OBJECTIVE: This review was aimed to critically overview the literature and summarizes the antibacterial, antiprotozoal, and antifungal trends of E. longifolia and its medicinally active components.
RESULTS: Besides its well-documented safety, efficacy, and tolerability, a plethora of in vitro, in vivo, and human clinical studies has evidenced the antimicrobial efficacy of E. longifolia and its bioactive constituents. Phytochemical screening of various types of extracts (methanolic, ethyl acetate, and nbutanolic) from different parts (roots, stem, and leaves) of E. longifolia displayed a dose-dependent antibacterial, antiprotozoal, and antifungal responses. Comparative analysis revealed that the root extract of E. longifolia exhibited the highest antimicrobial efficacy compared to other parts of the plant. Bioactivity-guided fractionation identified that among all of the medicinal compounds isolated/ extracted from different parts of E. longifolia, eurycomanone displayed the strongest antibacterial, antiprotozoal and antifungal activities.
CONCLUSION: Based on the critical analysis of the literature, we identified that E. longifolia exhibits promising antibacterial, antiprotozoal, and antifungal efficacies against various pathogenic microbes and thus can be considered as a potential complementary and alternative antimicrobial therapy.
AIM OF THE STUDY: In this context, supported with previous preliminary data of its antiplasmodial activity, this study was undertaken to determine the in vitro antiplasmodial and cytotoxicity activities of G. lanceolatus crude extracts and its major compounds.
MATERIALS AND METHODS: The in vitro antiplasmodial activity was determined by parasite lactate dehydrogenase (pLDH) assay on chloroquine-sensitive (3D7) and chloroquine-resistant (K1) strains of Plasmodium falciparum. The cytotoxicity activity was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on hepatocellular carcinoma (HepG2) and normal liver (WRL-68) cell lines.
RESULTS: The root methanol extract possessed potent antiplasmodial activity against both P. falciparum 3D7 and K1 strains (IC50 = 2.7 μg/ml, SI = 140; IC50 = 1.7 μg/ml, SI = 236). Apart from the DCM extract of stem bark and root that were found to be inactive (IC50 > 50 μg/ml) against 3D7 strain, all other tested crude extracts exhibited promising (5< IC50 30 µg/ml, CC50 > 10 µM, respectively), except for the hexane and DCM extracts of root, which exerted mild cytotoxicity on HepG2 cell line (IC50
MATERIALS AND METHODS: Literature abstracts and full text articles from journals, books, reports and electronic searches (Google Scholar, Elsevier, PubMed, Read Cube, Scopus, Springer, and Web of Science), as well as from other relevant websites, are surveyed, analysed and included in this review.
RESULTS: A literature survey of agarwood plant materials showed that they contain sesquiterpenes, 2(-2-phenylethyl)-4H-chromen-4-one derivatives, genkwanins, mangiferins, iriflophenones, cucurbitacins, terpenoids and phenolic acids. The crude extracts and some of the isolated compounds exhibit anti-allergic, anti-inflammatory, anti-diabetic, anti-cancer, anti-oxidant, anti-ischemic, anti-microbial, hepatoprotective, laxative, and mosquitocidal properties and effects on the central nervous system. Agarwood plant materials are considered to be safe based on the doses tested. However, the toxicity and safety of the materials, including the smoke from agarwood incense burning, should be further investigated. Future research should be directed towards the bio-guided isolation of bioactive compounds with proper chemical characterisation and investigations of the underlying mechanisms towards drug discovery.
CONCLUSIONS: The traditional medicinal use of agarwood plant materials has provided clues to their pharmacological properties. Indeed, agarwood contains a plethora of bioactive compounds that now elegantly support their use in traditional medicine. As wild agarwood trees are critically endangered and vulnerable, sustainable agricultural and forestry practices are necessary for the further development and utilization of agarwood as a source of health beneficial compounds.