Displaying publications 601 - 620 of 712 in total

Abstract:
Sort:
  1. Yaakop AS, Chan KG, Ee R, Kahar UM, Kon WC, Goh KM
    Int J Syst Evol Microbiol, 2015 Jul;65(7):2215-2221.
    PMID: 25862385 DOI: 10.1099/ijs.0.000242
    A Gram-stain-positive, endospore-forming, rod-shaped bacterial strain, designated D5(T), was isolated from seawater collected from a sandy beach in a southern state of Malaysia and subjected to a polyphasic taxonomic study. Sequence analysis of the 16S rRNA gene demonstrated that this isolate belongs to the genus Jeotgalibacillus, with 99.87% similarity to Jeotgalibacillus alimentarius JCM 10872(T). DNA-DNA hybridization of strain D5(T) with J. alimentarius JCM 10872(T) demonstrated 26.3% relatedness. The peptidoglycan type was A1α linked directly to L-lysine as the diamino acid. The predominant quinones identified in strain D5(T) were menaquinones MK-7 and MK-8.The major fatty acids were iso-C15:0 and anteiso-C15:0. The G+C content of its DNA was 43.0 mol%. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and sulfoquinovosyl diacylglycerol, as well as two unknown phospholipids and three unknown lipids. The phenotypic, chemotaxonomic and genotypic data indicated that strain D5(T) represents a novel species of the genus Jeotgalibacillus, for which the name Jeotgalibacillus malaysiensis sp. nov. is proposed (type strain D5(T) = DSM 28777(T) = KCTC33550(T)). An emended description of the genus Jeotgalibacillus is also provided.
    Matched MeSH terms: Fatty Acids/chemistry
  2. Li D, Zhang H, Hsu-Hage BH, Wahlqvist ML, Sinclair AJ
    Eur J Clin Nutr, 2001 Dec;55(12):1036-42.
    PMID: 11781668
    The aims of this study were to investigate (1) platelet phospholipid (PL) polyunsaturated fatty acid (PUFA) composition in subjects who were the Melbourne Chinese migrants, compared with those who were the Melbourne Caucasians and (2) the relationship between platelet PL PUFA and intake of fish, meat and PUFA.
    Matched MeSH terms: Fatty Acids, Unsaturated/analysis*
  3. Goh CBS, Wong LW, Parimannan S, Rajandas H, Loke S, Croft L, et al.
    Int J Syst Evol Microbiol, 2020 Dec;70(12):6355-6363.
    PMID: 33146596 DOI: 10.1099/ijsem.0.004539
    A Gram-negative, filamentous aerobic bacterium designated as strain Mgbs1T was isolated on 12 April 2017 from the subsurface soil and leaf litter substrate at the base of a Koompassia malaccensis tree in a tropical peat swamp forest in the northern regions of the state of Selangor, Malaysia (3° 39' 04.7' N 101° 17' 43.7'' E). Phylogenetic analyses based on the full 16S rRNA sequence revealed that strain Mgbs1T belongs to the genus Chitinophaga with the greatest sequence similarity to Chitinophaga terrae KP01T (97.65 %), Chitinophaga jiangningensis DSM27406T (97.58 %), and Chitinophaga dinghuensis DHOC24T (97.17 %). The major fatty acids of strain Mgbs1T (>10 %) are iso-C15 : 0, C16 : 1 ω5c and iso-C17 : 0 3-OH while the predominant respiratory quinone is menaquinone-7. Strain Mgbs1T has a complete genome size of 8.03 Mb, with a G+C content of 48.5 mol%. The DNA-DNA hybridization (DDH) score between strain Mgbs1T and C. jiangningensis DSM27406T was 15.9 %, while in silico DDH values of strain Mgbs1T against C. dinghuensis DHOC24T and C. terrae KP01T were 20.0 and 19.10% respectively. Concurrently, Average Nucleotide Identity (ANI) scores between strain Mgbs1T against all three reference strains are 73.2 %. Based on the phenotypic, chemotaxonomic, and phylogenetic consensus, strain Mgbs1T represents a novel species of the genus Chitinophaga, for which the name Chitinophaga extrema sp. nov. is proposed (=DSM 108835T=JCM 33276T).
    Matched MeSH terms: Fatty Acids/chemistry
  4. Chellappan DK, Yap WS, Bt Ahmad Suhaimi NA, Gupta G, Dua K
    Panminerva Med, 2018 Sep;60(3):117-131.
    PMID: 29696964 DOI: 10.23736/S0031-0808.18.03455-9
    The prevalence of type 2 diabetes mellitus (T2DM) has been increasing at an alarming rate. With an increased understanding of the pathophysiology and pathogenesis of T2DM, various new therapeutic options have been developed to target different key defects in T2DM. Incremental innovations of existing therapies either through unprecedented drug combinations, modified drug molecules, or improved delivery systems are capable to nullify some of the undesirable side effects of traditional therapies as well as to enhance effectiveness. The existing administration routes include inhalation, nasal, buccal, parenteral and oral. Newer drug targets such as protein kinase B (Akt/PKB), AMP-activated protein kinase (AMPK), sirtuin (SIRT), and others are novel approaches that act via different mechanisms and possibly treating T2DM of distinct variations and aetiologies. Other therapies such as endobarrier, gene therapy, and stem cell technology utilize advanced techniques to treat T2DM, and the potential of these therapies are still being explored. Gene therapy is plausible to fix the underlying pathology of T2DM instead of using traditional reactive treatments, especially with the debut of Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated protein9 (CRISPR-Cas9) gene editing tool. Molecular targets in T2DM are also being extensively studied as it could target the defects at the molecular level. Furthermore, antibody therapies and vaccinations are also being developed against T2DM; but the ongoing clinical trials are relatively lesser and the developmental progress is slower. Although, there are many therapies designed to cure T2DM, each of them has their own advantages and disadvantages. The preference for the treatment plan usually depends on the health status of the patient and the treatment goal. Therefore, an ideal treatment should take patient's compliance, efficacy, potency, bioavailability, and other pharmacological and non-pharmacological properties into account.
    Matched MeSH terms: Fatty Acids/metabolism
  5. Hicks CC, Cohen PJ, Graham NAJ, Nash KL, Allison EH, D'Lima C, et al.
    Nature, 2019 10;574(7776):95-98.
    PMID: 31554969 DOI: 10.1038/s41586-019-1592-6
    Micronutrient deficiencies account for an estimated one million premature deaths annually, and for some nations can reduce gross domestic product1,2 by up to 11%, highlighting the need for food policies that focus on improving nutrition rather than simply increasing the volume of food produced3. People gain nutrients from a varied diet, although fish-which are a rich source of bioavailable micronutrients that are essential to human health4-are often overlooked. A lack of understanding of the nutrient composition of most fish5 and how nutrient yields vary among fisheries has hindered the policy shifts that are needed to effectively harness the potential of fisheries for food and nutrition security6. Here, using the concentration of 7 nutrients in more than 350 species of marine fish, we estimate how environmental and ecological traits predict nutrient content of marine finfish species. We use this predictive model to quantify the global spatial patterns of the concentrations of nutrients in marine fisheries and compare nutrient yields to the prevalence of micronutrient deficiencies in human populations. We find that species from tropical thermal regimes contain higher concentrations of calcium, iron and zinc; smaller species contain higher concentrations of calcium, iron and omega-3 fatty acids; and species from cold thermal regimes or those with a pelagic feeding pathway contain higher concentrations of omega-3 fatty acids. There is no relationship between nutrient concentrations and total fishery yield, highlighting that the nutrient quality of a fishery is determined by the species composition. For a number of countries in which nutrient intakes are inadequate, nutrients available in marine finfish catches exceed the dietary requirements for populations that live within 100 km of the coast, and a fraction of current landings could be particularly impactful for children under 5 years of age. Our analyses suggest that fish-based food strategies have the potential to substantially contribute to global food and nutrition security.
    Matched MeSH terms: Fatty Acids, Omega-3/analysis
  6. Karami M, Alimon AR, Sazili AQ, Goh YM, Ivan M
    Meat Sci, 2011 May;88(1):102-8.
    PMID: 21194849 DOI: 10.1016/j.meatsci.2010.12.009
    Thirty-two male goats were randomly assigned to four dietary treatments namely, basal diet 70% concentrate and 30% oil palm fronds (control, CN), CN + 400 mg/kg vitamin E (VE), 0.5% turmeric (TU) or 0.5% Anderographis paniculata (AP). After 100 days of feeding, the goats were slaughtered and longissimus dorsi (LD) muscle was sampled. The muscle was vacuum-packaged and conditioned for 0, 7 and 14 days in a chiller (4 °C). The drip loss of the LD muscle increased (P < 0.05) with aging time. Meat tenderness was improved (p < 0.05) at 14 days aging. All antioxidant supplements improved (P < 0.05) colour of the meat. The TBARS value increased (P < 0.05) at 7 days of aging while the fatty acid composition was not affected by the dietary supplements. It is concluded that TU and AP are potential dietary antioxidant supplements, for the purpose of improving the quality of chevon.
    Matched MeSH terms: Fatty Acids/metabolism*
  7. Thu TV, Loh TC, Foo HL, Yaakub H, Bejo MH
    Trop Anim Health Prod, 2011 Jan;43(1):69-75.
    PMID: 20632092 DOI: 10.1007/s11250-010-9655-6
    A study was carried out to investigate the effects of feeding liquid metabolite combinations produced by Lactobacillus plantarum strains on growth performance, diarrhoea incidence, faecal pH, microfloral counts, short-chain fatty acids (SCFA) and intestinal villus height and crypt depth of postweaning piglets. A total of 120 piglets (26 days old) were randomly assigned evenly into five treatment groups treated with same basal diet: (1) -ve control (free antibiotic); (2) + ve control (0.03% of chlortetracycline); (3) Com 1 (0.3% metabolite of TL1, RG11 and RI11 strains); (4) Com 2 (0.3% metabolite of TL1, RG14 and RS5 strains); (5) Com 3 (0.3% metabolite of RG11, RG14 and RI11 strains). After 5 weeks, the average daily feed intake was not significantly different (P > 0.05) among the treatments and feed conversion ratio was the highest (P 
    Matched MeSH terms: Fatty Acids, Volatile/analysis
  8. Wong PL, Fauzi NA, Mohamed Yunus SN, Abdul Hamid NA, Abd Ghafar SZ, Azizan A, et al.
    Molecules, 2020 Jul 06;25(13).
    PMID: 32640504 DOI: 10.3390/molecules25133067
    Plants and plant-based products have been used for a long time for medicinal purposes. This study aimed to determine the antioxidant and anti-α-glucosidase activities of eight selected underutilized plants in Malaysia: Leucaena leucocephala, Muntingia calabura, Spondias dulcis, Annona squamosa, Ardisia elliptica, Cynometra cauliflora, Ficus auriculata, and Averrhoa bilimbi. This study showed that the 70% ethanolic extract of all plants exhibited total phenolic content (TPC) ranging from 51 to 344 mg gallic acid equivalent (GAE)/g dry weight. A. elliptica showed strong 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) scavenging activities, with half maximal inhibitory concentration (IC50) values of 2.17 and 49.43 μg/mL, respectively. Most of the tested plant extracts showed higher inhibition of α-glucosidase enzyme activity than the standard, quercetin, particularly A. elliptica, F. auriculata, and M. calabura extracts with IC50 values of 0.29, 0.36, and 0.51 μg/mL, respectively. A total of 62 metabolites including flavonoids, triterpenoids, benzoquinones, and fatty acids were tentatively identified in the most active plant, i.e., A. elliptica leaf extract, by using ultra-high-performance liquid chromatography (UHPLC)-electrospray ionization (ESI) Orbitrap MS. This study suggests a potential natural source of antioxidant and α-glucosidase inhibitors from A. elliptica.
    Matched MeSH terms: Fatty Acids/analysis
  9. Wu Y, Han Y, Tao Y, Li D, Xie G, Show PL, et al.
    Food Res Int, 2020 06;132:109098.
    PMID: 32331662 DOI: 10.1016/j.foodres.2020.109098
    In this study, four different selected wall materials (namely gelatin, soy protein isolate, maltodextrin and Arabic gum) were applied for blueberry anthocyanin extract encapsulation. The effect of these wall material types on the release and degradation of anthocyanin and the modulation of gut microbiota during in vitro simulated gastrointestinal digestion and colonic fermentation were investigated. It was found that the encapsulation of anthocyanin extract using appropriate wall material could significantly enhance the colonic accessibility of anthocyanins. Soy protein isolate and gelatin delayed the release of anthocyanins, whereas the other two wall materials displayed no significant effect on the release time of anthocyanins. Gut microbiota mainly metabolized some phenolic compounds such as 4-hydroxycinnamic acid and chlorogenic acid. Meanwhile, different fermented anthocyanin extract microcapsule broth could significantly decrease the composition and abundance of Firmicutes and increase that of Bacteroidetes. Furthermore, the presence of anthocyanin extract microcapsules, especially those encapsulated with soy protein isolate, promoted the biosynthesis of short-chain fatty acids by gut microbiota. It is concluded that, amongst the wall materials studied, soy protein isolate appeared to be a functional and suitable candidate to delay anthocyanin release and prevent disease through the promotion of gut health.
    Matched MeSH terms: Fatty Acids, Volatile/metabolism
  10. Wu Y, Mou B, Song S, Tan CP, Lai OM, Shen C, et al.
    Food Res Int, 2020 10;136:109301.
    PMID: 32846513 DOI: 10.1016/j.foodres.2020.109301
    Present study prepared curcumin liposomes with high encapsulation efficiency (>70%) using bovine milk and krill phospholipids; and investigated the effects of phospholipids composition on storage stability, in-vitro bioavailability, antioxidative and anti-hyperglycemic properties of the curcumin liposomes. Curcumin liposomes prepared from bovine milk phospholipids have smaller particle sizes (163.1 ± 6.42 nm) and greater negative zeta potentials (-26.7 mv) as compared to that prepared from krill phospholipids (particle size: 212.2 ± 4.1 nm, zeta potential: -15.23 mv). In addition, curcumin liposomes from bovine milk phospholipids demonstrated better stability under harsh storage conditions (alkaline conditions, oxygen, high temperature and relative humidity). Nevertheless, curcumin-loaded liposomes prepared from bovine milk phospholipids have inferior bioavailability compared to that prepared from krill phospholipids. No significant differences can be observed in terms of anti-oxidative and anti-hyperglycemic properties of liposomes prepared from both bovine milk and krill phospholipids. Findings from present study will open up new opportunities for development of stable curcumin liposomes with good functional properties (high digestibility, bioavailability and pharmacological effects).
    Matched MeSH terms: Fatty Acids/analysis
  11. Tan Y, Neo PC, Najimudin N, Sudesh K, Muhammad TS, Othman AS, et al.
    J Basic Microbiol, 2010 Apr;50(2):179-89.
    PMID: 20082371 DOI: 10.1002/jobm.200900138
    Pseudomonas sp. USM 4-55 is a locally isolated bacterium that possesses the ability to produce polyhydroxyalkanoates (PHA) consisting of both poly(3-hydroxybutyrate) [P(3HB)] homopolymer and medium-chain length (mcl) monomers (6 to 14 carbon atoms) when sugars or fatty acids are utilized as the sole carbon source. In this study, the P(3HB) biosynthesis operon carrying the phbC(Ps) P(3HB) synthase was successfully cloned and sequenced using a homologous probe. Three open reading frames encoding NADPH-dependent acetoacetyl-coenzyme A reductase (PhbB(Ps)), beta-ketothiolase (PhbA(Ps)) and P(3HB) synthase (PhbC(Ps)) were found in the phb operon. The genetic organization of phb operon showed a putative promoter region, followed by phbB(Ps)-phbA(Ps)-phbC(Ps). phbR(Ps)which encoded a putative transcriptional activator was located in the opposite orientation, upstream of phbBAC(Ps). Heterologous expression of pGEM''ABex harboring phbC(Ps) in Escherichia coli JM109 resulted in P(3HB) accumulation of up to 40% of dry cell weight (DCW).
    Matched MeSH terms: Fatty Acids/metabolism
  12. Chatchatee P, Lee WS, Carrilho E, Kosuwon P, Simakachorn N, Yavuz Y, et al.
    J Pediatr Gastroenterol Nutr, 2014 Apr;58(4):428-37.
    PMID: 24614142 DOI: 10.1097/MPG.0000000000000252
    OBJECTIVE: The aim of this study was to investigate the effect of growing-up milk (GUM) with added short-chain galacto-oligosaccharides (scGOS)/long-chain fructo-oligosaccharides (lcFOS) (9:1) (Immunofortis) and n-3 long-chain polyunsaturated fatty acids (LCPUFAs) on the occurrence of infections in healthy children attending day care centres.

    METHODS: In a randomised double-blind controlled, parallel, multicountry intervention study, 767 healthy children, ages 11 to 29 months, received GUM with scGOS/lcFOS/LCPUFAs (the active group, n = 388), GUM without scGOS/lcFOS/LCPUFAs (the control group, n = 379), or cow's milk (n = 37) for 52 weeks. The primary outcome measure was the number of episodes of upper respiratory tract infections or gastrointestinal infections based on a combination of subject's illness symptoms reported by the parents during the intervention period.

    RESULTS: Children in the active group compared with the control group had a decreased risk of developing at least 1 infection (299/388 [77%] vs 313/379 [83%], respectively, relative risk 0.93, 95% confidence interval [CI] 0.87-1.00; logistic regression P = 0.03). There was a trend toward a reduction (P = 0.07) in the total number of infections in the active group, which was significant when confirmed by one of the investigators (268/388 [69%] vs 293/379 [77%], respectively, relative risk 0.89, 95% CI 0.82-0.97; P = 0.004, post hoc). More infectious episodes were observed in the cow's milk group, when compared with both GUM groups (34/37 [92%] vs 612/767 [80%], respectively, relative risk 1.15, 95% CI 1.04-1.28).

    CONCLUSIONS: This is the first study in children to show a reduced risk of infection following consumption of GUM supplemented with scGOS/lcFOS/n-3 LCPUFAs. The borderline statistical significance justifies a new study to confirm this finding.

    Matched MeSH terms: Fatty Acids, Omega-3/administration & dosage*
  13. Kamarul Zaman M, Chin KF, Rai V, Majid HA
    World J Gastroenterol, 2015 May 7;21(17):5372-81.
    PMID: 25954112 DOI: 10.3748/wjg.v21.i17.5372
    To investigate fiber and prebiotic supplementation of enteral nutrition (EN) for diarrhea, fecal microbiota and short-chain fatty acids (SCFAs).
    Matched MeSH terms: Fatty Acids/metabolism
  14. Katayama T, Nagao N, Kasan NA, Khatoon H, Rahman NA, Takahashi K, et al.
    J Biotechnol, 2020 Nov 10;323:113-120.
    PMID: 32768414 DOI: 10.1016/j.jbiotec.2020.08.001
    We isolated fifty-two strains from the marine aquaculture ponds in Malaysia that were evaluated for their lipid production and ammonium tolerance and four isolates were selected as new ammonium tolerant microalgae with high-lipid production: TRG10-p102 Oocystis heteromucosa (Chlorophyceae); TRG10-p103 and TRG10-p105 Thalassiosira weissflogii (Bacillariophyceae); and TRG10-p201 Amphora coffeiformis (Bacillariophyceae). Eicosapentenoic acid (EPA) in three diatom strain was between 2.6 and 18.6 % of total fatty acids, which were higher than in O. heteromucosa. Only A. coffeiformi possessed arachidonic acid. Oocystis heteromucosa naturally grew at high ammonium concentrations (1.4-10 mM), whereas the growth of the other strains, T. weissflogii and A. coffeiformi, were visibly inhibited at high ammonium concentrations (>1.4 mM-NH4). However, two strains of T. weissflogii were able to grow at up to 10 mM-NH4 by gradually acclimating to higher ammonium concentrations. The ammonium tolerant strains, especially T. weissflogii which have high EPA contents, were identified as a valuable candidate for biomass production utilizing NH4-N media, such as ammonium-rich wastewater.
    Matched MeSH terms: Fatty Acids/analysis
  15. Chua KO, See-Too WS, Tan JY, Song SL, Yong HS, Yin WF, et al.
    J Microbiol, 2020 Dec;58(12):988-997.
    PMID: 33095388 DOI: 10.1007/s12275-020-0325-8
    In this study, bacterial strains Ha5T, Ta1, and Jb2 were isolated from different colonies of weaver ant Oecophylla smaragdina. They were identified as bacterial symbionts of the ant belonging to family Acetobacteraceae and were distinguished as different strains based on distinctive random-amplified polymorphic DNA (RAPD) fingerprints. Cells of these bacterial strains were Gram-negative, rod-shaped, aerobic, non-motile, catalase-positive and oxidase-negative. They were able to grow at 15-37°C (optimum, 28-30°C) and in the presence of 0-1.5% (w/v) NaCl (optimum 0%). Their predominant cellular fatty acids were C18:1ω7c, C16:0, C19:0ω8c cyclo, C14:0, and C16:0 2-OH. Strains Ha5T, Ta1, and Jb2 shared highest 16S rRNA gene sequence similarity (94.56-94.63%) with Neokomagataea tanensis NBRC106556T of family Acetobacteraceae. Both 16S rRNA gene sequence-based phylogenetic analysis and core gene-based phylogenomic analysis placed them in a distinct lineage in family Acetobacteraceae. These bacterial strains shared higher than species level thresholds in multiple overall genome-relatedness indices which indicated that they belonged to the same species. In addition, they did not belong to any of the current taxa of Acetobacteraceae as they had low pairwise average nucleotide identity (< 71%), in silico DNA-DNA hybridization (< 38%) and average amino acid identity (< 67%) values with all the type members of the family. Based on these results, bacterial strains Ha5T, Ta1, and Jb2 represent a novel species of a novel genus in family Acetobacteaceae, for which we propose the name Oecophyllibacter saccharovorans gen. nov. sp. nov., and strain Ha5T as the type strain.
    Matched MeSH terms: Fatty Acids/chemistry
  16. Mohktar RA, Montgomery MK, Murphy RM, Watt MJ
    Am J Physiol Endocrinol Metab, 2016 07 01;311(1):E128-37.
    PMID: 27189934 DOI: 10.1152/ajpendo.00084.2016
    Cytoplasmic lipid droplets provide a reservoir for triglyceride storage and are a central hub for fatty acid trafficking in cells. The protein perilipin 5 (PLIN5) is highly expressed in oxidative tissues such as skeletal muscle and regulates lipid metabolism by coordinating the trafficking and the reversible interactions of effector proteins at the lipid droplet. PLIN5 may also regulate mitochondrial function, although this remains unsubstantiated. Hence, the aims of this study were to examine the role of PLIN5 in the regulation of skeletal muscle substrate metabolism during acute exercise and to determine whether PLIN5 is required for the metabolic adaptations and enhancement in exercise tolerance following endurance exercise training. Using muscle-specific Plin5 knockout mice (Plin5(MKO)), we show that PLIN5 is dispensable for normal substrate metabolism during exercise, as reflected by levels of blood metabolites and rates of glycogen and triglyceride depletion that were indistinguishable from control (lox/lox) mice. Plin5(MKO) mice exhibited a functional impairment in their response to endurance exercise training, as reflected by reduced maximal running capacity (20%) and reduced time to fatigue during prolonged submaximal exercise (15%). The reduction in exercise performance was not accompanied by alterations in carbohydrate and fatty acid metabolism during submaximal exercise. Similarly, mitochondrial capacity (mtDNA, respiratory complex proteins, citrate synthase activity) and mitochondrial function (oxygen consumption rate in muscle fiber bundles) were not different between lox/lox and Plin5(MKO) mice. Thus, PLIN5 is dispensable for normal substrate metabolism during exercise and is not required to promote mitochondrial biogenesis or enhance the cellular adaptations to endurance exercise training.
    Matched MeSH terms: Fatty Acids/metabolism
  17. Harjoh N, Wong TW, Caramella C
    Int J Pharm, 2020 Jun 30;584:119416.
    PMID: 32423875 DOI: 10.1016/j.ijpharm.2020.119416
    Inhaled/oral insulin have been investigated as an alternative to injectable insulin, but are met with unsatisfactory outcomes. Transdermal administration bears several advantages unmet by inhalation/oral delivery, but macromolecular drugs permeation is poor. This study explored microwave to elicit transdermal insulin permeation, and compared against conventional permeation enhancers (fatty acids) in vitro/in vivo. The transdermal insulin permeation was promoted by microwave (2450 MHz/1 mW) > oleic acid (monounsaturated) ~ linoleic acid (double unsaturated bonds). The linolenic acid (triple unsaturated bonds) or combination of microwave/fatty acid reduced skin insulin permeation. Transdermal insulin permeation enhancement was attributed to epidermal lipid bilayer fluidization (CH) and corneocyte shrinkage due to keratin condensation (OH/NH, CO), which had aqueous pore enlarged to facilitate insulin transport. Its reduction by linolenic acid, a molecularly larger and rigid fatty acid with higher surface tension, was due to reduced fatty acid permeation into epidermis and minimal skin microstructural changes. The oleic acid, despite favoured skin microstructural changes, did not provide a remarkably high insulin permeation due to it embedded in skin as hydrophobic shield to insulin transport. Microwave penetrates skin volumetrically with no chemical residue retention. It alone promoted insulin absorption and sustained blood glucose level reduction in vivo.
    Matched MeSH terms: Fatty Acids, Unsaturated/chemistry*
  18. Yuan JC, Yogarajah T, Lim SK, Yvonne Tee GB, Khoo BY
    Mol Med Rep, 2020 05;21(5):2063-2072.
    PMID: 32323762 DOI: 10.3892/mmr.2020.11012
    Excessive adipose tissue accumulation is an increasing health problem worldwide. The present study aimed to determine differentially expressed genes (DEGs) that are associated with the excessive accumulation of adipose tissues by PCR arrays in an excess dietary intake animal model. For this purpose, male Sprague Dawley rats were randomly assigned to 2 groups: Control (given an ordinary diet) and experimental (given twice the amount of the ordinary diet). After 2 months of feeding, the abdominal cavities of the rats from each group were opened, then subcutaneous and visceral adipose tissues were removed. The adipose tissues collected were then used for total RNA extraction and then reverse transcribed to cDNA, which was then used as a template to identify the DEGs of 84 transcripts for rat obesity by RT2 Profiler PCR Arrays. The results showed significant downregulation of bombesin‑like receptor 3 (BRS3) and uncoupling protein 1 (UCP1) in visceral adipose tissues of experimental rats compared with those of the control rats, and differential gene expression analysis showed an association with fat cell differentiation and regulation of triglyceride sequestration, as well as fatty acid binding. The gene expression patterns observed in the present study, which may be associated with peroxisome proliferator‑activated receptor‑γ (PPARG) on excessive visceral adipose tissue accumulation, may be useful in identifying a group of surrogate biomarkers for the early diet‑induced accumulation of visceral adipose tissue detection in humans. The biomarkers can also be the specific targets for drug development to reduce excessive visceral adipose tissue accumulation in the body and its associated diseases.
    Matched MeSH terms: Fatty Acids/metabolism
  19. Sabatino A, Regolisti G, Karupaiah T, Sahathevan S, Sadu Singh BK, Khor BH, et al.
    Clin Nutr, 2017 06;36(3):663-671.
    PMID: 27371993 DOI: 10.1016/j.clnu.2016.06.007
    BACKGROUND & AIMS: Protein-Energy Wasting (PEW) is the depletion of protein/energy stores observed in the most advanced stages of Chronic Kidney Disease (CKD). PEW is highly prevalent among patients on chronic dialysis, and is associated with adverse clinical outcomes, high morbidity/mortality rates and increased healthcare costs. This narrative review was aimed at exploring the pathophysiology of PEW in end-stage renal disease (ESRD) on hemodialysis. The main aspects of nutritional status evaluation, intervention and monitoring in this clinical setting were described, as well as the current approaches for the prevention and treatment of ESRD-related PEW.

    METHODS: An exhaustive literature search was performed, in order to identify the relevant studies describing the epidemiology, pathogenesis, nutritional intervention and outcome of PEW in ESRD on hemodialysis.

    RESULTS AND CONCLUSION: The pathogenesis of PEW is multifactorial. Loss of appetite, reduced intake of nutrients and altered lean body mass anabolism/catabolism play a key role. Nutritional approach to PEW should be based on a careful and periodic assessment of nutritional status and on timely dietary counseling. When protein and energy intakes are reduced, nutritional supplementation by means of specific oral formulations administered during the hemodialysis session may be the first-step intervention, and represents a valid nutritional approach to PEW prevention and treatment since it is easy, effective and safe. Omega-3 fatty acids and fibers, now included in commercially available preparations for renal patients, could lend relevant added value to macronutrient supplementation. When oral supplementation fails, intradialytic parenteral nutrition can be implemented in selected patients.

    Matched MeSH terms: Fatty Acids, Omega-3/administration & dosage
  20. Kareem KY, Loh TC, Foo HL, Asmara SA, Akit H
    Poult Sci, 2017 Apr 01;96(4):966-975.
    PMID: 28339522 DOI: 10.3382/ps/pew362
    This study examined the effects of different combinations of inulin and postbiotics RG14 on growth performance, cecal microbiota, volatile fatty acids (VFA), and ileal cytokine expression in broiler chickens. Two-hundred-and sixteen, one-day-old chicks were allocated into 6 treatment groups, namely, a basal diet (negative control, NC), basal diet + neomycin and oxytetracycline (positive control, PC), T1 = basal diet + 0.15% postbiotic RG14 + 1.0% inulin, T2 = basal diet + 0.3% postbiotic RG14 + 1.0% inulin, T3 = basal diet + 0.45% postbiotic RG14 + 1.0% inulin, and T4 = basal diet + 0.6% postbiotic RG14 + 1.0% inulin, and fed for 6 weeks. The results showed that birds fed T1 and T3 diets had higher (P  0.05) among diets. The NC birds had higher (P
    Matched MeSH terms: Fatty Acids, Volatile/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links