):062002.
    PMID: 30141647 DOI: 10.1103/PhysRevLett.121.062002
    The pseudorapidity distributions of dijets as functions of their average transverse momentum (p_{T}^{ave}) are measured in proton-lead (pPb) and proton-proton (pp) collisions. The data samples were collected by the CMS experiment at the CERN LHC, at a nucleon-nucleon center-of-mass energy of 5.02 TeV. A significant modification of the pPb spectra with respect to the pp spectra is observed in all p_{T}^{ave} intervals investigated. The ratios of the pPb and pp distributions are compared to next-to-leading order perturbative quantum chromodynamics calculations with unbound nucleon and nuclear parton distribution functions (PDFs). These results give the first evidence that the gluon PDF at large Bjorken x in lead ions is strongly suppressed with respect to the PDF in unbound nucleons.
    Matched MeSH terms: Motion
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links