Displaying publications 661 - 680 of 2919 in total

Abstract:
Sort:
  1. Ishak AA, Selamat J, Sulaiman R, Sukor R, Abdulmalek E, Jambari NN
    Molecules, 2019 Oct 24;24(21).
    PMID: 31652883 DOI: 10.3390/molecules24213828
    The formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) was investigated using a kinetic study approach as described by first-order, Arrhenius, and Eyring equations. Chemical model systems with different amino acid precursors (proline, phenylalanine, and glycine) were examined at different times (4, 8, 12, and 16 min) and temperatures (150, 180, 210, 240, and 270 °C). PhIP was detected using high-performance liquid chromatography equipped with fluorescence detector (HPLC-FLD). The good fit in first-order suggested that PhIP formation was influenced by the types of amino acids and PhIP concentration significantly increased with time and temperature (up to 240 °C). PhIP was detected in proline and phenylalanine model systems but not in the glycine model system. The phenylalanine model system demonstrated low activation energy (Ea) of 95.36 kJ/mol that resulted in a high rate of PhIP formation (great amount of PhIP formed). Based on the ∆S‡ values both proline and phenylalanine demonstrated bimolecular rate-limiting steps for PhIP formation. Altogether these kinetic results could provide valuable information in predicting the PhIP formation pathway.
    Matched MeSH terms: Hot Temperature*
  2. Wang Y, Chin CY, Shivashekaregowda NKH, Shi Q
    AAPS PharmSciTech, 2024 May 07;25(5):103.
    PMID: 38714634 DOI: 10.1208/s12249-024-02809-7
    Crystallization of amorphous pharmaceutical solids are widely reported to be affected by the addition of polymer, while the underlying mechanism require deep study. Herein, crystal growth behaviors of glassy griseofulvin (GSF) doped with various 1% w/w polymer were systematically studied. From the molecular structure, GSF cannot form the hydrogen bonding interactions with the selected polymer poly(vinyl acetate), polyvinyl pyrrolidone (PVP), 60:40 vinyl pyrrolidone-vinyl acetate copolymer (PVP/VA 64), and poly(ethylene oxide) (PEO). 1% w/w polymer exhibited weak or no detectable effects on the glass transition temperature (Tg) of GSF. However, crystal growth rates of GSF was altered from 4.27-fold increase to 2.57-fold decrease at 8 ℃ below Tg of GSF. Interestingly, the ability to accelerate and inhibit the growth rates of GSF crystals correlated well with Tg of polymer, indicating the controlling role of segmental mobility of polymer. Moreover, ring-banded growth of GSF was observed in the polymer-doped systems. Normal compact bulk and ring-banded crystals of GSF were both characterized as the thermodynamically stable form I. More importantly, formation of ring-banded crystals of GSF can significantly weaken the inhibitory effects of polymer on the crystallization of glassy GSF.
    Matched MeSH terms: Transition Temperature*
  3. Gomaa FAM, Selim HMRM, Alshahrani MY, Aboshanab KM
    World J Microbiol Biotechnol, 2024 Sep 09;40(10):316.
    PMID: 39249607 DOI: 10.1007/s11274-024-04118-4
    Istamycins (ISMs) are 2-deoxyfortamine-containing aminoglycoside antibiotics (AGAs) produced by Streptomyces tenjimariensis ATCC 31603 with broad-spectrum bactericidal activities against most of the clinically relevant pathogens. Therefore, this study aimed to statistically optimize the environmental conditions affecting ISMs production using the central composite design (CCD). Both the effect of culture media composition and incubation time and agitation rate were studied as one factor at the time (OFAT). The results showed that both the aminoglycoside production medium and the protoplast regeneration medium gave the highest specific productivity. Results also showed that 6 days incubation time and 200 rpm agitation were optimum for their production. A CCD quadratic model of 17 runs was employed to test three key variables: initial pH, incubation temperature, and concentration of calcium carbonate. A significant statistical model was obtained including, an initial pH of 6.38, incubation temperature of 30 ˚C, and 5.3% CaCO3 concentration. This model was verified experimentally in the lab and resulted in a 31-fold increase as compared to the unoptimized conditions and a threefold increase to that generated by using the optimized culture media. To our knowledge, this is the first report about studying environmental conditions affecting ISM production as OFAT and through CCD design of the response surface methodology (RSM) employed for statistical optimization. In conclusion, the CCD design is an effective tool for optimizing ISMs at the shake flask level. However, the optimized conditions generated using the CCD model in this study should be scaled up in a fermenter for industrial production of ISMs by S. tenjimariensis ATCC 31603 considering the studied environmental conditions that significantly influence the production proces.
    Matched MeSH terms: Temperature*
  4. Kumara TK, Hassan AA, Salmah MR, Bhupinder S
    PMID: 23691627
    The larval growth of Liosarcophaga dux Thompson (Diptera: Sarcophagidae) was studied under varying indoor room temperatures in Malaysia. Five replicates were established. The immature growth of this species from first instar until adult emergence was 307.0+/-3.0 hours. The mean larval length measured for second instar, third instar, post-feeding stage and puparia were 6.5+/-0.5 mm (n=10), 11.8+/-3.7 mm (n=31), 12.7+/-0.8 mm (n=16), and 9.5+/-0.5 mm (n=15), respectively.
    Matched MeSH terms: Temperature*
  5. Bidawid S, Farber JM, Sattar SA, Hayward S
    J Food Prot, 2000 Apr;63(4):522-8.
    PMID: 10772219
    Experiments were performed to determine the thermal resistance of hepatitis A virus (HAV) in three types of dairy products containing increased amounts of fat content (skim milk, homogenized milk; 3.5% MFG, and table cream; 18% MFG). HAV-inoculated dairy products were introduced into custom-made U-shaped microcapillary tubes that in turn were simultaneously immersed in a waterbath, using custom-made floating boats and a carrying platform. Following exposure to the desired time and temperature combinations, the contents of each of the tubes was retrieved and was tested by plaque assay to determine the reduction in virus titer. Our data indicated that < 0.5 min at 85 degrees C was sufficient to cause a 5-log reduction in HAV titer in all three dairy products, whereas at 80 degrees C, < or = 0.68 min (for skim and homogenized milk), and 1.24 min (for cream) were needed to cause a similar log reduction. Using a nonlinear two-phase negative exponential model (two-compartment model) to analyze the data, it was found that at temperatures of 65, 67, 69, 71, and 75 degrees C, significantly (P < 0.05) higher exposure times were needed to achieve a 1-log reduction in virus titer in cream, as compared to skim and homogenized milk. For example, at 71 degrees C, a significantly (P < 0.05) higher exposure time of 0.52 min (for cream) was needed as compared to < or = 0.18 min (for skim and homogenized milk) to achieve a 1-log reduction in virus titer. A similar trend of inactivation was observed at 73 and 75 degrees C where significantly (P < 0.05) higher exposure times of 0.29 to 0.36 min for cream were needed to cause a 1-log reduction in HAV in cream, as compared to < or = 0.17 min for skim and homogenized milk. This study has provided information on the heat resistance of HAV in skim milk, homogenized milk, and table cream and demonstrated that an increase in fat content appears to play a protective role and contributes to the heat stability of HAV.
    Matched MeSH terms: Hot Temperature*
  6. Sharif Nia H, Gorgulu O, Pahlevan Sharif S, Froelicher ES, Haghdoost AA, Golshani S, et al.
    Iran J Public Health, 2020 May;49(5):923-930.
    PMID: 32953680
    Background: The prevalence of Acute Myocardial Infarction (AMI) varies from region to region caused by seasonal climate changes and temperature variation. This study aimed to assess the relationship between changing meteorological conditions and incidence of AMI in Iran.

    Methods: This retrospective prevalence study was based on medical records of the heart center of Mazandaran Province on all patients diagnosed with AMI in Mazandaran, northern Iran between 2013 and 2015. Patients' sex and the day, month, year and time of hospital admission were extracted from patients' records. Moreover, the meteorological reports were gathered.

    Results: A statistically significant difference was found between the distributions of AMI cases across 12 months of the year (P < 0.01). Fuzzy clustering analysis using 16 different climatic variables showed that March, April, and May were in the same cluster together. The other 9 months were in different clusters.

    Conclusion: Significant increase in AMI was seen in March, April and May (cold to hot weather).

    Matched MeSH terms: Cold Temperature; Temperature
  7. Wang Y, Chong KC, Ren C
    Environ Res, 2024 Dec 15;263(Pt 2):120091.
    PMID: 39368600 DOI: 10.1016/j.envres.2024.120091
    BACKGROUND: Multiple studies have reported the profound influence of various climate factors on dengue fever infection, while the effects of joint exposure to warm and wet environment, a condition favouring dengue vectors, on disease transmission were less evaluated. This study aims to investigate the impact of various compound temperature, rainfall, and relative humidity exposures on dengue fever infection in the South and Southeast Asia regions.

    METHODS: Weekly dengue fever surveillance data from 2012 to 2020 were collected from 48 locations in four countries named Singapore (1 location), Sri Lanka (15 locations), Malaysia (9 locations), and Thailand (23 locations, with 11 locations having different study periods). The distributed lag non-linear models were built to assess the impacts of compound temperature, rainfall, and relative humidity exposures on dengue fever infection risks.

    RESULTS: A total of 1,359,993 dengue fever cases were reported with 9.33%, 24.02%, 48.73%, and 17.91% cases contributed by Singapore, Sri Lanka, Malaysia, and Thailand, respectively. Compared to non-warm-non-wet, compound warm-wet was associated with an increased dengue risk (RR:1.32, 95% CI:1.21-1.44). Compared to moderate temperature-humidity, warm-wet environment was also associated with an increase in dengue risk (RR:1.37, 95% CI:1.22-1.55). In comparison to weeks with moderate temperature-rainfall, warm-wet weeks was linked to an elevated dengue risk (RR:1.39, 95% CI:1.27-1.52), whereas cold-dry weather would significantly reduce the infection risk (RR:0.70, 95% CI:0.62-0.80). Modification effects showed that the hot effect on dengue infection was more pronounced under higher humidity, while the impact of rainfall increased with warmer temperature.

    CONCLUSION: Warm-wet events were associated with an increased dengue fever risk, while the infection risk would decline in cold-dry environment, and modification effects exist among exposures. Findings from this study highlight the importance of considering joint temperature, humidity, and rainfall dependency of dengue fever infection in disease prevention and control.

    Matched MeSH terms: Temperature*
  8. Hanjeet K, Lye MS, Sinniah M, Schnur A
    Bull World Health Organ, 1996;74(4):391-7.
    PMID: 8823961
    An analysis was carried out on a total of 883 cold chain monitor (CCM) cards, which had been attached to batches of poliomyelitis, measles, DPT (diphtheria, pertussis, tetanus) and hepatitis B vaccines, during their transport and storage from the central store in Kuala Lumpur to Kelantan, a state in north-eastern Malaysia; 234 freeze watches attached to hepatitis B vaccines were also analysed. The monitor cards and freeze watches were observed at six levels between the central store and the periphery during distribution of the vaccines, and a colour change in any of the four windows (A, B, C, D) on the CCM cards or the freeze watches was recorded. In addition, 33 unopened vials of oral poliovirus vaccine (OPV), collected from refrigerators in 29 health facilities in Kelantan, were tested for potency using the tissue culture infective dose 50 (TCID50) method; 14 of them (42%) did not meet the WHO criteria for potent vaccines. The results showed that at the final destination 13.4% of all cards remained white while a colour change to blue was observed in 65% in window A, 16.6% in window B, and 4.4% in window C; none had turned blue in window D indicating that the vaccine had not been subjected to temperatures > or = 34 degrees C for 2 hours. All but 2 of the 234 freeze watches had turned purple, which indicates exposure of the hepatitis B vaccines to temperatures below 0 degree C. These results will assist health planners to correct the weaknesses identified in the cold chain system.
    Matched MeSH terms: Cold Temperature*
  9. Wahab RA, Basri M, Rahman RN, Salleh AB, Rahman MB, Chaibakhsh N, et al.
    Biotechnology, biotechnological equipment, 2014 Nov 02;28(6):1065-1072.
    PMID: 26740782
    Most substrate for esterification has the inherent problem of low miscibility which requires addition of solvents into the reaction media. In this contribution, we would like to present an alternative and feasible option for an efficient solvent-free synthesis of menthyl butyrate using a novel thermostable crude T1 lipase. We investigated the effects of incubation time, temperature, enzyme loading and substrate molar ratio and determined the optimum conditions. The high conversion of menthyl butyrate catalyzed by crude T1 lipase in a solvent-free system is greatly affected by temperature and time of the reaction media. The highest yield of menthyl butyrate was 99.3% under optimized conditions of 60 °C, incubation time of 13.15 h, 2.53 mg, 0.43% (w/w) enzyme to substrate ratio and at molar ratio of butyric anhydride/menthol 2.7:1. Hence, the investigation revealed that the thermostable crude T1 lipase successfully catalyzed the high-yield production of menthyl butyrate in a solvent-free system. The finding suggests that the crude T1 lipase was a promising alternative to overcome shortcomings associated with solvent-assisted enzymatic reactions.
    Matched MeSH terms: Temperature
  10. Abedin MJ, Masjuki HH, Kalam MA, Varman M, Arbab MI, Fattah IM, et al.
    ScientificWorldJournal, 2014;2014:349858.
    PMID: 25162046 DOI: 10.1155/2014/349858
    This paper deals with the performance and emission analysis of a multicylinder diesel engine using biodiesel along with an in-depth analysis of the engine heat losses in different subsystems followed by the energy balance of all the energy flows from the engine. Energy balance analysis allows the designer to appraise the internal energy variations of a thermodynamic system as a function of ''energy flows" across the control volume as work or heat and also the enthalpies associated with the energy flows which are passing through these boundaries. Palm and coconut are the two most potential biodiesel feed stocks in this part of the world. The investigation was conducted in a four-cylinder diesel engine fuelled with 10% and 20% blends of palm and coconut biodiesels and compared with B5 at full load condition and in the speed range of 1000 to 4000 RPM. Among the all tested blends, palm blends seemed more promising in terms of engine performance, emission, and heat losses. The influence of heat losses on engine performance and emission has been discussed thoroughly in this paper.
    Matched MeSH terms: Temperature
  11. Gul T, Islam S, Shah RA, Khan I, Shafie S
    PLoS One, 2014;9(6):e97552.
    PMID: 24949988 DOI: 10.1371/journal.pone.0097552
    In this work, we have carried out the influence of temperature dependent viscosity on thin film flow of a magnetohydrodynamic (MHD) third grade fluid past a vertical belt. The governing coupled non-linear differential equations with appropriate boundary conditions are solved analytically by using Adomian Decomposition Method (ADM). In order to make comparison, the governing problem has also been solved by using Optimal Homotopy Asymptotic Method (OHAM). The physical characteristics of the problem have been well discussed in graphs for several parameter of interest.
    Matched MeSH terms: Temperature
  12. Aziz NS, Mahmood MR, Yasui K, Hashim AM
    Nanoscale Res Lett, 2014 Feb 26;9(1):95.
    PMID: 24568668 DOI: 10.1186/1556-276X-9-95
    We report the seed/catalyst-free vertical growth of high-density electrodeposited ZnO nanostructures on a single-layer graphene. The absence of hexamethylenetetramine (HMTA) and heat has resulted in the formation of nanoflake-like ZnO structure. The results show that HMTA and heat are needed to promote the formation of hexagonal ZnO nanostructures. The applied current density plays important role in inducing the growth of ZnO on graphene as well as in controlling the shape, size, and density of ZnO nanostructures. High density of vertically aligned ZnO nanorods comparable to other methods was obtained. The quality of the ZnO nanostructures also depended strongly on the applied current density. The growth mechanism was proposed. According to the growth timing chart, the growth seems to involve two stages which are the formation of ZnO nucleation and the enhancement of the vertical growth of nanorods. ZnO/graphene hybrid structure provides several potential applications in electronics and optoelectronics such as photovoltaic devices, sensing devices, optical devices, and photodetectors.
    Matched MeSH terms: Hot Temperature
  13. Abdullah SM, Ahmad Z, Sulaiman K
    Sensors (Basel), 2014;14(6):9878-88.
    PMID: 24901979 DOI: 10.3390/s140609878
    An electrochemical cell using an organic compound, copper (II) phthalocyanine-tetrasulfonic acid tetrasodium salt (CuTsPc,) has been fabricated and investigated as a solution-based temperature sensor. The capacitance and resistance of the ITO/CuTsPc solution/ITO chemical cell has been characterized as a function of temperature in the temperature range of 25-80 °C. A linear response with minimal hysteresis is observed. The fabricated temperature sensor has shown high consistency and sensitive response towards a specific range of temperature values.
    Matched MeSH terms: Temperature
  14. Chong Leong G, Uda H
    PLoS One, 2013;8(11):e78705.
    PMID: 24244344 DOI: 10.1371/journal.pone.0078705
    This paper compares and discusses the wearout reliability and analysis of Gold (Au), Palladium (Pd) coated Cu and Pd-doped Cu wires used in fineline Ball Grid Array (BGA) package. Intermetallic compound (IMC) thickness measurement has been carried out to estimate the coefficient of diffusion (Do) under various aging conditions of different bonding wires. Wire pull and ball bond shear strengths have been analyzed and we found smaller variation in Pd-doped Cu wire compared to Au and Pd-doped Cu wire. Au bonds were identified to have faster IMC formation, compared to slower IMC growth of Cu. The obtained weibull slope, β of three bonding wires are greater than 1.0 and belong to wearout reliability data point. Pd-doped Cu wire exhibits larger time-to-failure and cycles-to-failure in both wearout reliability tests in Highly Accelerated Temperature and Humidity (HAST) and Temperature Cycling (TC) tests. This proves Pd-doped Cu wire has a greater potential and higher reliability margin compared to Au and Pd-coated Cu wires.
    Matched MeSH terms: Temperature
  15. Ab Latip R, Lee YY, Tang TK, Phuah ET, Lee CM, Tan CP, et al.
    PeerJ, 2013;1:e72.
    PMID: 23682348 DOI: 10.7717/peerj.72
    Fractionation which separates the olein (liquid) and stearin (solid) fractions of oil is used to modify the physicochemical properties of fats in order to extend its applications. Studies showed that the properties of fractionated end products can be affected by fractionation processing conditions. In the present study, dry fractionation of palm-based diacylglycerol (PDAG) was performed at different: cooling rates (0.05, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0°C/min), end-crystallisation temperatures (30, 35, 40, 45 and 50°C) and agitation speeds (30, 50, 70, 90 and 110 rpm) to determine the effect of these parameters on the properties and yield of the solid and liquid portions. To determine the physicochemical properties of olein and stearin fraction: Iodine value (IV), fatty acid composition (FAC), acylglycerol composition, slip melting point (SMP), solid fat content (SFC), thermal behaviour tests were carried out. Fractionation of PDAG fat changes the chemical composition of liquid and solid fractions. In terms of FAC, the major fatty acid in olein and stearin fractions were oleic (C18:1) and palmitic (C16:0) respectively. Acylglycerol composition showed that olein and stearin fractions is concentrated with TAG and DAG respectively. Crystallization temperature, cooling rate and agitation speed does not affect the IV, SFC, melting and cooling properties of the stearin fraction. The stearin fraction was only affected by cooling rate which changes its SMP. On the other hand, olein fraction was affected by crystallization temperature and cooling rate but not agitation speed which caused changes in IV, SMP, SFC, melting and crystallization behavior. Increase in both the crystallization temperature and cooling rate caused a reduction of IV, increment of the SFC, SMP, melting and crystallization behaviour of olein fraction and vice versa. The fractionated stearin part melted above 65°C while the olein melted at 40°C. SMP in olein fraction also reduced to a range of 26 to 44°C while SMP of stearin fractions increased to (60-62°C) compared to PDAG.
    Matched MeSH terms: Temperature
  16. Palanisamy UD, Sivanathan M, Radhakrishnan AK, Haleagrahara N, Subramaniam T, Chiew GS
    Molecules, 2011 Jul 05;16(7):5709-19.
    PMID: 21730920 DOI: 10.3390/molecules16075709
    Ostrich oil has been used extensively in the cosmetic and pharmaceutical industries. However, rancidity causes undesirable chemical changes in flavour, colour, odour and nutritional value. Bleaching is an important process in refining ostrich oil. Bleaching refers to the removal of certain minor constituents (colour pigments, free fatty acid, peroxides, odour and non-fatty materials) from crude fats and oils to yield purified glycerides. There is a need to optimize the bleaching process of crude ostrich oil prior to its use for therapeutic purposes. The objective of our study was to establish an effective method to bleach ostrich oil using peroxide value as an indicator of refinement. In our study, we showed that natural earth clay was better than bentonite and acid-activated clay to bleach ostrich oil. It was also found that 1 hour incubation at a 150 °C was suitable to lower peroxide value by 90%. In addition, the nitrogen trap technique in the bleaching process was as effective as the continuous nitrogen flow technique and as such would be the recommended technique due to its cost effectiveness.
    Matched MeSH terms: Temperature
  17. Wijayanto T, Wakabayashi H, Lee JY, Hashiguchi N, Saat M, Tochihara Y
    Int J Biometeorol, 2011 Jul;55(4):491-500.
    PMID: 20824480 DOI: 10.1007/s00484-010-0358-5
    The objective of this study was to investigate thermoregulatory responses to heat in tropical (Malaysian) and temperate (Japanese) natives, during 60 min of passive heating. Ten Japanese (mean ages: 20.8 ± 0.9 years) and ten Malaysian males (mean ages: 22.3 ± 1.6 years) with matched morphological characteristics and physical fitness participated in this study. Passive heating was induced through leg immersion in hot water (42°C) for 60 min under conditions of 28°C air temperature and 50% RH. Local sweat rate on the forehead and thigh were significantly lower in Malaysians during leg immersion, but no significant differences in total sweat rate were observed between Malaysians (86.3 ± 11.8 g m(-2) h(-1)) and Japanese (83.2 ± 6.4 g m(-2) h(-1)) after leg immersion. In addition, Malaysians displayed a smaller rise in rectal temperature (0.3 ± 0.1°C) than Japanese (0.7 ± 0.1°C) during leg immersion, with a greater increase in hand skin temperature. Skin blood flow was significantly lower on the forehead and forearm in Malaysians during leg immersion. No significant different in mean skin temperature during leg immersion was observed between the two groups. These findings indicated that regional differences in body sweating distribution might exist between Malaysians and Japanese during heat exposure, with more uniform distribution of local sweat rate over the whole body among tropical Malaysians. Altogether, Malaysians appear to display enhanced efficiency of thermal sweating and thermoregulatory responses in dissipating heat loss during heat loading. Thermoregulatory differences between tropical and temperate natives in this study can be interpreted as a result of heat adaptations to physiological function.
    Matched MeSH terms: Body Temperature Regulation/physiology*; Hot Temperature/adverse effects
  18. Vedamanikam VJ, Shazilli NA
    Bull Environ Contam Toxicol, 2008 Jun;80(6):516-20.
    PMID: 18414763 DOI: 10.1007/s00128-008-9413-x
    A study was conducted to determine the suitability of using selected aquatic dipterian larvae for biomonitoring bioassays. The organisms included a member of the biting midge family that was identified as Culicoides furens and a member of the non-biting midge family, identified as Chironomus plumosus. Median lethal toxicity tests were conducted to observe the variation between metal sensitivities between the two larval forms and how variations in temperature could affect the experimental setup. Nine heavy metals were used in the study. It was observed that the 96 h LC(50) (in mg/L) for the different metals was found to be Zn-16.21 (18.55 +/- 13.87); Cr-0.96 (1.08 +/- 0.84); Ag-4.22 (6.87 +/- 1.57); Ni-0.42 (0.59 +/- 0.25); Hg-0.42 (0.59 +/- 0.25); Pb-16.21 (18.31 +/- 14.11); Cu-42.24 (45.18 +/- 39.30); Mn-4.22 (7.19 +/- 1.25); Cd-0.42 (0.59 +/- 0.25) for the Chironomus plumosus and Zn-4.22 (6.56 +/- 1.88); Cr-0.42 (0.54 +/- 0.30); Ag-0.42 (0.54 +/- 0.30); Ni-0.42 (0.54 +/- 0.30); Hg-0.04 (0.07 +/- 0.01); Pb-0.42 (0.54 +/- 0.30); Cu-42.24 (45.18 +/- 39.30); Mn-4.22 (6.56 +/- 1.88); Cd-0.42 (0.54 +/- 0.30) in the case of the Culicoides furens. With temperature as a variable the LC(50) values were observed to increase from 2.51 mg/L at 10 degrees C to 4.22 ppm at 30 degrees C and to reduce slightly to 3.72 mg/L at 35 degrees C as seen in the case of Zn. It was also observed that at 40 degrees C thermal toxicity and chemical toxicity overlapped as 100% mortality was observed in the controls. This trend was observed in all metals for both C. plumosus and C. furens. Thus indicating temperature played an important role in determining LC(50) values of toxicants.
    Matched MeSH terms: Cold Temperature/adverse effects*; Hot Temperature/adverse effects*
  19. Uddin MJ, Khan WA, Ismail AI
    PLoS One, 2012;7(11):e49499.
    PMID: 23166688 DOI: 10.1371/journal.pone.0049499
    Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.
    Matched MeSH terms: Hot Temperature
  20. Chung KH, Othman Z, Lee JS
    J Food Sci Technol, 2015 Oct;52(10):6218-29.
    PMID: 26396368 DOI: 10.1007/s13197-014-1700-4
    Corn starches with different amylose-to-amylopectin ratio (waxy, normal, Hylon V, and Hylon VII) were treated with five doses of gamma irradiation (1, 5, 10, 25, and 50 kGy). The effects of gamma irradiation on the physicochemical properties of starch samples were investigated. Waxy samples showed an increase of amylose-like fractions when irradiated at 10 kGy. The reduction in apparent amylose content increased with amylose content when underwent irradiation at 25 and 50 kGy. Low amylose starches lost their pasting ability when irradiated at 25 and 50 kGy. Results from thermal behavior and pasting profile suggested that low level of cross-linking occurred in Hylon VII samples irradiated at 5 kGy. Severe reduction in pasting properties, gelatinization temperatures and relative crystallinity with increasing irradiation intensity revealed that waxy samples were affected more by gamma irradiation; this also indicated amylopectin was the starch fraction most affected by gamma irradiation. Alteration level was portrayed differently when different kind of physicochemical properties were investigated, in which the pasting properties and crystallinity of starches were more immensely influenced by gamma irradiation while thermal behavior was less affected. Despite the irradiation level, the morphology and crystal pattern of starch granules were found remain unchanged by irradiation.
    Matched MeSH terms: Temperature
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links