METHODOLOGY: All sera for AT1R-Ab were collected at the University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia. The sera were centrifuged and kept refrigerated at -80 °C before being transported to the South Australian Transplantation and Immunogenetics Laboratory (SATIS). Enzyme-linked immunosorbent assay kit (One Lambda) was used for the detection of AT1R-Ab, and it was performed according to the manufacturer's instructions. The level of >17.1 U/mL was considered to be AT1R-Ab positive; 10.0-17.1 U/mL at risk, and <10.0 U/mL negative.
RESULTS: A total of 115 samples were collected from 99 patients pre and post-kidney transplant recipients. From the pre-transplant sera (n = 68) 17.7% were positive, 35.3% were at risk and 47.0% were negative. The positive AT1R-Ab cohort were relatively younger, with a mean age of 34.7 ± 8.3 years old and statistically significant, with a p-value of 0.028. Among the sera that were tested positive, 19.0% were from the Chinese ethnicity, 6.7% from Malay and 16.7% from Indian. There was no difference in the rejection episodes, persistent or de novo HLA-DSA, and graft function between the group (AT1R-Ab negative vs AT1R-Ab at risk and positive) and the results were consistent in a model adjusted for all potential confounders.
CONCLUSION: The prevalence of positive (>17.1 U/mL) pre-transplant AT1R-Ab was 17.7% and 35.3% were at risk (10.0-17.1 U/mL) in our pre-transplant cohort.
OBJECTIVE: We have successfully prepared mixed fatty acid liposomes from two monounsaturated fatty acids, namely oleic acid and erucic acid, which stabilised by DOPEPEG2000. The Critical Vesicular Concentration (CVC) of liposomes was found to be within 0.09 to 0.21 mmol dm-3, with an average particle size of 400 nm.
METHODS: Encapsulation of various anticancer drugs such as folinic acid, methotrexate, doxorubicin, or irinotecan resulted in Encapsulation Efficiency (%EE) of up to 90%. Using a 3-(4, 5-dimethylthiazol-2- yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the median Inhibitory Concentration (IC50) values of mixed oleic acid-erucic acid encapsulating hydrophilic drugs was remarkably reduced at the end of 24 hours of incubation with the human lung carcinoma cell line A549.
RESULTS: The results suggest that mixed oleic acid-erucic acid liposomes are a potential new approach to further develop as an alternative vehicle of various drugs for cancer treatment.
METHODS: Here, we tested effects from sera of Asian water monitor lizard (Varanus salvator), python (Malayopython reticulatus) and tortoise (Cuora kamaroma amboinensis) against cancer cells. Sera were collected and cytotoxicity assays were performed using prostate cancer cells (PC3), Henrietta Lacks cervical adenocarcinoma cells (HeLa) and human breast adenocarcinoma cells (MCF7), as well as human keratinized skin cells (Hacat), by measuring lactate dehydrogenase release as an indicator for cell death. Growth inhibition assays were performed to determine the effects on cancer cell proliferation. Liquid chromatography mass spectrometry was performed for molecular identification.
RESULTS: The findings revealed that reptilian sera, but not bovine serum, abolished viability of Hela, PC3 and MCF7 cells. Samples were subjected to liquid chromatography mass spectrometry, which detected 57 molecules from V. salvator, 81 molecules from Malayopython reticulatus and 33 molecules from C. kamaroma amboinensis and putatively identified 9 molecules from V. salvator, 20 molecules from Malayopython reticulatus and 9 molecules from C. kamaroma amboinensis when matched against METLIN database. Based on peptide amino acid composition, binary profile, dipeptide composition and pseudo-amino acid composition, 123 potential Anticancer Peptides (ACPs) were identified from 883 peptides from V. salvator, 306 potential ACPs from 1074 peptides from Malayopython reticulatus and 235 potential ACPs from 885 peptides from C. kamaroma amboinensis.
CONCLUSION: To our knowledge, for the first time, we reported comprehensive analyses of selected reptiles' sera using liquid chromatography mass spectrometry, leading to the identification of potentially novel anticancer agents. We hope that the discovery of molecules from these animals will pave the way for the rational development of new anticancer agents.
OBJECTIVE: The present work aimed to evaluate their cytotoxicity against HepG2 (hepatocellular carcinoma), A549 (pulmonary adenocarcinoma), MCF-7 (breast adenocarcinoma) and WRL 68 (embryonic liver) cell lines.
METHODS: MTT assay was employed to investigate the cytotoxicity, and a tyrosinase inhibitor screening kit was used to evaluate the Tyrosinase (TYR) inhibitory activity of the targets.
RESULTS: The tested compounds exhibited no considerable cytotoxicity, and nine of them were selected for a tyrosinase inhibitory test. Compounds 2b, 2m, and 5a showed good inhibitory percentages against TYR compared to that of kojic acid (reference substance). Molecular docking was performed to rationalize the Structure-Activity Relationship (SAR) of the target pyridotriazolopyrimidines and analyze the binding between the docked-selected compounds and the amino acid residues in the active site of tyrosinase.
CONCLUSION: The target pyridotriazolopyrimidines were identified as a new class of tyrosinase inhibitors.
METHODS: Retrospective review of all neonates with clinical and radiological evidence of non-perforated NEC that were treated in a tertiary-level referral hospital between 2009 and 2018. General patient demographics, laboratory parameters and outcomes were recorded. Receiver operating characteristics analysis was performed to evaluated optimal cut-offs and area under the curve (AUC) with 95% confidence intervals (CI).
RESULTS: A total of 191 neonates were identified. Of these, 103 (53.9%) were born at ≤ 28 weeks of gestation and 101 (52.9%) had a birth weight of ≤ 1000 g. Eighty-four (44.0%) patients underwent surgical intervention for NEC. The overall survival rate was 161/191 (84.3%). A CRP/ALB ratio of ≥ 3 on day 2 of NEC diagnosis was associated with a statistically significant higher likelihood for surgery [AUC 0.71 (95% CI 0.63-0.79); p
STUDY DESIGN: Prospective cohort study.
SETTING & PARTICIPANTS: Patients younger than 19 years at inclusion into the International Pediatric Peritoneal Dialysis Network registry, who initiated MPD between 1996 and 2017.
EXPOSURE: Region as primary exposure (Asia, Western Europe, Eastern Europe, Latin America, North America, and Oceania). Other demographic, clinical, and macroeconomic (4 income groups based on gross national income) factors also were studied.
OUTCOME: All-cause MPD mortality.
ANALYTICAL APPROACH: Patients were observed for 3 years, and the mortality rates in different regions and income groups were calculated. Cause-specific hazards models with random effects were fit to calculate the proportional change in variance for factors that could explain variation in mortality rates.
RESULTS: A total of 2,956 patients with a median age of 7.8 years at the start of KRT were included. After 3 years, the overall probability of death was 5%, ranging from 2% in North America to 9% in Eastern Europe. Mortality rates were higher in low-income countries than in high-income countries. Income category explained 50.1% of the variance in mortality risk between regions. Other explanatory factors included peritoneal dialysis modality at start (22.5%) and body mass index (11.1%).
LIMITATIONS: The interpretation of interregional survival differences as found in this study may be hampered by selection bias.
CONCLUSIONS: This study shows that the overall 3-year patient survival on pediatric MPD is high, and that country income is associated with patient survival.