Displaying publications 581 - 600 of 1467 in total

Abstract:
Sort:
  1. Saidu AS, Mohammed S, Adamu SG, Sadiq MA, Tijjani AO, Musa HI, et al.
    Sci Rep, 2023 Dec 27;13(1):23079.
    PMID: 38155194 DOI: 10.1038/s41598-023-49451-0
    Cryptosporidium is one of the most important protozoan parasitic pathogens, and it is a common cause of diarrhoea in humans, domestic animals, and wild vertebrates and has serious public health threats. A cross-sectional study was designed to determine the prevalence of Cryptosporidium oocysts in raw-eaten vegetables in Maiduguri Metropolitan Council (MMC) and Jere Local Government Areas (LGAs). A total of 400 samples were collected from four (4) different locations, namely Tashan Bama, Gomboru, and Monday Markets (n = 100), while fifty (n = 50) each from 202-Vegetable-Vendors and Unimaid Commercials. A total of 16 visits were conducted in all the sampling areas (twenty-five samples per visit). The Cryptosporidium oocysts were detected using the Modified Ziehl-Neelsen Staining Technique. The locations, sources, and types of raw-eaten vegetables were also assessed. The oocysts were confirmed (100×) as bright pink spherules. Data generated were analyzed using IBM-SPSS V23.0, and p ≤ 0.05 was considered significant. Out of the total samples (n = 400) analyzed, cabbage appeared to have the highest number of 10 (12.5%) of Cryptosporidium oocysts detected, while Tomato and garden egg had 9 (11.3%) and 1 (1.2%), respectively. There was a statistically significant association (χ2 = 12.5, P = 0.014) between the presence of Cryptosporidium oocysts in raw-eaten vegetables and vegetable types. Among the sources of the vegetables sampled, Alau had the highest number of Cryptosporidium oocysts, 15 (12.5%), followed by Kilari-Abdullahi and Zabarmari sources with 4 (10.0%) and 4 (5.0%), respectively. However, Jetete appeared to have the least number 2 (2.5%) of oocysts, and there was a statistically significant association (χ2= 10.4, P = 0.034) between the presence of Cryptosporidium oocysts and the sources of vegetables and fruits. The study concludes that the raw-eaten vegetables sampled from Maiduguri Metropolis were contaminated with Cryptosporidium oocysts. The study recommends that all raw-eaten vegetables should be from cleaned sources and washed before consumption. Consumers should be enlightened on the hygienic measures in the food chain in line with the Hazard Analysis and Critical Control Points (HACCP) principles.
    Matched MeSH terms: Vegetables/parasitology
  2. Turkiewicz A, Manko E, Oresegun DR, Nolder D, Spadar A, Sutherland CJ, et al.
    Sci Rep, 2023 Feb 07;13(1):2142.
    PMID: 36750737 DOI: 10.1038/s41598-023-29368-4
    The zoonotic Plasmodium knowlesi parasite is a growing public health concern in Southeast Asia, especially in Malaysia, where elimination of P. falciparum and P. vivax malaria has been the focus of control efforts. Understanding of the genetic diversity of P. knowlesi parasites can provide insights into its evolution, population structure, diagnostics, transmission dynamics, and the emergence of drug resistance. Previous work has revealed that P. knowlesi fall into three main sub-populations distinguished by a combination of geographical location and macaque host (Macaca fascicularis and M. nemestrina). It has been shown that Malaysian Borneo groups display profound heterogeneity with long regions of high or low divergence resulting in mosaic patterns between sub-populations, with some evidence of chromosomal-segment exchanges. However, the genetic structure of non-Borneo sub-populations is less clear. By gathering one of the largest collections of P. knowlesi whole-genome sequencing data, we studied structural genomic changes across sub-populations, with the analysis revealing differences in Borneo clusters linked to mosquito-related stages of the parasite cycle, in contrast to differences in host-related stages for the Peninsular group. Our work identifies new genetic exchange events, including introgressions between Malaysian Peninsular and M. nemestrina-associated clusters on various chromosomes, including in parasite invasion genes (DBP[Formula: see text], NBPX[Formula: see text] and NBPX[Formula: see text]), and important proteins expressed in the vertebrate parasite stages. Recombination events appear to have occurred between the Peninsular and M. fascicularis-associated groups, including in the DBP[Formula: see text] and DBP[Formula: see text] invasion associated genes. Overall, our work finds that genetic exchange events have occurred among the recognised contemporary groups of P. knowlesi parasites during their evolutionary history, leading to apparent mosaicism between these sub-populations. These findings generate new hypotheses relevant to parasite evolutionary biology and P. knowlesi epidemiology, which can inform malaria control approaches to containing the impact of zoonotic malaria on human communities.
    Matched MeSH terms: Macaca fascicularis/parasitology
  3. Rahim MAFA, Munajat MB, Idris ZM
    Malar J, 2020 Nov 07;19(1):395.
    PMID: 33160393 DOI: 10.1186/s12936-020-03470-8
    BACKGROUND: Malaysia has already achieved remarkable accomplishments in reaching zero indigenous human malaria cases in 2018. Prompt malaria diagnosis, surveillance and treatment played a key role in the country's elimination success. Looking at the dynamics of malaria distribution during the last decades might provide important information regarding the potential challenges of such an elimination strategy. This study was performed to gather all data available in term of prevalence or incidence on Plasmodium infections in Malaysia over the last four decades.

    METHODS: A systematic review of the published English literature was conducted to identify malaria distribution from 1980 to June 2019 in Malaysia. Two investigators independently extracted data from PubMed, Scopus, Web of Science and Elsevier databases for original papers.

    RESULTS: The review identified 46 epidemiological studies in Malaysia over the 39-year study period, on which sufficient information was available. The majority of studies were conducted in Malaysia Borneo (31/46; 67.4%), followed by Peninsular Malaysia (13/46; 28.3%) and in both areas (2/46; 4.3%). More than half of all studies (28/46; 60.9%) were assessed by both microscopy and PCR. Furthermore, there was a clear trend of decreases of all human malaria species with increasing Plasmodium knowlesi incidence rate throughout the year of sampling period. The summary estimates of sensitivity were higher for P. knowlesi than other Plasmodium species for both microscopy and PCR. Nevertheless, the specificities of summary estimates were similar for microscopy (40-43%), but varied for PCR (2-34%).

    CONCLUSIONS: This study outlined the epidemiological changes in Plasmodium species distribution in Malaysia. Malaria cases shifted from predominantly caused by human malaria parasites to simian malaria parasites, which accounted for the majority of indigenous cases particularly in Malaysia Borneo. Therefore, malaria case notification and prompt malaria diagnosis in regions where health services are limited in Malaysia should be strengthened and reinforced to achieving the final goal of malaria elimination in the country.

    Matched MeSH terms: Malaria/parasitology
  4. Sinniah B, Subramaniam K
    J Helminthol, 1991 Jun;65(2):141-7.
    PMID: 1880388
    Fifty children aged 6 to 13 years and infected with Ascaris lumbricoides were selected for the study. The number of eggs laid daily by a female Ascaris increased with increase in its length, weight and diameter. Female worms became mature and started laying eggs when they reached a length of 118 mm. Adult female worms measuring 3.7 mm or more in diameter were found to be mature. The minimum weight of a worm producing eggs was 1.1 g. On average the number of eggs produced by the female decreased with increase in the worm load.
    Matched MeSH terms: Ascariasis/parasitology*
  5. Dissanaike AS, Mak JW
    J Helminthol, 1980 Jun;54(2):117-22.
    PMID: 6997363
    Adult worms of the rural strain of Wuchereria bancrofti in Peninsular Malaysia obtained from a successful experimental transmission in an immunosuppressed Macaca fascicularis are described for the first time. Although the worms, especially females, were slightly smaller, they were similar in morphology to those of the periodic and non-periodic W. bancrofti previously described.
    Matched MeSH terms: Filariasis/parasitology*
  6. Johnson E, Sunil Kumar Sharma R, Ruiz Cuenca P, Byrne I, Salgado-Lynn M, Suraya Shahar Z, et al.
    Elife, 2024 May 16;12.
    PMID: 38753426 DOI: 10.7554/eLife.88616
    Zoonotic disease dynamics in wildlife hosts are rarely quantified at macroecological scales due to the lack of systematic surveys. Non-human primates (NHPs) host Plasmodium knowlesi, a zoonotic malaria of public health concern and the main barrier to malaria elimination in Southeast Asia. Understanding of regional P. knowlesi infection dynamics in wildlife is limited. Here, we systematically assemble reports of NHP P. knowlesi and investigate geographic determinants of prevalence in reservoir species. Meta-analysis of 6322 NHPs from 148 sites reveals that prevalence is heterogeneous across Southeast Asia, with low overall prevalence and high estimates for Malaysian Borneo. We find that regions exhibiting higher prevalence in NHPs overlap with human infection hotspots. In wildlife and humans, parasite transmission is linked to land conversion and fragmentation. By assembling remote sensing data and fitting statistical models to prevalence at multiple spatial scales, we identify novel relationships between P. knowlesi in NHPs and forest fragmentation. This suggests that higher prevalence may be contingent on habitat complexity, which would begin to explain observed geographic variation in parasite burden. These findings address critical gaps in understanding regional P. knowlesi epidemiology and indicate that prevalence in simian reservoirs may be a key spatial driver of human spillover risk.
    Matched MeSH terms: Primate Diseases/parasitology
  7. Hartmeyer GN, Stensvold CR, Fabricius T, Marmolin ES, Hoegh SV, Nielsen HV, et al.
    Emerg Infect Dis, 2019 10;25(10):1936-1939.
    PMID: 31538931 DOI: 10.3201/eid2510.190448
    We report human infection with simian Plasmodium cynomolgi in a tourist from Denmark who had visited forested areas in peninsular Malaysia and Thailand in August and September 2018. Because P. cynomolgi may go unnoticed by standard malaria diagnostics, this malaria species may be more common in humans than was previously thought.
    Matched MeSH terms: Malaria/parasitology*
  8. Anderson DC, Peterson MS, Lapp SA, Galinski MR
    J Proteomics, 2024 Jun 30;302:105197.
    PMID: 38759952 DOI: 10.1016/j.jprot.2024.105197
    The emerging malaria parasite Plasmodium knowlesi threatens the goal of worldwide malaria elimination due to its zoonotic spread in Southeast Asia. After brief ex-vivo culture we used 2D LC/MS/MS to examine the early and late ring stages of infected Macaca mulatta red blood cells harboring P. knowlesi. The M. mulatta clathrin heavy chain and T-cell and macrophage inhibitor ERMAP were overexpressed in the early ring stage; glutaredoxin 3 was overexpressed in the late ring stage; GO term differential enrichments included response to oxidative stress and the cortical cytoskeleton in the early ring stage. P. knowlesi clathrin heavy chain and 60S acidic ribosomal protein P2 were overexpressed in the late ring stage; GO term differential enrichments included vacuoles in the early ring stage, ribosomes and translation in the late ring stage, and Golgi- and COPI-coated vesicles, proteasomes, nucleosomes, vacuoles, ion-, peptide-, protein-, nucleocytoplasmic- and RNA-transport, antioxidant activity and glycolysis in both stages. SIGNIFICANCE: Due to its zoonotic spread, cases of the emerging human pathogen Plasmodium knowlesi in southeast Asia, and particularly in Malaysia, threaten regional and worldwide goals for malaria elimination. Infection by this parasite can be fatal to humans, and can be associated with significant morbidity. Due to zoonotic transmission from large macaque reservoirs that are untreatable by drugs, and outdoor biting mosquito vectors that negate use of preventive measures such as bed nets, its containment remains a challenge. Its biology remains incompletely understood. Thus we examine the expressed proteome of the early and late ex-vivo cultured ring stages, the first intraerythrocyte developmental stages after infection of host rhesus macaque erythrocytes. We used GO term enrichment strategies and differential protein expression to compare early and late ring stages. The early ring stage is characterized by the enrichment of P. knowlesi vacuoles, and overexpression of the M. mulatta clathrin heavy chain, important for clathrin-coated pits and vesicles, and clathrin-mediated endocytosis. The M. mulatta protein ERMAP was also overexpressed in the early ring stage, suggesting a potential role in early ring stage inhibition of T-cells and macrophages responding to P. knowlesi infection of reticulocytes. This could allow expansion of the host P. knowlesi cellular niche, allowing parasite adaptation to invasion of a wider age range of RBCs than the preferred young RBCs or reticulocytes, resulting in proliferation and increased pathogenesis in infected humans. Other GO terms differentially enriched in the early ring stage include the M. mulatta cortical cytoskeleton and response to oxidative stress. The late ring stage is characterized by overexpression of the P. knowlesi clathrin heavy chain. Combined with late ring stage GO term enrichment of Golgi-associated and coated vesicles, and enrichment of COPI-coated vesicles in both stages, this suggests the importance to P. knowlesi biology of clathrin-mediated endocytosis. P. knowlesi ribosomes and translation were also differentially enriched in the late ring stage. With expression of a variety of heat shock proteins, these results suggest production of folded parasite proteins is increasing by the late ring stage. M. mulatta endocytosis was differentially enriched in the late ring stage, as were clathrin-coated vesicles and endocytic vesicles. This suggests that M. mulatta clathrin-based endocytosis, perhaps in infected reticulocytes rather than mature RBC, may be an important process in the late ring stage. Additional ring stage biology from enriched GO terms includes M. mulatta proteasomes, protein folding and the chaperonin-containing T complex, actin and cortical actin cytoskeletons. P knowlesi biology also includes proteasomes, as well as nucleosomes, antioxidant activity, a variety of transport processes, glycolysis, vacuoles and protein folding. Mature RBCs have lost internal organelles, suggesting infection here may involve immature reticulocytes still retaining organelles. P. knowlesi parasite proteasomes and translational machinery may be ring stage drug targets for known selective inhibitors of these processes in other Plasmodium species. To our knowledge this is the first examination of more than one timepoint within the ring stage. Our results expand knowledge of both host and parasite proteins, pathways and organelles underlying P. knowlesi ring stage biology.
    Matched MeSH terms: Malaria/parasitology
  9. Qadeer A, Wajid A, Rafey HA, Nawaz S, Khan S, Rahman SU, et al.
    Front Cell Infect Microbiol, 2024;14:1424838.
    PMID: 39165921 DOI: 10.3389/fcimb.2024.1424838
    Extracellular vesicles (EVs) have emerged as key intercellular communication and pathogenesis mediators. Parasitic organisms' helminths, cause widespread infections with significant health impacts worldwide. Recent research has shed light on the role of EVs in the lifecycle, immune evasion, and disease progression of these parasitic organisms. These tiny membrane-bound organelles including microvesicles and exosomes, facilitate the transfer of proteins, lipids, mRNAs, and microRNAs between cells. EVs have been isolated from various bodily fluids, offering a potential diagnostic and therapeutic avenue for combating infectious agents. According to recent research, EVs from helminths hold great promise in the diagnosis of parasitic infections due to their specificity, early detection capabilities, accessibility, and the potential for staging and monitoring infections, promote intercellular communication, and are a viable therapeutic tool for the treatment of infectious agents. Exploring host-parasite interactions has identified promising new targets for diagnostic, therapy, and vaccine development against helminths. This literature review delves into EVS's origin, nature, biogenesis, and composition in these parasitic organisms. It also highlights the proteins and miRNAs involved in EV release, providing a comprehensive summary of the latest findings on the significance of EVs in the biology of helminths, promising targets for therapeutic and diagnostic biomarkers.
    Matched MeSH terms: Zoonoses/parasitology
  10. Ragavan AD, Govind SK
    Parasitol Res, 2015 Mar;114(3):1163-6.
    PMID: 25614298 DOI: 10.1007/s00436-014-4296-8
    Dientamoeba fragilis, a trichomonad parasite is usually found in the gastrointestinal tract of human, and it is known to be the cause for gastrointestinal disease. The parasite is globally distributed and mostly found in rural and urban areas. The parasite is found in humans and nonhuman primates such as the macaques, baboons, and gorillas. Often, the parasite is confused with another largely found organism in stools called Blastocystis sp. especially when seen directly under light microscopy on culture samples containing both parasites. Both sometimes are seen with two nuclei with sizes tending to be similar which complicates identification. Stools were collected fresh from nine previously diagnosed persons infected with D. fragilis who also were found to be positive for Blastocystis sp. Samples were then cultured in Loeffler's medium and were stained with Giemsa, iron hematoxylin, and modified Fields' (MF) stain, respectively. D. fragilis was differentiated from Blastocystis sp. when stained with MF stain by the presence of a thinner outer membrane with clearly demarcated nuclei in the center of the cell whilst Blastocystis sp. had a darker and thicker stained outer membrane with the presence of two nuclei. The staining contrast was more evident with modified Fields' stain when compared with the other two. The simplicity in preparing the stain as well as the speed of the staining procedure make MF stain an ideal alternate. The modified Fields' stain is faster and easier to prepare when compared to the other two stains. MF stain provides a better contrast differentiating the two organisms and therefore provides a more reliable diagnostic method to precisely identify one from the other especially when cultures show mixed infections.
    Matched MeSH terms: Dientamoebiasis/parasitology; Feces/parasitology; Blastocystis Infections/parasitology
  11. Khaw LT, Ball HJ, Mitchell AJ, Grau GE, Stocker R, Golenser J, et al.
    Exp Parasitol, 2014 Oct;145:34-41.
    PMID: 25045850 DOI: 10.1016/j.exppara.2014.07.002
    We here describe the novel finding that brain endothelial cells in vitro can stimulate the growth of Plasmodium falciparum through the production of low molecular weight growth factors. By using a conditioned medium approach, we show that the brain endothelial cells continued to release these factors over time. If this mirrors the in vivo situation, these growth factors potentially would provide an advantage, in terms of enhanced growth, for sequestered parasitised red blood cells in the brain microvasculature. We observed this phenomenon with brain endothelial cells from several sources as well as a second P. falciparum strain. The characteristics of the growth factors included: <3 kDa molecular weight, heat stable, and in part chloroform soluble. Future efforts should be directed at identifying these growth factors, since blocking their production or actions might be of benefit for reducing parasite load and, hence, malaria pathology.
    Matched MeSH terms: Brain/parasitology*; Endothelium/parasitology; Erythrocytes/parasitology
  12. Foster D, Cox-Singh J, Mohamad DS, Krishna S, Chin PP, Singh B
    Malar J, 2014;13:60.
    PMID: 24548805 DOI: 10.1186/1475-2875-13-60
    Plasmodium knowlesi, a malaria parasite of Southeast Asian macaques, infects humans and can cause fatal malaria. It is difficult to diagnose by microscopy because of morphological similarity to Plasmodium malariae. Nested PCR assay is the most accurate method to distinguish P. knowlesi from other Plasmodium species but is not cost effective in resource-poor settings. Rapid diagnostic tests (RDTs) are recommended for settings where malaria is prevalent. In this study, the effectiveness of three RDTs in detecting P. knowlesi from fresh and frozen patient blood samples was evaluated.
    Matched MeSH terms: Blood/parasitology*; Parasitology/methods*
  13. Tan TK, Panchadcharam C, Low VL, Lee SC, Ngui R, Sharma RS, et al.
    BMC Vet Res, 2014;10:38.
    PMID: 24502557 DOI: 10.1186/1746-6148-10-38
    Haemonchus contortus and Trichostrongylus spp. are reported to be the most prevalent and highly pathogenic parasites in livestock, particularly in small ruminants. However, the routine conventional tool used in Malaysia could not differentiate the species accurately and therefore limiting the understanding of the co-infections between these two genera among livestock in Malaysia. This study is the first attempt to identify the strongylids of veterinary importance in Malaysia (i.e., H. contortus and Trichostrongylus spp.) by amplification and sequencing of the Internal Transcribed Spacer II DNA region.
    Matched MeSH terms: Haemonchiasis/parasitology; Trichostrongylosis/parasitology; Coinfection/parasitology
  14. Urech R, Muharsini S, Tozer RS, Sumartono, Green PE, Brown GW, et al.
    Aust. Vet. J., 2014 Jan;92(1-2):28-32.
    PMID: 24471879 DOI: 10.1111/avj.12142
    To compare the sensitivity of inspections of cattle herds and adult fly trapping for detection of the Old World screw-worm fly (OWS).
    Matched MeSH terms: Cattle Diseases/parasitology*; Myiasis/parasitology; Screw Worm Infection/parasitology
  15. Anuar TS, Al-Mekhlafi HM, Abdul Ghani MK, Azreen SN, Salleh FM, Ghazali N, et al.
    Korean J Parasitol, 2013 Apr;51(2):231-6.
    PMID: 23710093 DOI: 10.3347/kjp.2013.51.2.231
    The present study was conducted to investigate the clinical outcomes of Entamoeba histolytica infection in symptomatic and asymptomatic Orang Asli (aborigine) communities in Malaysia. Examination was performed on 500 stool samples obtained from Orang Asli communities in 3 different states using formalin-ether concentration, trichrome staining, and single-round PCR techniques. Out of 500 stool samples, single infection of E. histolytica, Entamoeba dispar, and Entamoeba moshkovskii was identified in 3.2%, 13.4%, and 1%, respectively. In addition, 10 samples had mixed infections with E. histolytica and E. dispar. Six samples containing E. dispar were also positive for E. moshkovskii, and only 2 samples had E. histolytica in association with E. dispar and E. moshkovskii. Seventeen E. histolytica-positive samples were from symptomatic subjects, whereas the remaining 11 samples came from asymptomatic subjects. These findings suggest a predominant distribution of pathogenic potential of E. histolytica strains in this community. Therefore, further studies on genotyping of E. histolytica is required, to find out association between E. histolytica genotype and the outcome of the infection.
    Matched MeSH terms: Entamoebiasis/parasitology; Feces/parasitology; Coinfection/parasitology
  16. Mahdy MA, Lim YA, Ngui R, Siti Fatimah MR, Choy SH, Yap NJ, et al.
    Parasit Vectors, 2012;5:88.
    PMID: 22564445 DOI: 10.1186/1756-3305-5-88
    Canine hookworm infection is endemic in Southeast Asian countries with a prevalence ranging from 70% to 100%, with zoonotic transmission representing a potentially significant public health concern. However, there are limited data available on the prevalence of canine hookworms in Malaysia. This study was conducted to determine the prevalence of hookworm and Ancylostoma species among dogs in Malaysia.
    Matched MeSH terms: Dog Diseases/parasitology*; Feces/parasitology; Hookworm Infections/parasitology
  17. Kantele A, Jokiranta TS
    Clin Infect Dis, 2011 Jun;52(11):1356-62.
    PMID: 21596677 DOI: 10.1093/cid/cir180
    Human malaria has been known to be caused by 4 Plasmodium species, with Plasmodium falciparum causing the most-severe disease. Recently, numerous reports have described human malaria caused by a fifth Plasmodium species, Plasmodium knowlesi, which usually infects macaque monkeys. Hundreds of human cases have been reported from Malaysia, several cases have been reported in other Southeast Asian countries, and a few cases have been reported in travelers visiting these areas. Similarly to P. falciparum, P. knowlesi can cause severe and even fatal cases of disease that are more severe than those caused by the other Plasmodium species. Polymerase chain reaction is of value for diagnosis because P. knowlesi infection is easily misdiagnosed as less dangerous Plasmodium malariae infection with conventional microscopy. P. knowlesi infection should be suspected in patients who are infected with malaria in Southeast Asia. If human-mosquito-human transmission were to occur, the disease could spread to new areas where the mosquito vectors live, such as the popular tourist areas in western India.
    Matched MeSH terms: Malaria/parasitology*; Parasitology/methods
  18. Adrian MS, Sani RA, Hassan L, Wong MT
    Trop Anim Health Prod, 2010 Feb;42(2):145-50.
    PMID: 19642008 DOI: 10.1007/s11250-009-9406-8
    Matched MeSH terms: Deer/parasitology*; Trypanosomiasis/parasitology; Zoonoses/parasitology*
  19. Tan TC, Suresh KG, Smith HV
    Parasitol Res, 2008 Dec;104(1):85-93.
    PMID: 18795333 DOI: 10.1007/s00436-008-1163-5
    Despite frequent reports on the presence of Blastocystis hominis in human intestinal tract, its pathogenicity remains a matter of intense debate. These discrepancies may be due to the varying pathogenic potential or virulence of the isolates studied. The present study represents the first to investigate both phenotypic and genotypic characteristics of B. hominis obtained from symptomatic and asymptomatic individuals. Symptomatic isolates had a significantly greater size range and lower growth rate in Jones' medium than asymptomatic isolates. The parasite cells of symptomatic isolates exhibited rougher surface topography and greater binding affinity to Canavalia ensiformis (ConA) and Helix pomatia (HPA). The present study also identifies further phenotypic characteristics, which aided in differentiating the pathogenic forms from the non-pathogenic forms of B. hominis. Blastocystis subtype 3 was found to be correlated well with the disease.
    Matched MeSH terms: Parasitology/methods; Blastocystis Infections/parasitology*
  20. Azian MY, Sakhone L, Hakim SL, Yusri MY, Nurulsyamzawaty Y, Zuhaizam AH, et al.
    PMID: 18564703
    A study was conducted to determine the helminthes in dog's feces and soil samples from urban and rural areas. Six species of nematodes (Toxocara sp, an undetermined nematode larvae, Strongyloides sp larvae, Ascaris sp ova, hookworm ova, Trichuris sp ova) and one species of Cestode (Taenia sp) were found in 175 stool samples. Seventy-eight point nine percent of stool samples were positive for helminthes. Mixed infection with at least one parasite was found in 32.6% of the samples. The prevalence of helminth infection ranged from 1.1% to 45.1%. The prevalence of hookworm sp was the highest with 45.1%. The highest prevalence in urban dogs was hookworm sp in 76.7% and in rural areas was Ascaris sp in 48.7%. Soil samples were also examined to determine contamination of the environment, especially due to Toxocara canis, as a potential source of infection. Urban soil samples showed a higher contamination rate with 26.7% compared to rural areas with 4.9%. Toxocara ova were the most prevalent helminthes contaminating the soil with 12.1%. This study showed that humans from both urban and rural areas are at risk of acquiring helminth infection from contaminated soil.
    Matched MeSH terms: Dog Diseases/parasitology*; Feces/parasitology; Soil/parasitology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links