Displaying publications 661 - 680 of 1125 in total

Abstract:
Sort:
  1. Zainuddin NJ, Ashari SE, Salim N, Asib N, Omar D, Lian GEC
    J Oleo Sci, 2019 Aug 01;68(8):747-757.
    PMID: 31292338 DOI: 10.5650/jos.ess18209
    The present study revealed the optimization of nanoemulsion containing palm oil derivatives and Parthenium hysterophorus L. crude extract (PHCE) as pre-emergence herbicide formulation against Diodia ocimifolia. The nanoemulsion formulation was prepared by high energy emulsification method, and it was optimized by mixture experimental design (MED). From the optimization process, analysis of variance (ANOVA) showed a fit quadratic polynomial model with an optimal formulation composition containing 30.91% of palm kernel oil ester (PKOE), 28.48% of mixed surfactants (Tensiofix and Tween 80, 8:2), 28.32% of water and 12.29% of PHCE. The reading of both experimental and predicted particle size in the verification experiment were acceptable with a residual standard error (RSE) was less than 2%. Under the optimal condition, the smallest particle size obtained was 140.10 nm, and the particle was shown by morphology analysis to be spherical and demonstrated good stability (no phase separation) under centrifugation and different storage conditions (25 ± 5°C and 45°C). Nanoemulsion stored for 60 days exhibits monodisperse emulsion with a slight increase of particle size. The increase in particle size over time might have contributed by Ostwald ripening phenomenon which is shown by a linear graph from Ostwald ripening rate analysis. In the in vitro germination test, P. hysterophorus nanoemulsion (PHNE) was shown to cause total inhibition of D. ocimifolia seed at lower concentration (5 g L-1) as compared to PHCE (10 g L-1). The finding of the research could potentially serve as a platform for the development of palm oil based formulation containing plant crude extract for green weed management.
    Matched MeSH terms: Plant Oils/chemistry*
  2. Parveez GK, Rasid OA, Masani MY, Sambanthamurthi R
    Plant Cell Rep, 2015 Apr;34(4):533-43.
    PMID: 25480400 DOI: 10.1007/s00299-014-1722-4
    Oil palm is a major economic crop for Malaysia. The major challenges faced by the industry are labor shortage, availability of arable land and unstable commodity price. This has caused the industry to diversify its applications into higher value products besides increasing its yield. While conventional breeding has its limitations, biotechnology was identified as one of the tools for overcoming the above challenges. Research on biotechnology of oil palm began more than two decades ago leveraging a multidisciplinary approach involving biochemical studies, gene and promoter isolation, transformation vector construction and finally genetic transformation to produce the targeted products. The main target of oil palm biotechnology research is to increase oleic acid in the mesocarp. Other targets are stearic acid, palmitoleic acid, ricinoleic acid, lycopene (carotenoid) and biodegradable plastics. Significant achievements were reported for the biochemical studies, isolation of useful oil palm genes and characterization of important promoters. A large number of transformation constructs for various targeted products were successfully produced using the isolated oil palm genes and promoters. Finally transformation of these constructs into oil palm embryogenic calli was carried out while the regeneration of transgenic oil palm harboring the useful genes is in progress.
    Matched MeSH terms: Plant Oils/chemistry*
  3. Alam MZ, Kabbashi NA, Hussin SN
    J Ind Microbiol Biotechnol, 2009 Jun;36(6):801-8.
    PMID: 19294441 DOI: 10.1007/s10295-009-0554-7
    The purpose of this study was to evaluate the feasibility of producing bioethanol from palm-oil mill effluent generated by the oil-palm industries through direct bioconversion process. The bioethanol production was carried out through the treatment of compatible mixed cultures such as Thrichoderma harzianum, Phanerochaete chrysosporium, Mucor hiemalis, and yeast, Saccharomyces cerevisiae. Simultaneous inoculation of T. harzianum and S. cerevisiae was found to be the mixed culture that yielded the highest ethanol production (4% v/v or 31.6 g/l). Statistical optimization was carried out to determine the operating conditions of the stirred-tank bioreactor for maximum bioethanol production by a two-level fractional factorial design with a single central point. The factors involved were oxygen saturation level (pO(2)%), temperature, and pH. A polynomial regression model was developed using the experimental data including the linear, quadratic, and interaction effects. Statistical analysis showed that the maximum ethanol production of 4.6% (v/v) or 36.3 g/l was achieved at a temperature of 32 degrees C, pH of 6, and pO(2) of 30%. The results of the model validation test under the developed optimum process conditions indicated that the maximum production was increased from 4.6% (v/v) to 6.5% (v/v) or 51.3 g/l with 89.1% chemical-oxygen-demand removal.
    Matched MeSH terms: Plant Oils/metabolism*
  4. Zeimaran E, Kadir MR, Nor HM, Kamarul T, Djordjevic I
    Bioorg Med Chem Lett, 2013 Dec 15;23(24):6616-9.
    PMID: 24215893 DOI: 10.1016/j.bmcl.2013.10.053
    In this study aliphatic polyacids were synthesized using palm acid oil (PAO) and sunflower oil (SFO) via addition reaction technique. The synthesized materials were characterized using Fourier-transform infra-red (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS) and thermo-gravimetric analysis (TGA). Mixing formic acid and hydrogen peroxide with PAO or SFO at the ratio 3:10:1 produced the lowest iodine value of 10.57 and 9.24 respectively, indicating the increase in epoxidization of both oils. Adding adipic acid to the epoxidized oils at a ratio of 1:10 increases the acid values of SFO and PAO to 11.22 and 6.73 respectively. The existence of multi-acid groups present in synthesized polyacid was confirmed by MALD-ToF-MS. This feature indicates a possible value to the biomaterials development.
    Matched MeSH terms: Plant Oils/chemistry*
  5. Sommerburg O, De Spirt S, Mattern A, Joachim C, Langhans CD, Nesaretnam K, et al.
    Mediators Inflamm, 2015;2015:817127.
    PMID: 25688177 DOI: 10.1155/2015/817127
    Patients with cystic fibrosis (CF) show decreased plasma concentrations of antioxidants due to malabsorption of lipid soluble vitamins and consumption by chronic pulmonary inflammation. β-Carotene is a major source of retinol and therefore is of particular significance in CF. The aim of this study was to investigate the effect of daily intake of red palm oil (RPO) containing high amounts of β-carotene on the antioxidant levels in CF patients. Sixteen subjects were recruited and instructed to enrich their food with 2 to 3 tablespoons of RPO (~1.5 mg of β-carotene) daily over 8 weeks. Carotenoids, retinol, and α-tocopherol were measured in plasma at baseline and after intervention. In addition β-carotene, lycopene, α-tocopherol, and vitamin C were measured in buccal mucosa cells (BMC) to determine the influence of RPO on antioxidant tissue levels. Eleven subjects completed the study properly. Plasma β-carotene, retinol, and α-carotene of these patients increased, but plasma concentrations of other carotenoids and α-tocopherol as well as concentrations of β-carotene, lycopene, α-tocopherol, and vitamin C in BMC remained unchanged. Since RPO on a daily basis did not show negative side effects the data suggest that RPO may be used to elevate plasma β-carotene in CF.
    Matched MeSH terms: Plant Oils/therapeutic use*
  6. Khanahmadi S, Yusof F, Chyuan Ong H, Amid A, Shah H
    J Biotechnol, 2016 Aug 10;231:95-105.
    PMID: 27184429 DOI: 10.1016/j.jbiotec.2016.05.015
    Enzymatic reactions involving lipases as catalyst in transesterification can be an excellent alternative to produce environmental-friendly biodiesel. In this study, lipase extracted from Cocoa Pod Husk (CPH) and immobilized through cross linked enzyme aggregate (CLEA) technology catalysed the transesterification of Jatropha curcas oil successfully. Face centered central composite design (FCCCD) under response surface methodology (RSM) was used to get the optimal conditions of 3% (w/w) enzyme loading, 4h reaction time and 1:6 oil/ethanol ratio to achieve the highest conversion of free fatty acid and glycerides into biodiesel (93%). The reusability of CLEA-lipase was tested and after seven cycles, the conversion percentage reduced to 58%. The results revealed that CLEA lipase from CPH is a potential catalyst for biodiesel production.
    Matched MeSH terms: Plant Oils/metabolism*
  7. Lim MSW, Yang TC, Tiong TJ, Pan GT, Chong S, Yap YH
    Ultrason Sonochem, 2021 May;73:105490.
    PMID: 33609992 DOI: 10.1016/j.ultsonch.2021.105490
    Sequentially precipitated Mg-promoted nickel-silica catalysts with ageing performed under various ultrasonic intensities were employed to study the catalyst performance in the partial hydrogenation of sunflower oil. Results from various characterisation studies showed that increasing ultrasonic intensity caused a higher degree of hydroxycarbonate erosion and suppressed the formation of Ni silicates and silica support, which improved Ni dispersion, BET surface area and catalyst reducibility. Growth of silica clusters on the catalyst aggregates were observed in the absence of ultrasonication, which explained the higher silica and nickel silicate content on the outer surface of the catalyst particle. Application of ultrasound also altered the electron density of the Ni species, which led to higher activity and enhanced product selectivity for sonicated catalysts. The catalyst synthesised with ultrasonic intensity of 20.78 Wcm-2 achieved 22.6% increase in hydrogenation activity, along with 28.5% decrease in trans-C18:1 yield at IV = 70, thus supporting the feasibility of such technique.
    Matched MeSH terms: Oils/chemistry*
  8. Mehjabin JJ, Wei L, Petitbois JG, Umezawa T, Matsuda F, Vairappan CS, et al.
    J Nat Prod, 2020 06 26;83(6):1925-1930.
    PMID: 32432877 DOI: 10.1021/acs.jnatprod.0c00164
    Chemical investigation of the organic extract from Moorea bouillonii, collected in Sabah, Malaysia, led to the isolation of three new chlorinated fatty acid amides, columbamides F (1), G (2), and H (3). The planar structures of 1-3 were established by a combination of mass spectrometric and NMR spectroscopic analyses. The absolute configuration of 1 was determined by Marfey's analysis of its hydrolysate and chiral-phase HPLC analysis after conversion and esterification with Ohrui's acid, (1S,2S)-2-(anthracene-2,3-dicarboximido)cyclohexanecarboxylic acid. Compound 1 showed biosurfactant activity by an oil displacement assay. Related known fatty acid amides columbamide D and serinolamide C exhibited biosurfactant activity with critical micelle concentrations of about 0.34 and 0.78 mM, respectively.
    Matched MeSH terms: Oils/chemistry
  9. Shakri NM, Salleh WMNHW, Khamis S, Mohamad Ali NA
    Z Naturforsch C J Biosci, 2020 Nov 26;75(11-12):485-488.
    PMID: 32966236 DOI: 10.1515/znc-2020-0090
    This study was aimed to investigate the chemical compositions of the essential oils from Goniothalamus macrophyllus and Goniothalamus malayanus growing in Malaysia. The essential oils were obtained by hydrodistillation and fully characterized by gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Analyses of the essential oils from G. macrophyllus and G. malayanus resulted in 93.6 and 95.4% of the total oils, respectively. The major components of G. macrophyllus oil were germacrene D (25.1%), bicyclogermacrene (11.6%), α-copaene (6.9%) and δ-cadinene (6.4%), whereas in G. malayanus oil bicyclogermacrene (43.9%), germacrene D (21.1%) and β-elemene (8.4%) were the most abundant components.
    Matched MeSH terms: Oils, Volatile/chemistry*
  10. Shakri NM, Salleh WMNHW, Khamis S, Mohamad Ali NA, Shaharudin SM
    Z Naturforsch C J Biosci, 2020 Nov 26;75(11-12):473-478.
    PMID: 32628641 DOI: 10.1515/znc-2020-0097
    Polyalthia is one of the largest genera in the Annonaceae family, and has been widely used in folk medicine for the treatment of rheumatic fever, gastrointestinal ulcer, and generalized body pain. The present investigation reports on the extraction by hydrodistillation and the composition of the essential oils of four Polyalthia species (P. sumatrana, P. stenopetalla, P. cauliflora, and P. rumphii) growing in Malaysia. The chemical composition of these essential oils was determined by gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The multivariate analysis was determined using principal component analysis (PCA) and hierarchical clustering analysis (HCA) methods. The results revealed that the studied essential oils are made up principally of bicyclogermacrene (18.8%), cis-calamenene (14.6%) and β-elemene (11.9%) for P. sumatrana; α-cadinol (13.0%) and δ-cadinene (10.2%) for P. stenopetalla; δ-elemene (38.1%) and β-cubebene (33.1%) for P. cauliflora; and finally germacrene D (33.3%) and bicyclogermacrene for P. rumphii. PCA score and HCA plots revealed that the essential oils were classified into three separated clusters of P. cauliflora (Cluster I), P. sumatrana (Cluster II), and P. stenopetalla, and P. rumphii (Cluster III) based on their characteristic chemical compositions. Our findings demonstrate that the essential oil could be useful for the characterization, pharmaceutical, and therapeutic applications of Polyalthia essential oil.
    Matched MeSH terms: Oils, Volatile/chemistry*
  11. Basri M, Rahman RN, Ebrahimpour A, Salleh AB, Gunawan ER, Rahman MB
    BMC Biotechnol, 2007;7:53.
    PMID: 17760990
    Wax esters are important ingredients in cosmetics, pharmaceuticals, lubricants and other chemical industries due to their excellent wetting property. Since the naturally occurring wax esters are expensive and scarce, these esters can be produced by enzymatic alcoholysis of vegetable oils. In an enzymatic reaction, study on modeling and optimization of the reaction system to increase the efficiency of the process is very important. The classical method of optimization involves varying one parameter at a time that ignores the combined interactions between physicochemical parameters. RSM is one of the most popular techniques used for optimization of chemical and biochemical processes and ANNs are powerful and flexible tools that are well suited to modeling biochemical processes.
    Matched MeSH terms: Plant Oils/chemistry
  12. Nyam KL, Teh YN, Tan CP, Kamariah L
    Malays J Nutr, 2012 Aug;18(2):265-74.
    PMID: 24575672 MyJurnal
    In order to overcome the stability problems of oils and fats, synthetic antioxidants such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tert-butyl hydroquinone (TBHQ) have widespread use as food additives in many countries. Recent reports reveal that these compounds may be implicated in many health risks, including cancer and carcinogenesis. Hence, there is a move towards the use of natural antioxidants of plant origin to replace these synthetic antioxidants.
    Matched MeSH terms: Plant Oils/chemistry*
  13. Ng TK, Low CX, Kong JP, Cho YL
    Malays J Nutr, 2012 Dec;18(3):393-7.
    PMID: 24568080 MyJurnal
    Carotenoid-rich red palm oil (RPO)-based snacks have been provided to children in impoverished communities to improve their vitamin A status. The non-availabilty of information on the acceptability of RPO-based snacks by Malaysian aborigines (Orang Asli) children forms the basis of this study.
    Matched MeSH terms: Plant Oils/administration & dosage*
  14. Wong YH, Goh KM, Nyam KL, Cheong LZ, Wang Y, Nehdi IA, et al.
    Sci Rep, 2020 09 15;10(1):15110.
    PMID: 32934328 DOI: 10.1038/s41598-020-72118-z
    3-Monochloropropane-1,2-diol (3-MCPD) esters and glycidyl esters (GE) are heat-induced contaminants which form during oil refining process, particularly at the high temperature deodorization stage. It is worth to investigate the content of 3-MCPD and GE in fries which also involved high temperature. The content of 3-MCPD esters and GE were monitored in fries. The factors that been chosen were temperature and duration of frying, and different concentration of salt (NaCl). The results in our study showed that the effect was in the order of concentration of sodium chloride 
    Matched MeSH terms: Plant Oils/chemistry*
  15. Rehman K, Aluwi MF, Rullah K, Wai LK, Mohd Amin MC, Zulfakar MH
    Int J Pharm, 2015 Jul 25;490(1-2):131-41.
    PMID: 26003416 DOI: 10.1016/j.ijpharm.2015.05.045
    Imiquimod is a chemotherapeutic agent for many skin-associated diseases, but it has also been associated with inflammatory side effects. The aim of this study was to prevent the inflammatory effect of commercial imiquimod (Aldara(®)) by controlled release of imiquimod through a hydrogel/oleogel colloidal mixture (CA bigel) containing fish oil as an anti-inflammatory agent. Imiquimod permeability from Aldara® cream and bigel through mice skin was evaluated, and the drug content residing in the skin via the tape stripping technique was quantified. The fish oil fatty acid content in skin along with its lipophilic environment was also determined. An inflammation study was conducted using animal models, and Aldara(®) cream was found to potentially cause psoriasis-like inflammation, which could be owing to prolonged application and excessive drug permeation. Controlled release of imiquimod along with fish oil through CA bigel may have caused reduced imiquimod inflammation. NMR studies and computerized molecular modeling were also conducted to observe whether the fish oil and imiquimod formed a complex that was responsible for improving imiquimod transport and reducing its side effects. NMR spectra showed dose-dependent chemical shifts and molecular modeling revealed π-σ interaction between EPA and imiquimod, which could help reduce imiquimod inflammation.
    Matched MeSH terms: Fish Oils/pharmacology*
  16. Daniali G, Jinap S, Hajeb P, Sanny M, Tan CP
    Food Chem, 2016 Dec 01;212:244-9.
    PMID: 27374529 DOI: 10.1016/j.foodchem.2016.05.174
    The method of liquid chromatographic tandem mass spectrometry was utilized and modified to confirm and quantify acrylamide in heating cooking oil and animal fat. Heating asparagine with various cooking oils and animal fat at 180°C produced varying amounts of acrylamide. The acrylamide in the different cooking oils and animal fat using a constant amount of asparagine was measured. Cooking oils were also examined for peroxide, anisidine and iodine values (or oxidation values). A direct correlation was observed between oxidation values and acrylamide formation in different cooking oils. Significantly less acrylamide was produced in saturated animal fat than in unsaturated cooking oil, with 366ng/g in lard and 211ng/g in ghee versus 2447ng/g in soy oil, followed by palm olein with 1442ng/g.
    Matched MeSH terms: Plant Oils/chemistry*
  17. Samson S, Basri M, Fard Masoumi HR, Abdul Malek E, Abedi Karjiban R
    PLoS One, 2016;11(7):e0157737.
    PMID: 27383135 DOI: 10.1371/journal.pone.0157737
    A predictive model of a virgin coconut oil (VCO) nanoemulsion system for the topical delivery of copper peptide (an anti-aging compound) was developed using an artificial neural network (ANN) to investigate the factors that influence particle size. Four independent variables including the amount of VCO, Tween 80: Pluronic F68 (T80:PF68), xanthan gum and water were the inputs whereas particle size was taken as the response for the trained network. Genetic algorithms (GA) were used to model the data which were divided into training sets, testing sets and validation sets. The model obtained indicated the high quality performance of the neural network and its capability to identify the critical composition factors for the VCO nanoemulsion. The main factor controlling the particle size was found out to be xanthan gum (28.56%) followed by T80:PF68 (26.9%), VCO (22.8%) and water (21.74%). The formulation containing copper peptide was then successfully prepared using optimum conditions and particle sizes of 120.7 nm were obtained. The final formulation exhibited a zeta potential lower than -25 mV and showed good physical stability towards centrifugation test, freeze-thaw cycle test and storage at temperature 25°C and 45°C.
    Matched MeSH terms: Plant Oils/chemistry*
  18. Ismail A, Toriman ME, Juahir H, Kassim AM, Zain SM, Ahmad WKW, et al.
    Mar Pollut Bull, 2016 Oct 15;111(1-2):339-346.
    PMID: 27397593 DOI: 10.1016/j.marpolbul.2016.06.089
    Extended use of GC-FID and GC-MS in oil spill fingerprinting and matching is significantly important for oil classification from the oil spill sources collected from various areas of Peninsular Malaysia and Sabah (East Malaysia). Oil spill fingerprinting from GC-FID and GC-MS coupled with chemometric techniques (discriminant analysis and principal component analysis) is used as a diagnostic tool to classify the types of oil polluting the water. Clustering and discrimination of oil spill compounds in the water from the actual site of oil spill events are divided into four groups viz. diesel, Heavy Fuel Oil (HFO), Mixture Oil containing Light Fuel Oil (MOLFO) and Waste Oil (WO) according to the similarity of their intrinsic chemical properties. Principal component analysis (PCA) demonstrates that diesel, HFO, MOLFO and WO are types of oil or oil products from complex oil mixtures with a total variance of 85.34% and are identified with various anthropogenic activities related to either intentional releasing of oil or accidental discharge of oil into the environment. Our results show that the use of chemometric techniques is significant in providing independent validation for classifying the types of spilled oil in the investigation of oil spill pollution in Malaysia. This, in consequence would result in cost and time saving in identification of the oil spill sources.
    Matched MeSH terms: Fuel Oils/analysis
  19. Rahim NS, Lim SM, Mani V, Abdul Majeed AB, Ramasamy K
    Pharm Biol, 2017 Dec;55(1):825-832.
    PMID: 28118770 DOI: 10.1080/13880209.2017.1280688
    CONTEXT: Virgin coconut oil (VCO) has been reported to possess antioxidative, anti-inflammatory and anti-stress properties.

    OBJECTIVE: Capitalizing on these therapeutic effects, this study investigated for the first time the potential of VCO on memory improvement in vivo.

    MATERIALS AND METHODS: Thirty male Wistar rats (7-8 weeks old) were randomly assigned to five groups (n = six per group). Treatment groups were administered with 1, 5 and 10 g/kg VCO for 31 days by oral gavages. The cognitive function of treated-rats were assessed using the Morris Water Maze Test. Brains were removed, homogenized and subjected to biochemical analyses of acetylcholine (ACh) and acetylcholinesterase (AChE), antioxidants [superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx) and glutathione reductase (GRx)], lipid peroxidase [malondialdehyde (MDA)] as well as nitric oxide (NO). α-Tocopherol (αT; 150 mg/kg) was also included for comparison purposes.

    RESULTS: VCO-fed Wistar rats exhibited significant (p  33%) and NO (≥ 34%). Overall, memory improvement by VCO was comparable to αT.

    DISCUSSION AND CONCLUSION: VCO has the potential to be used as a memory enhancer, the effect of which was mediated, at least in part, through enhanced cholinergic activity, increased antioxidants level and reduced oxidative stress.

    Matched MeSH terms: Plant Oils/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links