Displaying publications 61 - 80 of 95 in total

Abstract:
Sort:
  1. Maciver SK, Abdelnasir S, Anwar A, Siddiqui R, Khan NA
    Mol Biochem Parasitol, 2023 Feb;253:111541.
    PMID: 36603708 DOI: 10.1016/j.molbiopara.2022.111541
    Protistan parasitic infections contribute significantly to morbidity and mortality, causing more than 2 billion human infections annually. However, current treatments are often limited; due to ineffective drugs and drug resistance, thus better options are urgently required. In the present context, theranostics agents are those that offer simultaneous detection, diagnosis and even treatment of protistan parasitic diseases. "Nanotheranostics" is the term used to describe such agents, that are around 100 nm or less in size. Anti-parasitic activity of nanoparticles (NPs) has been reported, and many have useful intrinsic imaging properties, but it is perhaps their multifunctional nature that offers the greatest potential. NPs may be used as adapters onto which various subunits with different functions may be attached. These subunits may facilitate targeting parasites, coupled with toxins to eradicate parasites, and probe subunits for detection of particles and/or parasites. The modular nature of nano-platforms promises a "mix and match" approach for the construction of tailored agents by using combinations of these subunits against different protistan parasites. Even though many of the subunits have shown promise alone, these have not yet been put together convincingly enough to form working theranostics against protistan parasites. Although the clinical application of nanotheranostics to protistan parasitic infections in humans requires more research, we conclude that they offer not just a realisation of Paul Ehrlich's long imagined "magic bullet" concept, but potentially are magic bullets combined with tracer bullets.
  2. Erum H, Abid G, Anwar A, Ijaz MF, Kee DMH
    Eur J Investig Health Psychol Educ, 2021 Mar 30;11(2):321-333.
    PMID: 34708832 DOI: 10.3390/ejihpe11020024
    Family motivation as a mediating mechanism is a novel and under-researched area in the field of positive organizational scholarship. Drawing on Social Exchange Theory (SET), this study empirically validates family motivation as a mediator between family support and work engagement. The process by Hayes (2013) was used to analyze time-lagged data collected from 356 employees of the education sector. Results confirm the mediating role of family motivation in the relationship between family support and work engagement and the moderating role of calling in the relationship between family support and family motivation. This study adds to the literature of family-work enrichment accounts by validating family support as a novel antecedent for family motivation and positive attitudes. The implications of the study are discussed.
  3. Rajendran K, Ahmed U, Meunier AC, Shaikh MF, Siddiqui R, Anwar A
    ACS Omega, 2024 Mar 12;9(10):11597-11607.
    PMID: 38497026 DOI: 10.1021/acsomega.3c08844
    Pathogenic Naegleria fowleri (N. fowleri) are opportunistic free-living amoebae and are the causative agents of a very rare but severe brain infection called primary amoebic meningoencephalitis (PAM). The fatality rate of PAM in reported cases is more than 95%. Most of the drugs used againstN. fowleri infections are repurposed drugs. Therefore, a large number of compounds have been tested againstN. fowleri in vitro, but most of the tested compounds showed high toxicity and an inability to cross the blood-brain barrier. Andrographolide, forskolin, and borneol are important natural compounds that have shown various valuable biological properties. In the present study, the nanoconjugates (AND-AgNPs, BOR-AgNPs, and FOR-AgNPs) of these compounds were synthesized and assessed against both stages (trophozoite and cyst) ofN. fowleri for their antiamoebic and cysticidal potential in vitro. In addition, cytotoxicity and host cell pathogenicity were also evaluated in vitro. FOR-AgNPs were the most potent nanoconjugate and showed potent antiamoebic activity againstN. fowleriwith an IC50 of 26.35 μM. Nanoconjugates FOR-AgNPs, BOR-AgNPs, and AND-AgNPs also significantly inhibit the viability of N. fowleri cysts. Cytotoxicity assessment showed that these nanoconjugates caused minimum damage to human keratinocyte cells (HaCaT cells) at 100 μg/mL, while also effectively reducing the cytopathogenicity of N. fowleri trophozoites to the HaCaT cells. The outcomes of our experiments have unveiled substantial potential for AND-AgNPs, BOR-AgNPs, and FOR-AgNPs in the realm of developing innovative alternative therapeutic agents to combat infections caused by N. fowleri. This study represents a significant step forward in the pursuit of advanced strategies for managing such amoebic infections, laying the foundation for the development of novel and more effective therapeutic modalities in the fight against free-living amoebae.
  4. Mungroo MR, Khan NA, Anwar A, Siddiqui R
    Int Microbiol, 2021 Aug 09.
    PMID: 34368912 DOI: 10.1007/s10123-021-00201-0
    Pathogenic free-living amoebae are known to cause fatal central nervous system infections with extremely high mortality rates. High selectivity of the blood-brain barrier hampers delivery of drugs and untargeted delivery of drugs can cause severe side effects. Nanovehicles can be used for targeted drug delivery across the blood-brain barrier. Inorganic nanoparticles have been explored as carriers for various biomedical applications and can be modified with various ligands for efficient targeting and cell selectivity while lipid-based nanoparticles have been extensively used in the development of both precision and colloidal nanovehicles. Nanomicelles and polymeric nanoparticles can also serve as nanocarriers and may be modified so that responsiveness of the nanoparticles and release of the loads are linked to specific stimuli. These nanoparticles are discussed here in the context of the treatment of central nervous system infections due to pathogenic amoebae. It is anticipated that these novel strategies can be utilized in tandem with novel drug leads currently in the pipeline and yield in the development of much needed treatments against these devastating parasites.
  5. Rajendran K, Ahmed U, Meunier AC, Shaikh MF, Siddiqui R, Anwar A
    ACS Chem Neurosci, 2023 Dec 06;14(23):4105-4114.
    PMID: 37983556 DOI: 10.1021/acschemneuro.3c00258
    Naegleria fowleri is one of the free-living amoebae and is a causative agent of a lethal and rare central nervous system infection called primary amoebic meningoencephalitis. Despite the advancement in antimicrobial chemotherapy, the fatality rate in the reported cases is more than 95%. Most of the treatment drugs used against N. fowleri infection are repurposed drugs. Therefore, a large number of compounds have been tested against N. fowleri in vitro, but most of the compounds showed high toxicity. To overcome this, we evaluated the effectiveness of naturally occurring terpene compounds against N. fowleri. In this study, we evaluated the antiamoebic potential of natural compounds including Thymol, Borneol, Andrographolide, and Forskolin againstN. fowleri. Thymol showed the highest amoebicidal activity with IC50/24 h at 153.601 ± 19.6 μM. Two combinations of compounds Forskolin + Thymol and Forskolin + Borneol showed a higher effect on the viability of trophozoites as compared to compounds alone and hence showed a synergistic effect. The IC50 reported for Forskolin + Thymol was 81.30 ± 6.86 μM. Borneol showed maximum cysticidal activity with IC50/24 h at 192.605 ± 3.01 μM. Importantly, lactate dehydrogenase release testing revealed that all compounds displayed minimal cytotoxicity to human HaCaT, HeLa, and SH-SY5Y cell lines. The cytopathogenicity assay showed that Thymol and Borneol also significantly reduced the host cell cytotoxicity of pretreated amoeba toward the human HaCaT cell line. So, these terpene compounds hold potential as therapeutic agents against infections caused by N. fowleri and are potentially a step forward in drug development against this deadly pathogen as these compounds have also been reported to cross the blood-brain barrier. Therefore, an in vivo study using animal models is necessary to assess the efficacy of these compounds and the need for further research into the intranasal route of delivery for the treatment of these life-threatening infections.
  6. Ramanathan B, Jindal HM, Le CF, Gudimella R, Anwar A, Razali R, et al.
    PLoS One, 2017;12(8):e0182524.
    PMID: 28797043 DOI: 10.1371/journal.pone.0182524
    Rapid progress in next generation sequencing and allied computational tools have aided in identification of single nucleotide variants in genomes of several organisms. In the present study, we have investigated single nucleotide polymorphism (SNP) in ten multi-antibiotic resistant Pseudomonas aeruginosa clinical isolates. All the draft genomes were submitted to Rapid Annotations using Subsystems Technology (RAST) web server and the predicted protein sequences were used for comparison. Non-synonymous single nucleotide polymorphism (nsSNP) found in the clinical isolates compared to the reference genome (PAO1), and the comparison of nsSNPs between antibiotic resistant and susceptible clinical isolates revealed insights into the genome variation. These nsSNPs identified in the multi-drug resistant clinical isolates were found to be altering a single amino acid in several antibiotic resistant genes. We found mutations in genes encoding efflux pump systems, cell wall, DNA replication and genes involved in repair mechanism. In addition, nucleotide deletions in the genome and mutations leading to generation of stop codons were also observed in the antibiotic resistant clinical isolates. Next generation sequencing is a powerful tool to compare the whole genomes and analyse the single base pair variations found within the antibiotic resistant genes. We identified specific mutations within antibiotic resistant genes compared to the susceptible strain of the same bacterial species and these findings may provide insights to understand the role of single nucleotide variants in antibiotic resistance.
  7. Anwar A, Mungroo MR, Khan S, Fatima I, Rafique R, Kanwal, et al.
    Antibiotics (Basel), 2020 Apr 17;9(4).
    PMID: 32316387 DOI: 10.3390/antibiotics9040188
    Balamuthia mandrillaris and Naegleriafowleri are opportunistic protozoan pathogens capable of producing infection of the central nervous system with more than 95% mortality rate. Previously, we have synthesized several compounds with antiamoebic properties; however, synthesis of compounds that are analogues of clinically used drugs is a highly desirable approach that can lead to effective drug development against these devastating infections. In this regard, compounds belonging to the azole class possess wide range of antimicrobial properties and used clinically. In this study, six novel benzimidazole, indazole, and tetrazole derivatives were synthesized and tested against brain-eating amoebae. These compounds were tested for their amoebicidal and static properties against N. fowleri and B. mandrillaris. Furthermore, the compounds were conjugated with silver nanoparticles and characterized. The synthetic heterocyclic compounds showed up to 72% and 65% amoebicidal activities against N. fowleri and B. mandrillaris respectively, while expressing up to 75% and 70% amoebistatic activities, respectively. Following conjugation with silver nanoparticles, amoebicidal activities of the drugs increased by up to 46 and 36% versus B. mandrillaris and N. fowleri. Minimal effects were observed when the compounds were evaluated against human cells using cytotoxicity assays. In summary, azole compounds exhibited potent activity against N. fowleri and B. mandrillaris. Moreover, conjugation of the azole compounds with silver nanoparticles further augmented the capabilities of the compounds against amoebae.
  8. Anwar A, Shahbaz MS, Saad SM, Kanwal, Khan KM, Siddiqui R, et al.
    Eur J Med Chem, 2019 Nov 15;182:111575.
    PMID: 31415900 DOI: 10.1016/j.ejmech.2019.111575
    We report one-pot synthesis of a series of new 3-aryl-8-methylquinazolin-4(3H)-ones (QNZ) and their antimicrobial activity against Acanthamoeba castellanii belonging to T4 genotype. A library of fifteen synthetic derivatives of QNZs was synthesized, and their structural elucidation was performed by using nuclear magnetic resonance (NMR) spectroscopy and electron impact mass spectrometry (EI-MS). Elemental analyses and high-resolution mass spectrometry data of all derivatives were found to be in agreeable range. Amoebicidal assays performed at concentrations ranging from 50 to 100 μg/mL revealed that all derivatives of QNZ significantly decreased the viability of A. castellanii and QNZ 2, 5, 8, and 13 were found to have efficient antiamoebic effects. Field emission scanning electron microscopy (FESEM) imaging of amoeba treated with compounds 5 and 15 showed that these compounds cause structural alterations on the walls of A. castellanii. Furthermore, several QNZs inhibited the encystation and excystationas as well as abolished A. castellanii-mediated host cells cytopathogenicity in human cells. Whereas, these QNZs showed negligible cytotoxicity when tested against human cells in vitro. Hence, this study identified potential lead molecules having promising properties for drug development against A. castellanii. A brief structure-activity relationship is also developed to optimize the hit of most potent compounds from the library. To the best of our knowledge, it is first of its kind medicinal chemistry approach on a single class of compounds i.e., quinazolinone against keratitis and brain infection causing free-living amoeba, A. castellanii.
  9. Siddiqui R, Roberts SK, Ong TYY, Mungroo MR, Anwar A, Khan NA
    Parasit Vectors, 2019 Nov 14;12(1):538.
    PMID: 31727139 DOI: 10.1186/s13071-019-3785-0
    BACKGROUND: Acanthamoeba is well known to produce a blinding keratitis and serious brain infection known as encephalitis. Effective treatment is problematic, and can continue up to a year, and even then, recurrence can ensue. Partly, this is due to the capability of vegetative amoebae to convert into resistant cysts. Cysts can persist in an inactive form for decades while retaining their pathogenicity. It is not clear how Acanthamoeba cysts monitor environmental changes, and determine favourable conditions leading to their emergence as viable trophozoites.

    METHODS: The role of ion transporters in the encystation and excystation of Acanthamoeba remains unclear. Here, we investigated the role of sodium, potassium and calcium ion transporters as well as proton pump inhibitors on A. castellanii encystation and excystation and their effects on trophozoites.

    RESULTS: Remarkably 3',4'-dichlorobenzamil hydrochloride a sodium-calcium exchange inhibitor, completely abolished excystation of Acanthamoeba. Furthermore, lanthanum oxide and stevioside hydrate, both potassium transport inhibitors, resulted in the partial inhibition of Acanthamoeba excystation. Conversely, none of the ion transport inhibitors affected encystation or had any effects on Acanthamoeba trophozoites viability.

    CONCLUSIONS: The present study indicates that ion transporters are involved in sensory perception of A. castellanii suggesting their value as potential therapeutic targets to block cellular differentiation that presents a significant challenge in the successful prognosis of Acanthamoeba infections.

  10. Rajendran K, Anwar A, Khan NA, Aslam Z, Raza Shah M, Siddiqui R
    ACS Chem Neurosci, 2020 08 19;11(16):2431-2437.
    PMID: 31347828 DOI: 10.1021/acschemneuro.9b00289
    Naegleria fowleri (N. fowleri) causes primary amoebic meningoencephalitis (PAM) which almost always results in death. N. fowleri is also known as "brain-eating amoeba" due to its literal infestation of the brain leading to an inflammatory response in the brain tissues. Currently, there is no single drug that is available to treat PAM, and most treatments are combinations of antifungal, anticancer, and anti-inflammatory drugs. Recently nanotechnology has gained attention in chemotherapeutic research converging on drug delivery, while oleic acid (OA) has shown positive effects on the human immune system and inflammatory processes. In continuation of our recent research in which we reported the effects of oleic acid conjugated with silver nanoparticles (OA-AgNPs) against free-living amoeba Acanthamoeba castellanii, in this report, we show their antiamoebic effects against N. fowleri. OA alone and its nanoconjugates were tested against the amoeba by using amoebicidal and host cell cytopathogenicity assays. Trypan blue exclusion assay was used to determine cell viability. The results revealed that OA-AgNPs exhibited significantly enhanced antiamoebic effects (P < 0.05) against N. fowleri as compared to OA alone. Evidently, lactate dehydrogenase release shows reduced N. fowleri-mediated host cell cytotoxicity. Based on our study, we anticipate that further studies on OA-AgNPs could potentially provide an alternative treatment of PAM.
  11. Anwar A, Abdalla SAO, Aslam Z, Shah MR, Siddiqui R, Khan NA
    Parasitol Res, 2019 Jul;118(7):2295-2304.
    PMID: 31093751 DOI: 10.1007/s00436-019-06329-3
    Acanthamoeba castellanii belonging to the T4 genotype is an opportunistic pathogen which is associated with blinding eye keratitis and rare but fatal central nervous system infection. A. castellanii pose serious challenges in antimicrobial chemotherapy due to its ability to convert into resistant, hardy shell-protected cyst form that leads to infection recurrence. The fatty acid composition of A. castellanii trophozoites is known to be most abundant in oleic acid which chemically is an unsaturated cis-9-Octadecanoic acid and naturally found in animal and vegetable fats and oils. This study was designed to evaluate antiacanthamoebic effects of oleic acid against trophozoites, cysts as well as parasite-mediated host cell cytotoxicity. Moreover, oleic acid-conjugated silver nanoparticles (AgNPs) were also synthesized and tested against A. castellanii. Oleic acid-AgNPs were synthesized by chemical reduction method and characterized by ultraviolet-visible spectrophotometry, atomic force microscopy, dynamic light scattering analysis, and Fourier transform infrared spectroscopy. Viability, growth inhibition, encystation, and excystation assays were performed with 10 and 5 μM concentration of oleic acid alone and oleic acid-conjugated AgNPs. Bioassays revealed that oleic acid alone and oleic acid-conjugated AgNPs exhibited significant antiamoebic properties, whereas nanoparticle conjugation further enhanced the efficacy of oleic acid. Phenotype differentiation assays also showed significant inhibition of encystation and excystation at 5 μM. Furthermore, oleic acid and oleic acid-conjugated AgNPs also inhibited amoebae-mediated host cell cytotoxicity as determined by lactate dehydrogenase release. These findings for the first time suggest that oleic acid-conjugated AgNPs exhibit antiacanthamoebic activity that hold potential for therapeutic applications against A. castellanii.
  12. Aizuddin AN, Chan CM, Anwar AR, Ong YX, Chin KY
    Int J Gen Med, 2021;14:3251-3257.
    PMID: 34267543 DOI: 10.2147/IJGM.S316360
    Purpose: Body mass index (BMI) is used universally to define obesity. Many studies have indicated that the current BMI cutoff value for obesity may be inaccurate in identifying individuals with excess body fat (BF) and at risk for cardiovascular diseases (CVD). This study aims to assess the performance of BMI in diagnosing obesity defined by BF percentage (BF%).

    Patients and Methods: A total of 136 participants who attended an annual health screening programme were recruited. The subjects completed the health examinations, including BMI, BF% and blood pressure measurement. A receiver operating curve (ROC) analysis was conducted to determine the optimal cutoff value of BMI in classifying obesity based on BF% (>25%).

    Results: The ROC analysis revealed that the optimal BMI cutoff value in classifying subjects with obesity based on BF% was 24.8 kg/m2. The agreement between the classification scheme based on the new BMI cutoff (>24.8 kg/m2) and BF% was higher (κ=0.722) compared to the standard BMI cutoff (>27.5 kg/m2) (κ=0.532). BMI 24.8 kg/m2 also had higher sensitivity (80.0%) than 27.5 kg/m2 (56.0%) in detecting subjects with high adiposity. The new BMI cutoff also showed a sensitivity of 63.9% in identifying subjects with hypertension compared to the standard cutoff (36.1%).

    Conclusion: The current definition of obesity based on BMI value needs to be reassessed by taking BF% into account. A new BMI cutoff point, 24.8 kg/m2 for obesity, can identify a higher percentage of Malaysian at risk for CVD.

  13. Abdelnasir S, Mungroo MR, Shahabuddin S, Siddiqui R, Khan NA, Anwar A
    ACS Chem Neurosci, 2021 Oct 06;12(19):3579-3587.
    PMID: 34545742 DOI: 10.1021/acschemneuro.1c00179
    Free-living amoebae include Acanthamoeba castellanii and Naegleria fowleri that are opportunistic protozoa responsible for life-threatening central nervous system infections with mortality rates over 90%. The rising number of cases and high mortality rates are indicative of the critical unmet need for the development of efficient drugs in order to avert future deaths. In this study, we assess the anti-amoebic capacity of a conducting polymer nanocomposite comprising polyaniline (PANI) and hexagonal boron nitride (hBN) against A. castellanii and N. fowleri. We observed significant amoebicidal and cysticidal effects using 100 μg/mL PANI/hBN (P < 0.05). Further, the nanocomposite demonstrated negligible cytotoxicity toward HaCaT and primary human corneal epithelial cells (pHCECs). In evaluating the mode of inhibition of A. castellanii due to treatment with PANI/hBN, increased intracellular reactive oxygen species (ROS) was measured and scanning microscopy visualized the formation of pores in the amoebae. Overall, this study is suggestive of the potential of the PANI/hBN nanocomposite as a promising therapy for amoeba infections.
  14. Salmi MS, Ahmed U, Aslfattahi N, Rahman S, Hardy JG, Anwar A
    RSC Adv, 2022 Nov 15;12(51):33142-33155.
    PMID: 36425203 DOI: 10.1039/d2ra04944a
    Two dimensional (2D) nanomaterials display properties with significant biological utility (e.g., antimicrobial activity). In this study, MXene-functionalized graphene (FG) nanocomposites with Ti3C2T x in varying ratios (FG : Ti3C2T x , 25 : 75%, 50 : 50%, and 75 : 25%) were prepared and characterized via scanning electron microscopy, scanning electron microscopy-energy dispersive X-ray (SEM-EDX), high-resolution transmission electron microscopy (HRTEM), and zeta potential analysis. Their cytotoxicity was assessed using immortalized human keratinocytes (HaCaT) cells at three different timepoints, and antibacterial activity was assessed using Gram-positive Methicillin resistant Staphylococcus aureus, MRSA, and Gram-negative neuro-pathogenic Escherichia coli K1 (E. coli K1) in vitro. The nanomaterials and composites displayed potent antibacterial effects against both types of bacteria and low cytotoxicity against HaCaT cells at 200 μg mL-1, which is promising for their utilization for biomedical applications.
  15. Alishba, Ahmed U, Taha M, Khan NA, Salar U, Khan KM, et al.
    Heliyon, 2024 Jan 15;10(1):e23258.
    PMID: 38205285 DOI: 10.1016/j.heliyon.2023.e23258
    A rare but lethal central nervous system disease known as granulomatous amoebic encephalitis (GAE) and potentially blinding Acanthamoeba keratitis are diseases caused by free-living Acanthamoeba. Currently, no therapeutic agent can completely eradicate or prevent GAE. Synthetic compounds are a likely source of bioactive compounds for developing new drugs. This study synthesized seventeen 1,4-benzothiazine derivatives (I -XVII) by a base-catalyzed one-pot reaction of 2-amino thiophenol with substituted bromo acetophenones. Different spectroscopic techniques, such as EI-MS, 1H-, and 13C NMR (only for the new compounds), were used for the structural characterization and conformation of compounds. These compounds were assessed for the first time against Acanthamoeba castellanii. All compounds showed anti-amoebic potential in vitro against A. castellanii, reducing its ability to encyst and excyst at 100 μM. Compounds IX, X, and XVI showed the most potent activities among all derivatives and significantly reduced the viability to 5.3 × 104 (p 
  16. Khalid K, Lim HX, Anwar A, Tan SH, Hwang JS, Ong SK, et al.
    AAPS PharmSciTech, 2024 Mar 12;25(3):60.
    PMID: 38472523 DOI: 10.1208/s12249-024-02778-x
    The protective efficacies of current licensed vaccines against COVID-19 have significantly reduced as a result of SARS-CoV-2 variants of concern (VOCs) which carried multiple mutations in the Spike (S) protein. Considering that these vaccines were developed based on the S protein of the original SARS-CoV-2 Wuhan strain, we designed a recombinant plasmid DNA vaccine based on highly conserved and immunogenic B and T cell epitopes against SARS-CoV-2 Wuhan strain and the Omicron VOC. Literature mining and bioinformatics were used to identify 6 immunogenic peptides from conserved regions of the SARS-CoV-2 S and membrane (M) proteins. Nucleotide sequences encoding these peptides representing highly conserved B and T cell epitopes were cloned into a pVAX1 vector to form the pVAX1/S2-6EHGFP recombinant DNA plasmid vaccine. The DNA vaccine was intranasally or intramuscularly administered to BALB/c mice and evaluations of humoral and cellular immune responses were performed. The intramuscular administration of pVAX1/S2-6EHGFP was associated with a significantly higher percentage of CD8+ T cells expressing IFN-γ when compared with the empty vector and PBS controls. Intramuscular or intranasal administrations of pVAX1/S2-6EHGFP resulted in robust IgG antibody responses. Sera from mice intramuscularly immunized with pVAX1/S2-6EHGFP were found to elicit neutralizing antibodies capable of SARS-CoV-2 Omicron variant with the ACE2 cell surface receptor. This study demonstrated that the DNA vaccine construct encoding highly conserved immunogenic B and T cell epitopes was capable of eliciting potent humoral and cellular immune responses in mice.
  17. Anwar A, Minhaz A, Hussain SS, Anwar A, Simjee SU, Ishaq M, et al.
    Spectrochim Acta A Mol Biomol Spectrosc, 2019 Jan 05;206:135-140.
    PMID: 30096697 DOI: 10.1016/j.saa.2018.07.099
    Gold nanoparticles (AuNPs) stabilized by new cationic 1‑(3‑(acetylthio)propyl)pyrazin‑1‑ium ligand (PPTA) were synthesized. AuNPs stabilized by PPTA (PPTA-AuNPs) were found to be spherical and polydispersed with the average size of 60 nm. Human neuroblastoma (SHSY-5Y) cells permeability of PPTA-AuNPs was found to be a key feature to study the intracellular quenching of Fe(III) proliferative activity. In vitro MTT assay revealed non-cytotoxicity of PPTA and PPTA-AuNPs at 100 μM concentration, while treatment of 100 μM of Fe(III) with SHSY-5Y cells resulted into higher cells viability. Contrary, a mixture of 1:1 Fe(III) with PPTA-AuNPs showed no change in the viability of cells at same concentration which suggests the intracellular complexation and recognition of Fe(III) by PPTA-AuNPs. AFM morphological analysis of SHSY-5Y cells also supported the MTT assay results, and it is safe to conclude that PPTA-AuNPs can be used as Fe(III) probes in living cells. In addition, Fe(III) caused a significant decrease in the absorbance of surface plasmon resonance (SPR) band of PPTA-AuNPs in a wide range of concentration and pH, with limit of detection 4.3 μM. Moreover, the specific response of PPTA-AuNPs towards Fe(III) was unaffected by the interference of other metals and components of real samples of tap water.
  18. Anwar A, Mungroo MR, Anwar A, Sullivan WJ, Khan NA, Siddiqui R
    ACS Infect Dis, 2019 Dec 13;5(12):2039-2046.
    PMID: 31612700 DOI: 10.1021/acsinfecdis.9b00263
    Brain-eating amoebae cause devastating infections in the central nervous system of humans, resulting in a mortality rate of 95%. There are limited effective therapeutic options available clinically for treating granulomatous amoebic encephalitis and primary amoebic meningoencephalitis caused by Acanthamoeba castellanii (A. castellanii) and Naegleria fowleri (N. fowleri), respectively. Here, we report for the first time that guanabenz conjugated to gold and silver nanoparticles has significant antiamoebic activity against both A. castellanii and N. fowleri. Gold and silver conjugated guanabenz nanoparticles were synthesized by the one-phase reduction method and were characterized by ultraviolet-visible spectrophotometry and atomic force microscopy. Both metals were facilely stabilized by the coating of guanabenz, which was examined by surface plasmon resonance determination. The average size of gold nanoconjugated guanabenz was found to be 60 nm, whereas silver nanoparticles were produced in a larger size distribution with the average diameter of around 100 nm. Guanabenz and its noble metal nanoconjugates exhibited potent antiamoebic effects in the range of 2.5 to 100 μM against both amoebae. Nanoparticle conjugation enhanced the antiamoebic effects of guanabenz, as more potent activity was observed at a lower effective concentration (2.5 and 5 μM) compared to the drug alone. Moreover, encystation and excystation assays revealed that guanabenz inhibits the interconversion between the trophozoite and cyst forms of A. castellanii. Cysticdal effects against N. fowleri were also observed. Notably, pretreatment of A. castellanii with guanabenz and its nanoconjugates exhibited a significant reduction in the host cell cytopathogenicity from 65% to 38% and 2% in case of gold and silver nanoconjugates, respectively. Moreover, the cytotoxic evaluation of guanabenz and its nanoconjugates revealed negligible cytotoxicity against human cells. Guanabenz is already approved for hypertension and crosses the blood-brain barrier; the results of our current study suggest that guanabenz and its conjugated gold and silver nanoparticles can be repurposed as a potential drug for treating brain-eating amoebic infections.
  19. Anwar A, Khan NA, Siddiqui R
    ACS Chem Neurosci, 2020 08 19;11(16):2378-2384.
    PMID: 32073257 DOI: 10.1021/acschemneuro.9b00613
    Brain-eating amoebae including Acanthamoeba spp., Naegleria fowleri, and Balamuthia mandrillaris cause rare infections of the central nervous system that almost always result in death. The high mortality rate, lack of interest for drug development from pharmaceutical industries, and no available effective drugs present an alarming challenge. The current drugs employed in the management and therapy of these devastating diseases are amphotericin B, miltefosine, chlorhexidine, pentamidine, and voriconazole which are generally used in combination. However, clinical evidence shows that these drugs have limited efficacy and high host cell cytotoxicity. Repurposing of drugs is a practical approach to utilize commercially available, U.S. Food and Drug Administration approved drugs for one disease against rare diseases caused by brain-eating amoebae. In this Perspective, we highlight some of the success stories of drugs repositioned against neglected parasitic diseases and identify future potential for effective and sustainable drug development against brain-eating amoebae infections.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links