Methods: Using a 2-by-2 factorial design, 12 705 participants from 21 countries with vascular risk factors but without overt cardiovascular disease were randomized to candesartan 16 mg plus hydrochlorothiazide 12.5 mg daily or placebo and to rosuvastatin 10 mg daily or placebo. The effect of the interventions on stroke subtypes was assessed.
Results: Participants were 66 years old and 46% were women. Baseline blood pressure (138/82 mm Hg) was reduced by 6.0/3.0 mm Hg and LDL-C (low-density lipoprotein cholesterol; 3.3 mmol/L) was reduced by 0.90 mmol/L on active treatment. During 5.6 years of follow-up, 169 strokes occurred (117 ischemic, 29 hemorrhagic, 23 undetermined). Blood pressure lowering did not significantly reduce stroke (hazard ratio [HR], 0.80 [95% CI, 0.59–1.08]), ischemic stroke (HR, 0.80 [95% CI, 0.55–1.15]), hemorrhagic stroke (HR, 0.71 [95% CI, 0.34–1.48]), or strokes of undetermined origin (HR, 0.92 [95% CI, 0.41–2.08]). Rosuvastatin significantly reduced strokes (HR, 0.70 [95% CI, 0.52–0.95]), with reductions mainly in ischemic stroke (HR, 0.53 [95% CI, 0.37–0.78]) but did not significantly affect hemorrhagic (HR, 1.22 [95% CI, 0.59–2.54]) or strokes of undetermined origin (HR, 1.29 [95% CI, 0.57–2.95]). The combination of both interventions compared with double placebo substantially and significantly reduced strokes (HR, 0.56 [95% CI, 0.36–0.87]) and ischemic strokes (HR, 0.41 [95% CI, 0.23–0.72]).
Conclusions: Among people at intermediate cardiovascular risk but without overt cardiovascular disease, rosuvastatin 10 mg daily significantly reduced first stroke. Blood pressure lowering combined with rosuvastatin reduced ischemic stroke by 59%. Both therapies are safe and generally well tolerated.
Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT00468923.
METHODOLOGY: A cross-sectional survey using a 36-item questionnaire was conducted among country representatives to AOAN from August 2015 to August 2016.
RESULTS: A total of 18/20 AOAN member countries participated in the survey. All the countries have organized association with regular meetings, election of officers and neurology training program. In 9/18 countries, professionals other than neurologists were eligible for affiliation. In 11/18 countries, prior Internal medicine training (or equivalent postgraduate housemanship) is prerequisite to neurology program. Recertification examination is not a practice, but submission of CME is required in 7/18 countries to maintain membership. 12/18 countries publish peer-reviewed journals with at least 1 issue per year. Subspecialty training is offered in 14/18 countries. The ratio of neurologist to population ranges from 1:14,000 to as low as 1:32 million with 9/18 having <1 neurologist per 100,000 population. 6/18 countries have at least 1 specialized center solely for neurological diseases. In government-funded hospitals, the lag time to be seen by a neurologist and/or obtain neuroimaging scan ranges from 1day to 3months. All except one country have several medical- and lay- advocacy or support groups for different neurological conditions.
IMPLICATIONS: The data generated can be used for benchmarking to improve neurological care, training, collaborative work and research in the field of neurosciences among the AOAN member countries. The paper presented several strategies used by the different organizations to increase their number of neurologists and improve the quality of training. Sharing of best practices, academic networking, exchange programs and use of telemedicine have been suggested.
METHODS: This multicenter randomized double-blind placebo-controlled phase 2 trial included 110 solid malignant tumor patients (stage II-IV) undergoing chemotherapy. They were randomly selected and provided oral Nuvastatic™ 1000 mg (N = 56) or placebo (N = 54) thrice daily for 9 weeks. The primary outcomes were fatigue (Brief Fatigue Inventory (BFI)) and Visual Analog Scale for Fatigue (VAS-F)) scores measured before and after intervention at baseline and weeks 3, 6, and 9. The secondary outcomes were mean group difference in the vitality subscale of the Medical Outcome Scale Short Form-36 (SF-36) and urinary F2-isoprostane concentration (an oxidative stress biomarker), Eastern Cooperative Oncology Group scores, adverse events, and biochemical and hematologic parameters. Analysis was performed by intention-to-treat (ITT). Primary and secondary outcomes were assessed by two-way repeated-measures analysis of variance (mixed ANOVA).
RESULTS: The Nuvastatic™ group exhibited an overall decreased fatigue score compared with the placebo group. Compared with the placebo group, the Nuvastatic™ group significantly reduced BFI-fatigue (BFI fatigue score, F (1.4, 147) = 16.554, p
METHODS AND RESULTS: We compared 5697 chronic HF patients of Indian (26%), white (23%), Chinese (17%), Japanese/Koreans (12%), black (12%), and Malay (10%) ethnicities from the HF-ACTION and ASIAN-HF multinational studies using the Kansas City Cardiomyopathy Questionnaire (KCCQ; range 0-100; higher scores reflect better health status). KCCQ scores were lowest in Malay (58±22) and Chinese (60±23), intermediate in black (64±21) and Indian (65±23), and highest in white (67±20) and Japanese or Korean patients (67±22) after adjusting for age, sex, educational status, HF severity, and risk factors. Self-efficacy, which measures confidence in the ability to manage symptoms, was lower in all Asian ethnicities (especially Japanese/Koreans [60±26], Malay [66±23], and Chinese [64±28]) compared to black (80±21) and white (82±19) patients, even after multivariable adjustment (P
METHODS: A Group Model Building (GMB) exercise was conducted with researchers and clinicians from academic units and public healthcare institutes in Singapore. The aim of the exercise was to produce a shared visual representation of the causal structure for falls and engage in discussions on how current and future falls intervention programmes can address falls in the older adults, especially in the Asian context. It was conducted in four steps: 1) Outlining and prioritising desirable patient outcomes, 2) Conceptual model building, 3) Identifying key intervention elements of effective falls intervention programmes, 4) Mapping of interventions to outcomes. This causal loop diagram (CLD) was then used to generate insights into the current understanding of falls causal relationships, current efforts in falls intervention in Singapore, and used to identify gaps in falls research that could be further advanced in future intervention studies.
RESULTS: Four patient outcomes were identified by the group as key in falls intervention: 1) Falls, 2) Injurious falls, 3) Fear of falling, and 4) Restricted mobility and life space. A CLD of the reciprocal relationships between risk factors and these outcomes are represented in four sub-models: 1) Fear of falling, 2) Injuries associated with falls, 3) Caregiver overprotectiveness, 4) Post-traumatic stress disorder and psychological resilience. Through this GMB exercise, the group gained the following insights: (1) Psychological sequelae of falls is an important falls intervention outcome. (2) The effects of family overprotectiveness, psychological resilience, and PTSD in exacerbating the consequences of falls are not well understood. (3) There is a need to develop multi-component falls interventions to address the multitude of falls and falls related sequelae.
CONCLUSION: This work illustrates the potential of GMB to promote shared understanding of complex healthcare problems and to provide a roadmap for the development of more effective preventive actions.