Displaying publications 741 - 760 of 841 in total

Abstract:
Sort:
  1. Suhaini S, Liew SZ, Norhaniza J, Lee PC, Jualang G, Embi N, et al.
    Trop Biomed, 2015 Sep;32(3):419-33.
    PMID: 26695202 MyJurnal
    Gleichenia truncata is a highland fern from the Gleicheniaceae family known for its traditional use among indigenous communities in Asia to treat fever. The scientific basis of its effect has yet to be documented. A yeast-based kinase assay conducted in our laboratory revealed that crude methanolic extract (CME) of G. truncata exhibited glycogen synthase kinase-3 (GSK3)-inhibitory activity. GSK3β is now recognized to have a pivotal role in the regulation of inflammatory response during bacterial infections. We have also previously shown that lithium chloride (LiCl), a GSK3 inhibitor suppressed development of Plasmodium berghei in a murine model of malarial infection. The present study is aimed at evaluating G. truncata for its anti-malarial and anti-inflammatory effects using in vivo malarial and melioidosis infection models respectively. In a four-day suppressive test, intraperitoneal injections of up to 250 mg/kg body weight (bw) G. truncata CME into P.berghei-infected mice suppressed parasitaemia development by >60%. Intraperitoneal administration of 150 mg/kg bw G. truncata CME into Burkholderia pseudomallei-infected mice improved survivability by 44%. G. truncata CME lowered levels of pro-inflammatory cytokines (TNF-α, IFN-γ) in serum and organs of B. pseudomallei-infected mice. In both infections, increased phosphorylations (Ser9) of GSK3β were detected in organ samples of animals administered with G. truncata CME compared to controls. Taken together, results from this study strongly suggest that the anti-malarial and anti-inflammatory effects elicited by G. truncata in part were mediated through inhibition of GSK3β. The findings provide scientific basis for the ethnomedicinal use of this fern to treat inflammation-associated symptoms.
    Matched MeSH terms: Disease Models, Animal
  2. Tay TF, Maheran M, Too SL, Hasidah MS, Ismail G, Embi N
    Trop Biomed, 2012 Dec;29(4):551-67.
    PMID: 23202600
    The disease melioidosis, caused by the soil bacteria Burkholderia pseudomallei, often manifests as acute septicemia with high fatality. Glycogen synthase kinase-3β (GSK3β) plays a key role during the inflammatory response induced by bacteria. We used a murine model of acute melioidosis to investigate the effects of LiCl, a GSK3 inhibitor on experimental animal survivability as well as TNF-α, IL-1β, IFN-γ, IL-10 and IL-1Ra cytokine levels in blood, lung, liver and spleen of B. pseudomallei-infected mice. Our results showed that administration of 100 μg/g LiCl improved survivability of mice infected with 5 X LD50 of B. pseudomallei. Bacterial counts in spleen, liver and lungs of infected mice administered with LiCl were lower than non-treated controls. Our data also revealed that GSK3β is phosphorylated in the spleen, liver and lung of animals infected with B. pseudomallei. However in infected animals administered with LiCl, higher levels of pGSK3 were detected in the organs. Levels of proinflammatory cytokines (TNF-α, IL-1β and IFN-γ) and anti-inflammatory cytokines (IL-10 and IL-1Ra) in sera and organs tested were elevated significantly following B. pseudomallei infection. With GSK3β inhibition, pro-inflammatory cytokines (TNF-α, IFN-γ, IL-1β) were significantly decreased in all the samples tested whilst the levels of anti-inflammatory cytokines, IL-10 (spleen and lung) and IL-1Ra (spleen, liver and sera) were further elevated. This study represents the first report implicating GSK3β in the modulation of cytokine production during B. pseudomallei infection thus reiterating the important role of GSK3β in the inflammatory response caused by bacterial pathogens.
    Matched MeSH terms: Disease Models, Animal
  3. Tan HY, Nagoor NH, Sekaran SD
    Trop Biomed, 2010 Dec;27(3):430-41.
    PMID: 21399583 MyJurnal
    The major outer membrane protein (OmpH) of 4 local Malaysian strains of Pasteurella multocida serotype B:2 were characterized in comparison to ATCC strains. Three major peptide bands of MW 26, 32 and 37 kDa were characterized using SDSPAGE. Two of these fragments, the 32 kDa and 37 kDa were observed to be more reactive with a mouse polyclonal antiserum in all of the local isolates as well as the ATCC strains in a Western blot. However, the 32 kDa fragment was found to cross react with other Gram negative bacteria. Therefore, the 37 kDa OmpH was selected as vaccine candidate. The 37 kDa ompH gene of the isolated strain 1710 was cloned into an Escherichia coli expression vector to produce large amounts of recombinant OmpH (rOmpH). The 37 kDa ompH gene of strain 1710 was sequenced. In comparison to a reference strain X-73 of the ompH of P. multocida, 39bp was found deleted in the 37 kDa ompH gene. However, the deletion did not shift the reading frame or change the amino acid sequence. The rOmpH was used in a mice protection study. Mice immunized and challenged intraperitoneally resulted 100% protection against P. multocida whilst mice immunized subcutaneously and challenged intraperitoneally only resulted 80% protection. The rOmpH is therefore a suitable candidate for vaccination field studies. The same rOmpH was also used to develop a potential diagnostic kit in an ELISA format.
    Matched MeSH terms: Disease Models, Animal
  4. Tang SY, Sivakumar M, Ng AM, Shridharan P
    Int J Pharm, 2012 Jul 1;430(1-2):299-306.
    PMID: 22503988 DOI: 10.1016/j.ijpharm.2012.03.055
    The present study investigated the anti-inflammatory and analgesic activities of novel aspirin oil-in-water (O/W) nanoemulsion and water-in-oil-in-water (W/O/W) nano multiple emulsion formulations generated using ultrasound cavitation techniques. The anti-inflammatory activities of nanoemulsion and nano multiple emulsion were determined using the λ-carrageenan-induced paw edema model. The analgesic activities of both nanoformulations were determined using acetic acid-induced writhing response and hot plate assay. For comparison, the effect of pretreatment with blank nanoemulsion and reference aspirin suspension were also studied for their anti-inflammatory and antinociceptive activities. The results showed that oral administration of nanoemulsion and nano multiple emulsion containing aspirin (60 mg/kg) significantly reduced paw edema induced by λ-carrageenan injection. Both nanoformulations decreased the number of abdominal constriction in acetic acid-induced writhing model. Pretreatment with nanoformulations led to a significant increase in reaction time in hot plate assay. Nanoemulsion demonstrated an enhanced anti-inflammatory and analgesic effects compared to reference suspension while nano multiple emulsion exhibited a mild inhibitory effects in the three experimental animal model tests. The results obtained for nano multiple emulsion were relatively lower than reference. However, administration of blank nanoemulsion did not alter the nociceptive response significantly though it showed slight anti-inflammatory effect. These experimental studies suggest that nanoemulsion and nano multiple emulsion produced a pronounced anti-inflammatory and analgesic effects in rats and may be candidates as new nanocarriers for pharmacological NSAIDs in the treatment of inflammatory disorders and alleviating pains.
    Matched MeSH terms: Disease Models, Animal
  5. Chong PS, Khairuddin S, Tse ACK, Hiew LF, Lau CL, Tipoe GL, et al.
    Sci Rep, 2020 09 10;10(1):14945.
    PMID: 32913245 DOI: 10.1038/s41598-020-71966-z
    Cerebellar ataxia is a neurodegenerative disorder with no definitive treatment. Although several studies have demonstrated the neuroprotective effects of Hericium erinaceus (H.E.), its mechanisms in cerebellar ataxia remain largely unknown. Here, we investigated the neuroprotective effects of H.E. treatment in an animal model of 3-acetylpyridine (3-AP)-induced cerebellar ataxia. Animals administered 3-AP injection exhibited remarkable impairments in motor coordination and balance. There were no significant effects of 25 mg/kg H.E. on the 3-AP treatment group compared to the 3-AP saline group. Interestingly, there was also no significant difference in the 3-AP treatment group compared to the non-3-AP control, indicating a potential rescue of motor deficits. Our results revealed that 25 mg/kg H.E. normalised the neuroplasticity-related gene expression to the level of non-3-AP control. These findings were further supported by increased protein expressions of pERK1/2-pCREB-PSD95 as well as neuroprotective effects on cerebellar Purkinje cells in the 3-AP treatment group compared to the 3-AP saline group. In conclusion, our findings suggest that H.E. potentially rescued behavioural motor deficits through the neuroprotective mechanisms of ERK-CREB-PSD95 in an animal model of 3-AP-induced cerebellar ataxia.
    Matched MeSH terms: Disease Models, Animal
  6. Madzuki IN, Lau SF, Mohamad Shalan NAA, Mohd Ishak NI, Mohamed S
    J Biosci, 2019 Sep;44(4).
    PMID: 31502578
    Chondrosenescence (chondrocyte senescence) and subchondral bone deterioration in osteoarthritic rats were analyzed after treatment with the estrogenic herb Labisia pumila (LP) or diclofenac. Osteoarthritis (OA) was induced in bilaterally ovariectomized (OVX) rats by injecting mono-iodoacetate into the right knee joints. Rats were grouped (n = 8) into nontreated OVX+OA control, OVX+OA + diclofenac (5 mg/kg) (positive control), OVX+OA + LP leaf extract (150 and 300 mg/kg) and healthy sham control. After 8 weeks' treatment, their conditions were evaluated via serum biomarkers, knee joint histology, bone histomorphometry, protein and mRNA expressions. The LP significantly reduced cartilage erosion, femur bone surface alteration, bone loss and porosity and increased trabecular bone thickness better than diclofenac and the non-treated OA. The cartilage catabolic markers' (matrix metalloproteinase (MMP)-13, RUNX2, COL10a, ERa, CASP3 and HIF-2 alpha) mRNA expressions were down-regulated and serum bone formation marker, PINP, was increased by LP in a dose-dependent manner. The LP (containing myricetin and gallic acid) showed protection against chondrosenescence, chondrocyte death, hypoxia-induced cartilage catabolism and subchondral bone deterioration. The bone and cartilage protective effects were by suppressing proteases (collagen break-down), bone resorption and upregulating subchondral bone restoration. The cartilage ER alpha over-expression showed a strong positive correlation with MMP-13, COL10 alpha1, histological, micro-computed tomography evidence for cartilage degradation and chondrosenescence.
    Matched MeSH terms: Disease Models, Animal
  7. Kang WT, Vellasamy KM, Vadivelu J
    Sci Rep, 2016 09 16;6:33528.
    PMID: 27634329 DOI: 10.1038/srep33528
    Burkholderia pseudomallei, the etiological agent for melioidosis, is known to secrete a type III secretion system (TTSS) protein into the host's internal milieu. One of the TTSS effector protein, BipC, has been shown to play an important role in the B. pseudomallei pathogenesis. To identify the host response profile that was directly or indirectly regulated by this protein, genome-wide transcriptome approach was used to examine the gene expression profiles of infected mice. The transcriptome analysis of the liver and spleen revealed that a total of approximately 1,000 genes were transcriptionally affected by BipC. Genes involved in bacterial invasion, regulation of actin cytoskeleton, and MAPK signalling pathway were over-expressed and may be specifically regulated by BipC in vivo. These results suggest that BipC mainly targets pathways related to the cellular processes which could modulate the cellular trafficking processes. The host transcriptional response exhibited remarkable differences with and without the presence of the BipC protein. Overall, the detailed picture of this study provides new insights that BipC may have evolved to efficiently manipulate host-cell pathways which is crucial in the intracellular lifecycle of B. pseudomallei.
    Matched MeSH terms: Disease Models, Animal
  8. Ibrahim NF, Yanagisawa D, Durani LW, Hamezah HS, Damanhuri HA, Wan Ngah WZ, et al.
    J Alzheimers Dis, 2017;55(2):597-612.
    PMID: 27716672
    Alzheimer's disease (AD) is the most common cause of dementia. The cardinal neuropathological characteristic of AD is the accumulation of amyloid-β (Aβ) into extracellular plaques that ultimately disrupt neuronal function and lead to neurodegeneration. One possible therapeutic strategy therefore is to prevent Aβ aggregation. Previous studies have suggested that vitamin E analogs slow AD progression in humans. In the present study, we investigated the effects of the tocotrienol-rich fraction (TRF), a mixture of vitamin E analogs from palm oil, on amyloid pathology in vitro and in vivo. TRF treatment dose-dependently inhibited the formation of Aβ fibrils and Aβ oligomers in vitro. Moreover, daily TRF supplementation to AβPPswe/PS1dE9 double transgenic mice for 10 months attenuated Aβ immunoreactive depositions and thioflavin-S-positive fibrillar type plaques in the brain, and eventually improved cognitive function in the novel object recognition test compared with control AβPPswe/PS1dE9 mice. The present result indicates that TRF reduced amyloid pathology and improved cognitive functions, and suggests that TRF is a potential therapeutic agent for AD.
    Matched MeSH terms: Disease Models, Animal
  9. Chin KY, Gengatharan D, Mohd Nasru FS, Khairussam RA, Ern SL, Aminuddin SA, et al.
    Nutrients, 2016 Dec 14;8(12).
    PMID: 27983628
    Osteoporosis reduces the skeletal strength and increases the risk for fracture. It is an underdiagnosed disease in men. Annatto tocotrienol has been shown to improve bone structural indices and increase expression of bone formation genes in orchidectomized rats. This study aimed to evaluate the effects of annatto tocotrienol on biomechanical strength and calcium content of the bone in orchidectomized rats. Thirty three-month-old male Sprague-Dawley rats were randomly assigned to five groups. The baseline control (BC) group was sacrificed at the onset of the study. The sham-operated group (SHAM) received olive oil (the vehicle of tocotrienol) orally daily and peanut oil (the vehicle of testosterone) intramuscularly weekly. The remaining rats were orchidectomized and treated with three different regimens, i.e., (1) daily oral olive oil plus weekly intramuscular peanut oil injection; (2) daily oral annatto tocotrienol at 60 mg/kg plus weekly intramuscular peanut oil injection; (3) daily oral olive oil plus weekly intramuscular testosterone enanthate injection at 7 mg/kg. Blood, femur and tibia of the rats were harvested at the end of the two-month treatment period for the evaluation of serum total calcium and inorganic phosphate levels, bone biomechanical strength test and bone calcium content. Annatto-tocotrienol treatment improved serum calcium level and tibial calcium content (p < 0.05) but it did not affect femoral biomechanical strength (p > 0.05). In conclusion, annatto-tocotrienol at 60 mg/kg augments bone calcium level by preventing calcium mobilization into the circulation. A longer treatment period is needed for annatto tocotrienol to exert its effects on bone strength.
    Matched MeSH terms: Disease Models, Animal
  10. Mohamad Asri SF, Mohd Ramli ES, Soelaiman IN, Mat Noh MA, Abdul Rashid AH, Suhaimi F
    Molecules, 2016 Nov 15;21(11).
    PMID: 27854305
    Glucocorticoid-induced osteoporosis is one of the common causes of secondary osteoporosis. Piper sarmentosum (Ps) extract possesses antioxidant and anti-inflammatory activities. In this study, we determined the correlation between the effects of Ps leaf water extract with the regulation of 11β-hydroxysteroid dehydrogenase (HSD) type 1 enzyme activity in serum and bone of glucocorticoid-induced osteoporotic rats. Twenty-four Sprague-Dawley rats were grouped into following: G1: sham-operated group administered with intramuscular vehicle olive oil and vehicle normal saline orally; G2: adrenalectomized (adrx) control group given intramuscular dexamethasone (120 μg/kg/day) and vehicle normal saline orally; G3: adrx group given intramuscular dexamethasone (120 μg/kg/day) and water extract of Piper sarmentosum (125 mg/kg/day) orally. After two months, the femur and serum were taken for ELISA analysis. Results showed that Ps leaf water extract significantly reduced the femur corticosterone concentration (p < 0.05). This suggests that Ps leaf water extract was able to prevent bone loss due to long-term glucocorticoid therapy by acting locally on the bone cells by increasing the dehydrogenase action of 11β-HSD type 1. Thus, Ps may have the potential to be used as an alternative medicine against osteoporosis and osteoporotic fracture in patients on long-term glucocorticoid treatment.
    Matched MeSH terms: Disease Models, Animal
  11. De Blasio MJ, Ramalingam A, Cao AH, Prakoso D, Ye JM, Pickering R, et al.
    Eur J Pharmacol, 2017 Jul 15;807:12-20.
    PMID: 28438648 DOI: 10.1016/j.ejphar.2017.04.026
    Endoplasmic reticulum (ER) stress contributes to progression of diabetic nephropathy, which promotes end-stage renal failure in diabetic patients. This study was undertaken to investigate the actions of tempol and ramipril, pharmacological agents that target the consequences of NADPH oxidase, on diabetic nephropathy in a rat model of type 1 diabetes, with an emphasis on markers of ER stress. Male Sprague-Dawley rats were injected intravenously with a single bolus of streptozotocin (55mg/kg) to induce type 1 diabetes. An additional age-matched group of rats was administered with citrate vehicle as controls. After 4 weeks of untreated diabetes, rats received tempol (1.5mM/kg/day subcutaneously, n=8), ramipril (1mg/kg/day in drinking water, n=8) or remained untreated for an additional 4 weeks (n=7). After 8 weeks of diabetes in total, kidneys were collected for histological analysis, gene expression and protein abundance. Tempol and ramipril blunted diabetes-induced upregulation of NADPH oxidase isoforms (Nox4, Nox2, p47phox), accompanied by an amelioration of diabetes-induced glomerular injury (podocin, nephrin, Kim-1), tubulo-interstitial fibrosis (TGFβ1, TGFβ-R2, pSMAD3, α-SMA) and pro-inflammatory cytokines (TNFα, MCP-1, ANX-A1, FPR2) expression. In addition, the diabetes-induced renal ER stress, evidenced by increased expression of GRP-78 chaperone and stress-associated markers ATF4, TRB3, as well as XBP1s, phospho-p38 mitogen-activated protein kinase (MAPK) and 3-nitrotyrosination, were all attenuated by tempol and ramipril. These observations suggest that antioxidant approaches that blunt NADPH upregulation may attenuate diabetic nephropathy, at least in part by negatively regulating ER stress and inflammation, and hence ameliorating kidney damage.
    Matched MeSH terms: Disease Models, Animal
  12. Chiroma SM, Mohd Moklas MA, Mat Taib CN, Baharuldin MTH, Amon Z
    Biomed Pharmacother, 2018 Jul;103:1602-1608.
    PMID: 29864948 DOI: 10.1016/j.biopha.2018.04.152
    Cognitive impairments and cholinergic dysfunctions have been well reported in old age disorders including Alzheimer's disease (AD). d-galactose (D-gal) has been reported as a senescence agent while aluminium act as a neurotoxic metal, but little is known about their combined effects at different doses. The aim of this study was to establish an animal model with cognitive impairments by comparing the effects of different doses of co-administrated D-gal and aluminium chloride (AlCl3). In this study male albino wistar rats were administered with D-gal 60 mg/kg.bwt intra peritoneally (I.P) injected and AlCl3 (100, 200, or 300 mg/kg.bwt.) was orally administered once daily for 10 consecutive weeks. Performance of the rats were evaluated through behavioural assessments; Morris water maze (MWM) and open field tests (OFT); histopathological examination was performed on the hippocampus; moreover biochemical measurements of acetylcholinesterase (AChE) and hyperphosphorylated tau protein (p-tau) were examined. The results of this experiment on rats treated with D-gal 60 + AlCl3 200 mg/kg.bwt showed near ideal cognitive impairments. The rats exhibited an obvious memory and learning deficits, marked neuronal loss in hippocampus, showed increase in AChE activities and high expression of p-tau within the tissues of the brain. This study concludes that D-gal 60 + AlCl3 200 mg/kg.bwt as the ideal dose for mimicking AD like cognitive impairments in albino wistar rats. It is also crucial to understand the pathogenesis of this neurodegenerative disease and for drug discovery.
    Matched MeSH terms: Disease Models, Animal
  13. Zakaria ZA, Abdul Rahim MH, Roosli RAJ, Mohd Sani MH, Omar MH, Mohd Tohid SF, et al.
    Pain Res Manag, 2018;2018:9536406.
    PMID: 29686743 DOI: 10.1155/2018/9536406
    Methanolic extract of Clinacanthus nutans Lindau leaves (MECN) has been proven to possess antinociceptive activity that works via the opioid and NO-dependent/cGMP-independent pathways. In the present study, we aimed to further determine the possible mechanisms of antinociception of MECN using various nociceptive assays. The antinociceptive activity of MECN was (i) tested against capsaicin-, glutamate-, phorbol 12-myristate 13-acetate-, bradykinin-induced nociception model; (ii) prechallenged against selective antagonist of opioid receptor subtypes (β-funaltrexamine, naltrindole, and nor-binaltorphimine); (iii) prechallenged against antagonist of nonopioid systems, namely, α2-noradrenergic (yohimbine), β-adrenergic (pindolol), adenosinergic (caffeine), dopaminergic (haloperidol), and cholinergic (atropine) receptors; (iv) prechallenged with inhibitors of various potassium channels (glibenclamide, apamin, charybdotoxin, and tetraethylammonium chloride). The results demonstrated that the orally administered MECN (100, 250, and 500 mg/kg) significantly (p < 0.05) reversed the nociceptive effect of all models in a dose-dependent manner. Moreover, the antinociceptive activity of 500 mg/kg MECN was significantly (p < 0.05) inhibited by (i) antagonists of μ-, δ-, and κ-opioid receptors; (ii) antagonists of α2-noradrenergic, β-adrenergic, adenosinergic, dopaminergic, and cholinergic receptors; and (iii) blockers of different K+ channels (voltage-activated-, Ca2+-activated, and ATP-sensitive-K+ channels, resp.). In conclusion, MECN-induced antinociception involves modulation of protein kinase C-, bradykinin-, TRVP1 receptors-, and glutamatergic-signaling pathways; opioidergic, α2-noradrenergic, β-adrenergic, adenosinergic, dopaminergic, and cholinergic receptors; and nonopioidergic receptors as well as the opening of various K+ channels. The antinociceptive activity could be associated with the presence of several flavonoid-based bioactive compounds and their synergistic action with nonvolatile bioactive compounds.
    Matched MeSH terms: Disease Models, Animal
  14. Bala U, Leong MP, Lim CL, Shahar HK, Othman F, Lai MI, et al.
    PLoS One, 2018;13(5):e0197711.
    PMID: 29795634 DOI: 10.1371/journal.pone.0197711
    BACKGROUND: Down syndrome (DS) is a genetic disorder caused by presence of extra copy of human chromosome 21. It is characterised by several clinical phenotypes. Motor dysfunction due to hypotonia is commonly seen in individuals with DS and its etiology is yet unknown. Ts1Cje, which has a partial trisomy (Mmu16) homologous to Hsa21, is well reported to exhibit various typical neuropathological features seen in individuals with DS. This study investigated the role of skeletal muscles and peripheral nerve defects in contributing to muscle weakness in Ts1Cje mice.

    RESULTS: Assessment of the motor performance showed that, the forelimb grip strength was significantly (P<0.0001) greater in the WT mice compared to Ts1Cje mice regardless of gender. The average survival time of the WT mice during the hanging wire test was significantly (P<0.0001) greater compared to the Ts1Cje mice. Also, the WT mice performed significantly (P<0.05) better than the Ts1Cje mice in the latency to maintain a coordinated motor movement against the rotating rod. Adult Ts1Cje mice exhibited significantly (P<0.001) lower nerve conduction velocity compared with their aged matched WT mice. Further analysis showed a significantly (P<0.001) higher population of type I fibres in WT compared to Ts1Cje mice. Also, there was significantly (P<0.01) higher population of COX deficient fibres in Ts1Cje mice. Expression of Myf5 was significantly (P<0.05) reduced in triceps of Ts1Cje mice while MyoD expression was significantly (P<0.05) increased in quadriceps of Ts1Cje mice.

    CONCLUSION: Ts1Cje mice exhibited weaker muscle strength. The lower population of the type I fibres and higher population of COX deficient fibres in Ts1Cje mice may contribute to the muscle weakness seen in this mouse model for DS.

    Matched MeSH terms: Disease Models, Animal
  15. Ujah GA, Nna VU, Agah MI, Omue LO, Leku CB, Osim EE
    Andrologia, 2018 Mar;50(2).
    PMID: 28703286 DOI: 10.1111/and.12866
    Cadmium chloride (CdCl2 ) has been reported to cause reproductive toxicity in male rats, mainly through oxidative stress. This study examined its effect on sexual behaviour, as one of the mechanisms of reproductive dysfunction, as well as the possible ameliorative effect of quercetin (QE) on same. Thirty male Wistar rats (10 weeks old), weighing 270-300 g, were used for this study. They were either orally administered 2% DMSO, CdCl2 (5 mg/kg b.w.), QE (20 mg/kg b.w.) or CdCl2 +QE, once daily for 4 weeks, before sexual behavioural studies. The 5th group received CdCl2 for 4 weeks and allowed 4-week recovery period, before sexual behavioural test. Rats were sacrificed after sexual behavioural studies. The blood, testis and penis were collected for biochemical assays. Cadmium increased mount, intromission and ejaculatory latencies, but reduced their frequencies, compared to control. Serum nitric oxide increased, while penile cyclic guanosine monophosphate reduced in the CdCl2 -exposed rats, compared to control. CdCl2 increased testicular cholesterol, but reduced 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-HSD activities, and testosterone concentration. QE better attenuated these negative changes compared to withdrawal of CdCl2 treatment. In conclusion, CdCl2 suppressed steroidogenesis, penile erection and sexual behaviour, with poor reversal following withdrawal, while QE attenuated these effects.
    Matched MeSH terms: Disease Models, Animal
  16. Al Zarzour RH, Ahmad M, Asmawi MZ, Kaur G, Saeed MAA, Al-Mansoub MA, et al.
    Nutrients, 2017 Jul 18;9(7).
    PMID: 28718838 DOI: 10.3390/nu9070766
    Non-alcoholic fatty liver disease (NAFLD) is one of the major global health issues, strongly correlated with insulin resistance, obesity and oxidative stress. The current study aimed to evaluate anti-NAFLD effects of three different extracts of Phyllanthus niruri (P. niruri). NAFLD was induced in male Sprague-Dawley rats using a special high-fat diet (HFD). A 50% methanolic extract (50% ME) exhibited the highest inhibitory effect against NAFLD progression. It significantly reduced hepatomegaly (16%) and visceral fat weight (22%), decreased NAFLD score, prevented fibrosis, and reduced serum total cholesterol (TC) (48%), low-density lipoprotein (LDL) (65%), free fatty acids (FFAs) (25%), alanine aminotransferase (ALT) (45%), alkaline phosphatase (ALP) (38%), insulin concentration (67%), homeostatic model assessment of insulin resistance (HOMA-IR) (73%), serum atherogenic ratios TC/high-density lipoprotein (HDL) (29%), LDL/HDL (66%) and (TC-HDL)/HDL (64%), hepatic content of cholesterol (43%), triglyceride (29%) and malondialdehyde (MDA) (40%) compared to a non-treated HFD group. In vitro, 50% ME of P. niruri inhibited α-glucosidase, pancreatic lipase enzymes and cholesterol micellization. It also had higher total phenolic and total flavonoid contents compared to other extracts. Ellagic acid and phyllanthin were identified as major compounds. These results suggest that P. niruri could be further developed as a novel natural hepatoprotective agent against NAFLD and atherosclerosis.
    Matched MeSH terms: Disease Models, Animal
  17. Che Ahmad Tantowi NA, Hussin P, Lau SF, Mohamed S
    Menopause, 2017 Sep;24(9):1071-1080.
    PMID: 28640163 DOI: 10.1097/GME.0000000000000882
    OBJECTIVE: Ficus deltoidea Jack (mistletoe fig) is an ornamental plant found in various parts of the world and used as traditional herbal medicine in some countries. This study investigated the potential use of F deltoidea leaf extract to mitigate osteoarthritis (OA) in ovariectomized (estrogen-deficient postmenopausal model) rats and the mechanisms involved. Diclofenac was used for comparison.

    METHODS: Sprague-Dawley female rats (12 weeks old) were divided randomly into five groups (n = 6): healthy; nontreated OA; OA + diclofenac (5 mg/kg); OA + extract (200 mg/kg); and OA + extract (400 mg/kg). Two weeks after bilaterally ovariectomy, OA was induced by intra-articular injection of monosodium iodoacetate into the right knee joints. After 28 days of treatment, the rats were evaluated for knee OA via physical (radiological and histological observations), biochemical, enzyme-linked immunosorbent assay, and gene expression analysis, for inflammation and cartilage degradation biomarkers.

    RESULTS: The osteoarthritic rats treated with the extract, and diclofenac showed significant reduction of cartilage erosion (via radiological, macroscopic, and histological images) compared with untreated osteoarthritic rats. The elevated serum interleukin-1β, prostaglandin E2, and C-telopeptide type II collagen levels in osteoarthritic rats were significantly reduced by F deltoidea leaf extract comparable to diclofenac. The extract significantly down-regulated the interleukin-1β, prostaglandin E2 receptor, and matrix metalloproteinase-1 mRNA expressions in the osteoarthritic cartilages, similar to diclofenac.

    CONCLUSIONS: F deltoidea leaf extract mitigated postmenopausal osteoarthritic joint destruction by inhibiting inflammation and cartilage degradation enzymes, at an effective extract dose equivalent to about 60 mg/kg for humans. The main bioactive compounds are probably the antioxidative flavonoids vitexin and isovitexin.

    Matched MeSH terms: Disease Models, Animal
  18. Cartland SP, Harith HH, Genner SW, Dang L, Cogger VC, Vellozzi M, et al.
    Sci Rep, 2017 05 15;7(1):1898.
    PMID: 28507343 DOI: 10.1038/s41598-017-01721-4
    Non-alcoholic fatty liver disease (NAFLD) incorporates steatosis, non-alcoholic steato-hepatitis (NASH) and liver cirrhosis, associating with diabetes and cardiovascular disease (CVD). TNF-related apoptosis-inducing ligand (TRAIL) is protective of CVD. We aimed to determine whether TRAIL protects against insulin resistance, NAFLD and vascular injury. Twelve-week high fat diet (HFD)-fed Trail -/- mice had increased plasma cholesterol, insulin and glucose compared to wildtype. Insulin tolerance was impaired with TRAIL-deletion, with reduced p-Akt, GLUT4 expression and glucose uptake in skeletal muscle. Hepatic triglyceride content, inflammation and fibrosis were increased with TRAIL-deletion, with elevated expression of genes regulating lipogenesis and gluconeogenesis. Moreover, Trail -/- mice exhibited reduced aortic vasorelaxation, impaired insulin signaling, and >20-fold increased mRNA expression for IL-1β, IL-6, and TNF-α. In vitro, palmitate treatment of hepatocytes increased lipid accumulation, inflammation and fibrosis, with TRAIL mRNA significantly reduced. TRAIL administration inhibited palmitate-induced hepatocyte lipid uptake. Finally, patients with NASH had significantly reduced plasma TRAIL compared to control, simple steatosis or obese individuals. These findings suggest that TRAIL protects against insulin resistance, NAFLD and vascular inflammation. Increasing TRAIL levels may be an attractive therapeutic strategy, to reduce features of diabetes, as well as liver and vascular injury, so commonly observed in individuals with NAFLD.
    Matched MeSH terms: Disease Models, Animal
  19. Durani LW, Hamezah HS, Ibrahim NF, Yanagisawa D, Nasaruddin ML, Mori M, et al.
    J Alzheimers Dis, 2018;64(1):249-267.
    PMID: 29889072 DOI: 10.3233/JAD-170880
    We have recently shown that the tocotrienol-rich fraction (TRF) of palm oil, a mixture of vitamin E analogs, improves amyloid pathology in vitro and in vivo. However, precise mechanisms remain unknown. In this study, we examined the effects of long-term (10 months) TRF treatment on behavioral impairments and brain metabolites in (15 months old) AβPP/PS1 double transgenic (Tg) Alzheimer's disease (AD) mice. The open field test, Morris water maze, and novel object recognition tasks revealed improved exploratory activity, spatial learning, and recognition memory, respectively, in TRF-treated Tg mice. Brain metabolite profiling of wild-type and Tg mice treated with and without TRF was performed using ultrahigh performance liquid chromatography (UHPLC) coupled to high-resolution accurate mass (HRAM)-orbitrap tandem mass spectrometry (MS/MS). Metabolic pathway analysis found perturbed metabolic pathways that linked to AD. TRF treatment partly ameliorated metabolic perturbations in Tg mouse hippocampus. The mechanism of this pre-emptive activity may occur via modulation of metabolic pathways dependent on Aβ interaction or independent of Aβ interaction.
    Matched MeSH terms: Disease Models, Animal
  20. Khoo LW, Audrey Kow SF, Maulidiani M, Lee MT, Tan CP, Shaari K, et al.
    J Pharm Biomed Anal, 2018 Sep 05;158:438-450.
    PMID: 29957507 DOI: 10.1016/j.jpba.2018.06.038
    The present study sought to identify the key biomarkers and pathways involved in the induction of allergic sensitization to ovalbumin and to elucidate the potential anti-anaphylaxis property of Clinacanthus nutans (Burm. f.) Lindau water leaf extract, a Southeast Asia herb in an in vivo ovalbumin-induced active systemic anaphylaxis model evaluated by 1H-NMR metabolomics. The results revealed that carbohydrate metabolism (glucose, myo-inositol, galactarate) and lipid metabolism (glycerol, choline, sn-glycero-3-phosphocholine) are the key requisites for the induction of anaphylaxis reaction. Sensitized rats treated with 2000 mg/kg bw C. nutans extract before ovalbumin challenge showed a positive correlation with the normal group and was negatively related to the induced group. Further 1H-NMR analysis in complement with Kyoto Encyclopedia of Genes and Genomes (KEGG) reveals the protective effect of C. nutans extract against ovalbumin-induced anaphylaxis through the down-regulation of lipid metabolism (choline, sn-glycero-3-phosphocholine), carbohydrate and signal transduction system (glucose, myo-inositol, galactarate) and up-regulation of citrate cycle intermediates (citrate, 2-oxoglutarate, succinate), propanoate metabolism (1,2-propanediol), amino acid metabolism (betaine, N,N-dimethylglycine, methylguanidine, valine) and nucleotide metabolism (malonate, allantoin). In summary, this study reports for the first time, C. nutans water extract is a potential anti-anaphylactic agent and 1H-NMR metabolomics is a great alternative analytical tool to explicate the mechanism of action of anaphylaxis.
    Matched MeSH terms: Disease Models, Animal
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links