Displaying publications 61 - 80 of 153 in total

Abstract:
Sort:
  1. Al-Qazzaz NK, Hamid Bin Mohd Ali S, Ahmad SA, Islam MS, Escudero J
    Sensors (Basel), 2017 Jun 08;17(6).
    PMID: 28594352 DOI: 10.3390/s17061326
    Characterizing dementia is a global challenge in supporting personalized health care. The electroencephalogram (EEG) is a promising tool to support the diagnosis and evaluation of abnormalities in the human brain. The EEG sensors record the brain activity directly with excellent time resolution. In this study, EEG sensor with 19 electrodes were used to test the background activities of the brains of five vascular dementia (VaD), 15 stroke-related patients with mild cognitive impairment (MCI), and 15 healthy subjects during a working memory (WM) task. The objective of this study is twofold. First, it aims to enhance the recorded EEG signals using a novel technique that combines automatic independent component analysis (AICA) and wavelet transform (WT), that is, the AICA-WT technique; second, it aims to extract and investigate the spectral features that characterize the post-stroke dementia patients compared to the control subjects. The proposed AICA-WT technique is a four-stage approach. In the first stage, the independent components (ICs) were estimated. In the second stage, three-step artifact identification metrics were applied to detect the artifactual components. The components identified as artifacts were marked as critical and denoised through DWT in the third stage. In the fourth stage, the corrected ICs were reconstructed to obtain artifact-free EEG signals. The performance of the proposed AICA-WT technique was compared with those of two other techniques based on AICA and WT denoising methods using cross-correlation X C o r r and peak signal to noise ratio ( P S N R ) (ANOVA, p ˂ 0.05). The AICA-WT technique exhibited the best artifact removal performance. The assumption that there would be a deceleration of EEG dominant frequencies in VaD and MCI patients compared with control subjects was assessed with AICA-WT (ANOVA, p ˂ 0.05). Therefore, this study may provide information on post-stroke dementia particularly VaD and stroke-related MCI patients through spectral analysis of EEG background activities that can help to provide useful diagnostic indexes by using EEG signal processing.
  2. Ali S, Garforth A, Fakhru'l-Razi A
    PMID: 16760091
    Feedstock recycling of high-density polyethylene (HDPE) over fluid catalytic cracking (FCC) catalysts (1:6 ratio) was carried out using a laboratory fluidized bed reactor operating at 450 degrees C. Fresh and steam deactivated commercial FCC catalysts with different levels of rare earth oxide (REO) were compared as well as used FCC catalysts (E-Cats) with different levels of metal poisoning. Fresh FCC catalysts gave the highest results of HDPE degradation in terms of yield of volatile hydrocarbon product. Meanwhile, steamed FCC catalysts and used FCC catalysts showed similar but lower yields. Overall, the product yields from HDPE cracking showed that the level of metal contamination (nickel and vanadium) did not affect the product stream generated from polymer cracking. This study gives promising results as an alternative technique for the cracking and recycling of polymer waste.
  3. Global Burden of Disease 2019 Cancer Collaboration, Kocarnik JM, Compton K, Dean FE, Fu W, Gaw BL, et al.
    JAMA Oncol, 2022 Mar 01;8(3):420-444.
    PMID: 34967848 DOI: 10.1001/jamaoncol.2021.6987
    IMPORTANCE: The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden.

    OBJECTIVE: To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019.

    EVIDENCE REVIEW: The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95% uncertainty intervals (UIs).

    FINDINGS: In 2019, there were an estimated 23.6 million (95% UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95% UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3% (95% UI, 20.3%-32.3%) increase in new cases, a 20.9% (95% UI, 14.2%-27.6%) increase in deaths, and a 16.0% (95% UI, 9.3%-22.8%) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4% (1.1%-1.8%) in the low SDI quintile to 5.7% (4.2%-7.1%) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and DALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles.

    CONCLUSIONS AND RELEVANCE: The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.

  4. Nadzirin IB, Fortuny-Gomez A, Ngum N, Richards D, Ali S, Searcey M, et al.
    Br J Pharmacol, 2021 Dec;178(24):4859-4872.
    PMID: 34398973 DOI: 10.1111/bph.15663
    BACKGROUND AND PURPOSE: P2X4 is a ligand-gated cation channel activated by extracellular ATP involved in neuropathic pain, inflammation and arterial tone.

    EXPERIMENTAL APPROACH: Natural products were screened against human or mouse P2X4 activity using fura-2 loaded 1321N1 cells for measurement of intracellular Ca2+ responses. Whole-cell currents were measured by patch clamp. Human primary macrophage chemokine release was used to assess effect of taspine on inflammatory cell function. An enzymatic assay was performed to assess the effect of taspine on recombinant PI3-kinase.

    KEY RESULTS: A natural product screen identified taspine as an inhibitor of human P2X4 activity. Taspine inhibits human and mouse P2X4-mediated Ca2+ influx in 1321N1 cells expressing receptors but lacked activity at human P2X2, P2X3, P2X2/3 and P2X7 receptors. Taspine inhibited the maximal response at human and mouse P2X4 but effective on ATP potency. Taspine has a slow onset rate (~15 min for half-maximal inhibition), irreversible over 30 min of washout. Taspine inhibits P2X4-mediated Ca2+ signalling in mouse BV-2 microglia cells and human primary macrophage. Taspine inhibited P2X4-mediated CXCL5 secretion in human primary macrophage. Taspine reversed ivermectin-induced potentiation of P2X4 currents in 1321N1 stably expressing cells. The PI3-kinase inhibitor LY294002 mimicked the properties of taspine on P2X4-mediated Ca2+ influx and whole-cell currents. Taspine directly inhibited the enzymatic activity of recombinant PI3-kinase in a competitive manner.

    CONCLUSION AND IMPLICATIONS: Taspine is a novel natural product P2X4 receptor inhibitor, mediating its effect through PI3-kinase inhibition rather than receptor antagonism. Taspine can inhibit the pro-inflammatory signalling by P2X4 in human primary macrophage.

  5. Pascale JV, Wolf A, Kadish Y, Diegisser D, Kulaprathazhe MM, Yemane D, et al.
    Adv Pharmacol, 2023;97:229-255.
    PMID: 37236760 DOI: 10.1016/bs.apha.2023.01.002
    Vascular function is dynamically regulated and dependent on a bevy of cell types and factors that work in concert across the vasculature. The vasoactive eicosanoid, 20-Hydroxyeicosatetraenoic acid (20-HETE) is a key player in this system influencing the sensitivity of the vasculature to constrictor stimuli, regulating endothelial function, and influencing the renin angiotensin system (RAS), as well as being a driver of vascular remodeling independent of blood pressure elevations. Several of these bioactions are accomplished through the ligand-receptor pairing between 20-HETE and its high-affinity receptor, GPR75. This 20-HETE axis is at the root of various vascular pathologies and processes including ischemia induced angiogenesis, arteriogenesis, septic shock, hypertension, atherosclerosis, myocardial infarction and cardiometabolic diseases including diabetes and insulin resistance. Pharmacologically, several preclinical tools have been developed to disrupt the 20-HETE axis including 20-HETE synthesis inhibitors (DDMS and HET0016), synthetic 20-HETE agonist analogues (20-5,14-HEDE and 20-5,14-HEDGE) and 20-HETE receptor blockers (AAA and 20-SOLA). Systemic or cell-specific therapeutic targeting of the 20-HETE-GPR75 axis continues to be an invaluable approach as studies examine the molecular underpinnings activated by 20-HETE under various physiological settings. In particular, the development and characterization of 20-HETE receptor blockers look to be a promising new class of compounds that can provide a considerable benefit to patients suffering from these cardiovascular pathologies.
  6. Ali MA, Bastian S, Ismail R, Choon TS, Ali S, Aubry A, et al.
    J Enzyme Inhib Med Chem, 2011 Dec;26(6):890-4.
    PMID: 21395486 DOI: 10.3109/14756366.2011.559945
    A series of pyrazoline derivatives were synthesized and in vitro activity against Mycobacterium tuberculosis H37Rv was carried out. Among the synthesized compounds, compounds (4d) and (4f) 4-aminophenyl-3-(3,4-dimethoxyphenyl)-6,7-dimethoxy-2,3,3a,4-tetrahydroindeno[1,2-c]pyrazol-2-ylmethanone and 4-aminophenyl-6,7-dimethoxy-3-phenyl-2,3,3a,4-tetrahydroindeno[1,2-c]pyrazol-2-ylmethanone were found to be the most active agent against M. tuberculosis H37Rv with a minimum inhibitory concentration of 10 μg/mL.
  7. Alu'datt MH, Rababah T, Al-Ali S, Tranchant CC, Gammoh S, Alrosan M, et al.
    J Food Sci, 2024 Apr;89(4):1835-1864.
    PMID: 38407443 DOI: 10.1111/1750-3841.16970
    Despite long-standing uses in several food and medicine traditions, the full potential of the leguminous crop fenugreek (Trigonella foenum-graecum L.) remains to be realized in the modern diet. Not only its seeds, which are highly prized for their culinary and medicinal properties, but also its leaves and stems abound in phytochemicals with high nutritional and health promoting attributes. Fenugreek dual food-medicine applications and reported metabolic activities include hypoglycemic, antihyperlipidemic, antioxidative, anti-inflammatory, antiatherogenic, antihypertensive, anticarcinogenic, immunomodulatory, and antinociceptive effects, with potential organ-protective effects at the cardiovascular, digestive, hepatic, endocrine, and central nervous system levels. Effectiveness in alleviating certain inflammatory skin conditions and dysfunctions of the reproductive system was also suggested. As a food ingredient, fenugreek can enhance the sensory, nutritional, and nutraceutical qualities of a wide variety of foods. Its high nutritive density can assist with the design of dietary items that meet the demand for novelty, variety, and healthier foods. Its seeds provide essential protective nutrients and other bioactive compounds, notably galactomannans, flavonoids, coumarins, saponins, alkaloids, and essential oils, whose health benefits, alone or in conjunction with other bioactives, are only beginning to be tapped into in the food industries. This review summarizes the current state of evidence on fenugreek potential for functional food development, focusing on the nutrients and non-nutrient bioactive components of interest from a dietary perspective, and their applications for enhancing the functional and nutraceutical value of foods and beverages. New developments, safety, clinical evidence, presumed mechanisms of action, and future perspectives are discussed. HIGHLIGHTS: Fenugreek seeds and leaves have long-standing uses in the food-medicine continuum. Fenugreek phytochemicals exert broad-spectrum biological and pharmacological activities. They show high preventive and nutraceutical potential against common chronic diseases. Current evidence supports multiple mechanisms of action mediated by distinct bioactives. Opportunities for fenugreek-based functional foods and nutraceuticals are expanding.
  8. Ali S, Abu Osman NA, Naqshbandi MM, Eshraghi A, Kamyab M, Gholizadeh H
    Arch Phys Med Rehabil, 2012 Nov;93(11):1919-23.
    PMID: 22579945 DOI: 10.1016/j.apmr.2012.04.024
    To investigate the effects of 3 dissimilar suspension systems on participants' satisfaction and perceived problems with their prostheses.
  9. Lutfi SNN, Abd Razak NA, Ali S, Gholizadeh H
    Biomed Tech (Berl), 2021 Jun 25;66(3):317-322.
    PMID: 34062632 DOI: 10.1515/bmt-2019-0110
    Materials with low-strength and low-impedance properties, such as elastomers and polymeric foams are major contributors to prosthetic liner design. Polyethylene-Light (Pelite™) is a foam liner that is the most frequently used in prosthetics but it does not cater to all amputees' limb and skin conditions. The study aims to investigate the newly modified Foam Liner, a combination of two different types of foams (EVA + PU + EVA) as the newly modified Foam Liner in terms of compressive and tensile properties in comparison to Pelite™, polyurethane (PU) foam, and ethylene-vinyl acetate (EVA) foam. Universal testing machine (AGS-X, Shimadzu, Kyoto, Japan) has been used to measure the tensile and compressive stress. Pelite™ had the highest compressive stress at 566.63 kPa and tensile stress at 1145 kPa. Foam Liner fell between EVA and Pelite™ with 551.83 kPa at compression and 715.40 kPa at tension. PU foam had the lowest compressive stress at 2.80 kPa and tensile stress at 33.93 kPa. Foam Liner has intermediate compressive elasticity but has high tensile elasticity compared to EVA and Pelite™. Pelite™ remains the highest in compressive and tensile stiffness. Although it is good for amputees with bony prominence, constant pressure might result in skin breakdown or ulcer. Foam Liner would be the best for amputees with soft tissues on the residual limbs to accommodate movement.
  10. Xu Y, Zhang H, Lit LC, Grothey A, Athanasiadou M, Kiritsi M, et al.
    Sci Signal, 2014 Jun 17;7(330):ra58.
    PMID: 24939894 DOI: 10.1126/scisignal.2005170
    Lemur tyrosine kinase 3 (LMTK3) is associated with cell proliferation and endocrine resistance in breast cancer. We found that, in cultured breast cancer cell lines, LMTK3 promotes the development of a metastatic phenotype by inducing the expression of genes encoding integrin subunits. Invasive behavior in various breast cancer cell lines positively correlated with the abundance of LMTK3. Overexpression of LMTK3 in a breast cancer cell line with low endogenous LMTK3 abundance promoted actin cytoskeleton remodeling, focal adhesion formation, and adhesion to collagen and fibronectin in culture. Using SILAC (stable isotope labeling by amino acids in cell culture) proteomic analysis, we found that LMTK3 increased the abundance of integrin subunits α5 and β1, encoded by ITGA5 and ITGB1. This effect depended on the CDC42 Rho family guanosine triphosphatase, which was in turn activated by the interaction between LMTK3 and growth factor receptor-bound protein 2 (GRB2), an adaptor protein that mediates receptor tyrosine kinase-induced activation of RAS and downstream signaling. Knockdown of GRB2 suppressed LMTK3-induced CDC42 activation, blocked ITGA5 and ITGB1 expression promoted by the transcription factor serum response factor (SRF), and reduced invasive activity. Furthermore, abundance of LMTK3 positively correlated with that of the integrin β1 subunit in breast cancer patient's tumors. Our findings suggest a role for LMTK3 in promoting integrin activity during breast cancer progression and metastasis.
  11. Rahman SFA, Arshad MKM, Gopinath SCB, Fathil MFM, Sarry F, Ibau C, et al.
    Mikrochim Acta, 2024 Jan 31;191(2):118.
    PMID: 38296851 DOI: 10.1007/s00604-024-06189-4
    Highly specific detection of tumor-associated biomarkers remains a challenge in the diagnosis of prostate cancer. In this research, Maackia amurensis (MAA) was used as a recognition element in the functionalization of an electrochemical impedance-spectroscopy biosensor without a label to identify cancer-associated aberrant glycosylation prostate-specific antigen (PSA). The lectin was immobilized on gold-interdigitated microelectrodes. Furthermore, the biosensor's impedance response was used to assess the establishment of a complex binding between MAA and PSA-containing glycans. With a small sample volume, the functionalized interdigitated impedimetric-based (IIB) biosensor exhibited high sensitivity, rapid response, and repeatability. PSA glycoprotein detection was performed by measuring electron transfer resistance values within a concentration range 0.01-100 ng/mL, with a detection limit of 3.574 pg/mL. In this study, the ability of MAA to preferentially recognize α2,3-linked sialic acid in serum PSA was proven, suggesting a potential platform for the development of lectin-based, miniaturized, and cost effective IIB biosensors for future disease detection.
  12. Alam MK, Awawdeh M, Aljhani AS, Alotaib GS, Abutayyem H, Alswairki HJ, et al.
    Children (Basel), 2023 May 15;10(5).
    PMID: 37238433 DOI: 10.3390/children10050885
    BACKGROUND AND OBJECTIVES: Investigation into the impact of dental trauma on the results of orthodontic treatment is crucial because it can have a major influence on patient care. However, there has not yet been a thorough review or meta-analysis of the available data, which is inconsistent and scant. Therefore, the goal of this systematic review and meta-analysis is to investigate the impact of dental trauma on orthodontic parameters. Search methods and criterion of selection: Major online databases were searched (beginning from the year 2011) for relevant articles using a properly defined search strategy. Analysis protocol: Risk of bias (RoB) and the Cochrane risk of bias tool were utilized for the purposes of bias evaluation within the individual studies and within the review, respectively.

    RESULTS: Out of the six clinical trials selected, a significant impact of trauma was observed in individuals in all but one paper. Gender predilection varied across studies and could not be conclusively determined. The follow-up period ranged from two months to two years in the trials. The odds ratio (OR) 0.38 [0.19, 0.77] and the risk ratio (RR) 0.52 [0.32, 0.85] indicated that both the odds as well as the relative risk of experiencing dental trauma were lower in the group with negligible impact compared to the group with noticeable impact. Conclusion and further implications: The findings show that dental trauma significantly affects orthodontic parameters, with lower risk and likelihood of suffering dental trauma in the group with negligible impact than in the group with noticeable impact. However, given the substantial heterogeneity among the studies, it is advised to exercise caution when extrapolating the findings to all populations. Registration and protocol: Registration in the PROSPERO database was carried out before initiating the investigation [CRD42023407218].

  13. Ali S, Tahir M, Mehboob N, Wahab F, J Langford S, Mohd Said S, et al.
    Materials (Basel), 2020 Feb 21;13(4).
    PMID: 32098037 DOI: 10.3390/ma13040960
    This work reports synthesis, thin film characterizations, and study of an organic semiconductor 2-aminoanthraquinone (AAq) for humidity and temperature sensing applications. The morphological and phase studies of AAq thin films are carried out by scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray diffraction (XRD) analysis. To study the sensing properties of AAq, a surface type Au/AAq/Au sensor is fabricated by thermally depositing a 60 nm layer of AAq at a pressure of ~10-5 mbar on a pre-patterned gold (Au) electrodes with inter-electrode gap of 45 µm. To measure sensing capability of the Au/AAq/Au device, the variations in its capacitance and resistance are studied as a function of humidity and temperature. The Au/AAq/Au device measures and exhibits a linear change in capacitance and resistance when relative humidity (%RH) and temperature are varied. The AAq is a hydrophobic material which makes it one of the best candidates to be used as an active material in humidity sensors; on the other hand, its high melting point (575 K) is another appealing property that enables it for its potential applications in temperature sensors.
  14. Jawad AS, Hamid WZWA
    Saudi Med J, 2018 08;39(8):846-847.
    PMID: 30106426 DOI: 10.15537/smj.2018.8.23368
    [No abstract available].
  15. Ramli RA, Hassan WMNW, Ali S, Othman AK, Zaini RHM, Hassan MH
    Asian J Anesthesiol, 2021 Dec 01;59(4):161-168.
    PMID: 34979631 DOI: 10.6859/aja.202112_59(4).0004
    BACKGROUND: Preemptive analgesia is important for reducing postoperative analgesia requirement. Therefore, this study compared the efficacy of intravenous (IV) ketamine alone with the efficacy of a combination of low-dose IV ketamine and IV parecoxib as part of a multimodal preemptive analgesia regimen in patients undergoing elective laparotomy.

    METHODS: In this prospective study, 48 patients scheduled for elective laparotomy were randomized to two groups of preemptive analgesia, namely, group K-P, in which anestheologists administered a combination of 0.3 mg/kg IV ketamine and 40.0 mg IV parecoxib, or group K, in which ones gave 0.3 mg/kg IV ketamine alone. Patients from both groups underwent surgery under general anesthesia, and total intraoperative opioid requirement was recorded. After surgery, morphine administered by automated patient-controlled analgesia (PCA) infusion device was initiated in all patients. Pain score was assessed using the visual analogue scale (VAS), and postoperative opioid requirement was recorded at 1 and 4 hours, and subsequently from 4-hour intervals up to 24 hours after surgery.

    RESULTS: Compared to group K, group K-P required significantly lower rescue IV fentanyl in the recovery bay (0.10 ± 0.28 vs. 0.35 ± 0.46 μg/kg; P = 0.031), showing prolonged time-to-first analgesic request recorded by PCA device (70.8 ± 40.0 vs. 22.2 ± 15.8 mins; P < 0.001), lower total morphine requirement delivered by PCA device (8.0 ± 4.6 vs. 16.8 ± 6.5 mg; P < 0.001), and lower VAS values measured at all time points. There was no significant difference in intraoperative total opioid requirement between the groups.

    CONCLUSIONS: Among laparotomy patients, multimodal preemptive analgesia by the use of a combination of low-dose IV ketamine and IV parecoxib was more effective than IV ketamine alone in reducing pain scores and postoperative analgesia requirement (e.g., PCA-administered morphine).

  16. Eu CS, Kumar SV, Ali S, Hassan SK
    Saudi J Anaesth, 2017 2 22;11(1):86-88.
    PMID: 28217061 DOI: 10.4103/1658-354X.197333
    The usage of epidural infusion for intraoperative and postoperative pain relief is widely used in certain pediatric anesthetic practice because of the effectiveness and advantages. However, there is drawback for these techniques due to its potential complications such as inadvertent intrathecal placement, local anesthetic toxicity, catheter migration, infection, and breakage of epidural catheter. Though occur infrequently, epidural catheters have been known to snap during insertion or removal. The retained catheter tip may lead to multiple complications, including nerve injury, infection, and even catheter migration. Although there are literatures recommend options for management of removal of retained catheter, there are limited reports of these occurrences, especially among children. We report a case of sequestrated sheared epidural catheter segment in a child, aiming to share this experience for the future management of patients under similar condition.
  17. Amin AM, Sheau Chin L, Teh CH, Mostafa H, Mohamed Noor DA, Abdul Kader MASK, et al.
    Eur J Pharm Sci, 2018 May 30;117:351-361.
    PMID: 29526765 DOI: 10.1016/j.ejps.2018.03.011
    Dual antiplatelet therapy (DAPT) of clopidogrel and aspirin is crucial for coronary artery disease (CAD) patients undergoing percutaneous coronary intervention (PCI). However, some patients may endure clopidogrel high on treatment platelets reactivity (HTPR) which may cause thromboembolic events. Clopidogrel HTPR is multifactorial with some genetic and non-genetic factors contributing to it. We aimed to use nuclear magnetic resonance (1H NMR) pharmacometabolomics analysis of plasma to investigate this multifactorial and identify metabolic phenotypes and pathways associated with clopidogrel HTPR. Blood samples were collected from 71 CAD patients planned for interventional angiographic procedure (IAP) before the administration of clopidogrel 600 mg loading dose (LD) and 6 h after the LD. Platelets function testing was done 6 h post-LD using VerifyNow® P2Y12 assay. Pre-dose and post-dose plasma samples were analysed using 1H NMR. Multivariate statistical analysis was used to indicate the discriminating metabolites. Two metabotypes, each with 34 metabolites (pre-dose and post-dose) were associated with clopidogrel HTPR. Pathway analysis of these metabotypes revealed that aminoacyl-tRNA biosynthesis, nitrogen metabolism and glycine-serine-threonine metabolism are the most perturbed metabolic pathways associated with clopidogrel HTPR. Furthermore, the identified biomarkers indicated that clopidogrel HTPR is multifactorial where the metabolic phenotypes of insulin resistance, type two diabetes mellitus, obesity, gut-microbiota and heart failure are associated with it. Pharmacometabolomics analysis of plasma revealed new insights on the implicated metabolic pathways and the predisposing factors of clopidogrel HTPR.
  18. Al-Qubaisi MS, Al-Abboodi AS, Alhassan FH, Hussein-Al-Ali S, Flaifel MH, Eid EEM, et al.
    Saudi Pharm J, 2022 Apr;30(4):347-358.
    PMID: 35527823 DOI: 10.1016/j.jsps.2022.02.002
    In this study, we formulated Thymoquinone-loaded nanocomposites (TQ-NCs) using high-pressure homogenizer without sodium tripolyphosphate. The TQ-NCs were characterized and their anti-inflammatory determined by the response of the LPS-stimulated macrophage RAW 264.7 cells in the production of nitric oxide, prostaglandin E2, tumor necrosis factor-α, interleukin-6, and interleukin-1β. The physicochemical properties of TQ-NC were determined using different machines. TQ was fully incorporated in the highly thermal stable nanoparticles. The nanoparticles showed rapid release of TQ in the acidic medium of the gastric juice. In medium of pH 6.8, TQ-NC exhibited sustained release of TQ over a period of 100 h. The results suggest that TQ-NC nanoparticles have potential application as parenterally administered therapeutic compound. TQ-NC effectively reduce production of inflammatory cytokines by the LPS-stimulated RAW 264.7 cells, indicating that they have anti-inflammatory properties. In conclusion, TQ-NC nanoparticles have the characteristics of efficient carrier for TQ and an effective anti-inflammatory therapeutic compound.
  19. Song P, Adeloye D, Acharya Y, Bojude DA, Ali S, Alibudbud R, et al.
    J Glob Health, 2024 Feb 16;14:04054.
    PMID: 38386716 DOI: 10.7189/jogh.14.04054
    BACKGROUND: In this priority-setting exercise, we sought to identify leading research priorities needed for strengthening future pandemic preparedness and response across countries.

    METHODS: The International Society of Global Health (ISoGH) used the Child Health and Nutrition Research Initiative (CHNRI) method to identify research priorities for future pandemic preparedness. Eighty experts in global health, translational and clinical research identified 163 research ideas, of which 42 experts then scored based on five pre-defined criteria. We calculated intermediate criterion-specific scores and overall research priority scores from the mean of individual scores for each research idea. We used a bootstrap (n = 1000) to compute the 95% confidence intervals.

    RESULTS: Key priorities included strengthening health systems, rapid vaccine and treatment production, improving international cooperation, and enhancing surveillance efficiency. Other priorities included learning from the coronavirus disease 2019 (COVID-19) pandemic, managing supply chains, identifying planning gaps, and promoting equitable interventions. We compared this CHNRI-based outcome with the 14 research priorities generated and ranked by ChatGPT, encountering both striking similarities and clear differences.

    CONCLUSIONS: Priority setting processes based on human crowdsourcing - such as the CHNRI method - and the output provided by ChatGPT are both valuable, as they complement and strengthen each other. The priorities identified by ChatGPT were more grounded in theory, while those identified by CHNRI were guided by recent practical experiences. Addressing these priorities, along with improvements in health planning, equitable community-based interventions, and the capacity of primary health care, is vital for better pandemic preparedness and response in many settings.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links