Displaying publications 61 - 80 of 222 in total

Abstract:
Sort:
  1. Chen X, Tan X, Li J, Jin Y, Gong L, Hong M, et al.
    PLoS One, 2013;8(12):e82861.
    PMID: 24340064 DOI: 10.1371/journal.pone.0082861
    Coxsackievirus A16 (CVA16) is responsible for nearly 50% of all the confirmed hand, foot, and mouth disease (HFMD) cases in mainland China, sometimes it could also cause severe complications, and even death. To clarify the genetic characteristics and the epidemic patterns of CVA16 in mainland China, comprehensive bioinfomatics analyses were performed by using 35 CVA16 whole genome sequences from 1998 to 2011, 593 complete CVA16 VP1 sequences from 1981 to 2011, and prototype strains of human enterovirus species A (EV-A). Analysis on complete VP1 sequences revealed that subgenotypes B1a and B1b were prevalent strains and have been co-circulating in many Asian countries since 2000, especially in mainland China for at least 13 years. While the prevalence of subgenotype B1c (totally 20 strains) was much limited, only found in Malaysia from 2005 to 2007 and in France in 2010. Genotype B2 only caused epidemic in Japan and Malaysia from 1981 to 2000. Both subgenotypes B1a and B1b were potential recombinant viruses containing sequences from other EV-A donors in the 5'-untranslated region and P2, P3 non-structural protein encoding regions.
  2. Azid NA, Ahmad S, Boer JC, Al-Hatamleh MAI, Mohammad N, Mohd Ashari NS, et al.
    Hum Immunol, 2020 08 06;81(10-11):634-643.
    PMID: 32771274 DOI: 10.1016/j.humimm.2020.07.006
    The interaction of tolerogenic CD103+ dendritic cells (DCs) with regulatory T (Tregs) cells modulates immune responses by inducing immune tolerance. Hence, we determined the proportion of these cells in the peripheral blood mononuclear cells (PBMC) of asthmatic patients. We observed lower trends of CD11b-CD103+ DCs and CD86 within CD11b-CD103+ DCs, while increased levels of Foxp3 expressing CD25+/-TNFR2+ cells in asthmatics. There was a positive correlation in the expression of Foxp3 within CD3+CD4+CD25+TNFR2+ Tregs and CD11b-CD103+ as well as the expression of CD86 within HLA-DR+CD11c+CD11b-CD103+ DCs. In conclusion, we suggest that the increased levels of Tregs in blood could continuously suppress the T helper 2 (Th2) cells activation in the circulation which is also supported by the increase of anti-inflammatory cytokines IL-10 and TNF. Overall, functional immunoregulation of the regulatory cells, particularly Tregs, exhibit immune suppression and induce immune tolerance linked with the immune activation by the antigen presenting cells (APC).
  3. Yang Y, Wei X, Zhang N, Zheng J, Chen X, Wen Q, et al.
    Nat Commun, 2021 08 12;12(1):4876.
    PMID: 34385436 DOI: 10.1038/s41467-021-25075-8
    While the printed circuit board (PCB) has been widely considered as the building block of integrated electronics, the world is switching to pursue new ways of merging integrated electronic circuits with textiles to create flexible and wearable devices. Herein, as an alternative for PCB, we described a non-printed integrated-circuit textile (NIT) for biomedical and theranostic application via a weaving method. All the devices are built as fibers or interlaced nodes and woven into a deformable textile integrated circuit. Built on an electrochemical gating principle, the fiber-woven-type transistors exhibit superior bending or stretching robustness, and were woven as a textile logical computing module to distinguish different emergencies. A fiber-type sweat sensor was woven with strain and light sensors fibers for simultaneously monitoring body health and the environment. With a photo-rechargeable energy textile based on a detailed power consumption analysis, the woven circuit textile is completely self-powered and capable of both wireless biomedical monitoring and early warning. The NIT could be used as a 24/7 private AI "nurse" for routine healthcare, diabetes monitoring, or emergencies such as hypoglycemia, metabolic alkalosis, and even COVID-19 patient care, a potential future on-body AI hardware and possibly a forerunner to fabric-like computers.
  4. Lian J, Lin D, Huang Y, Chen X, Chen L, Zhang F, et al.
    Chin Med, 2023 Sep 23;18(1):124.
    PMID: 37742025 DOI: 10.1186/s13020-023-00834-5
    Tumours do not exist in isolation from the organism; their growth, proliferation, motility, and immunosuppressive response are intricately connected to the tumour's microenvironment. As tumour cells and the microenvironment coevolve, an inflammatory microenvironment ensues, propelling the phenomenon of inflammation-cancer transformation-an idea proposed by modern medicine. This review aims to encapsulate the array of representative factors within the tumour's inflammatory microenvironment, such as interleukins (IL-6, IL-10, IL-17, IL-1β), transforming growth factor-beta (TGF-β), interferon-gamma (IFN-γ), tumour necrosis factor-alpha (TNF-α), vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMPs). Moreover, drawing upon research in traditional Chinese medicine (TCM) and pharmacology, we explore the delicate interplay between these factors and tumour-associated inflammatory cells: tumour-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (TANs) and dendritic cells (DCs). By analyzing the tumour-promoting effects of these entities, we delve into the connotations of Academician Tong Xiao-lin's novel model of "state-target differentiation" and its application in the diagnosis and treatment of tumours. Our aim is to enhance the precision and targeting of tumour treatment in clinical practice. Delving deeper into our understanding of tumour pathogenesis through the lens of modern medicine, we discern the key etiology and pathogenesis throughout the entire developmental stage of tumours, unveiling the evolutionary patterns of Chinese Medicine (CM) states: heat state → phlegm state → stagnation state → deficiency state. Building upon this foundation, we devised a state-regulating formula. Simultaneously, drawing on pharmacological research in traditional Chinese medicine (TCM), we meticulously identified a range of targeted drugs that effectively modulate the aforementioned tumour-related mediators. This comprehensive strategy-a harmonious integration of state identification, target recognition, and simultaneous regulation-aims to elevate clinical efficacy. The fusion of TCM with Western medicine in tumour treatment introduces novel dimensions to the precise and refined application of TCM in clinical practice.
  5. Xu X, Yi C, Feng T, Ge Y, Liu M, Wu C, et al.
    Clin Immunol, 2023 Aug;253:109685.
    PMID: 37406980 DOI: 10.1016/j.clim.2023.109685
    Inducing tumor-specific T cell responses and regulating suppressive tumor microenvironments have been a challenge for effective tumor therapy. CpG (ODN), the Toll-like receptor 9 agonist, has been widely used as adjuvants of cancer vaccines to induce T cell responses. We developed a novel adjuvant to improve the targeting of lymph nodes. CpG were modified with lipid and glycopolymers by the combination of photo-induced RAFT polymerization and click chemistry, and the novel adjuvant was termed as lipid-glycoadjuvant@AuNPs (LCpG). OVA protein was used as model antigen and melanoma model was established to test the immunotherapy effect of the adjuvant. In tumor model, the antitumor effect and mechanism of LCpG on the response of CTLs were examined by flow cytometry and cell cytotoxicity assay. The effects of LCpG on macrophage polarization and Tregs differentiation in tumor microenvironment were also studied by cell depletion assay and cytokine neutralization assay. We also tested the therapeutic effect of the combination of the adjuvant and anti-PD-1 treatment. LCpG could be rapidly transported to and retained longer in the lymphoid nodes than unmodified CpG. In melanoma model, LCpG controlled both primary tumor and its metastasis, and established long-term memory. In spleen and tumor draining lymphoid nodes, LCpG activated tumor-specific Tc1 responses, with increased CD8+ T-cell proliferation, antigen-specific Tc1 cytokine production and specific-tumor killing capacity. In tumor microenvironments, antigen-specific Tc1 induced by the LCpG promoted CTL infiltration, skewed tumor associated macrophages to M1 phenotype, regulated Treg and induced proinflammatory cytokines production in a CTL-derived IFN-γ-dependent manner. In vivo cell depletion and adoptive transfer experiments confirmed that antitumor activity of LCpG included vaccine was mainly dependent on CTL-derived IFN-γ. The anti-tumor efficacy of LCpG was dramatically enhanced when combined with anti-PD1 immunotherapy. LCpG was a promising adjuvant for vaccine formulation which could augment tumor-specific Tc1 activity, and regulate tumor microenvironments.
  6. Yu T, Fang Y, Chen X, Liu M, Wang D, Liu S, et al.
    Mater Horiz, 2023 Jun 06;10(6):2181-2190.
    PMID: 36994553 DOI: 10.1039/d3mh00117b
    As an emerging carbon-based material, carbon quantum dots (CQDs) have shown unstoppable prospects in the field of bionic electronics with their outstanding optoelectronic properties and unique biocompatible characteristics. In this study, a novel CQD-based memristor is proposed for neuromorphic computing. Unlike the models that rely on the formation and rupturing of conductive filaments, it is speculated that the resistance switching mechanism of CQD-based memristors is due to the conductive path caused by the hybridization state transition of the sp2 carbon domain and sp3 carbon domain induced by the reversible electric field. This avoids the drawback of uncontrollable nucleation sites leading to the random formation of conductive filaments in resistive switching. Importantly, it illustrates that the coefficient of variation (CV) of the threshold voltage can be as low as -1.551% and 0.083%, which confirms the remarkable uniform switching characteristics. Interestingly, the Pavlov's dog reflection as an important biological behavior can be demonstrated by the samples. Finally, the accuracy recognition rate of MNIST handwriting can reach up to 96.7%, which is very close to the ideal number (97.8%). A carbon-based memristor based on a new mechanism presented provides new possibilities for the improvement of brain-like computing.
  7. Engku Abd Rahman ENS, Irekeola AA, Shueb RH, Mat Lazim N, Mohamud R, Chen X, et al.
    Cytokine, 2023 Oct;170:156341.
    PMID: 37657236 DOI: 10.1016/j.cyto.2023.156341
    TNFR2 is a surface marker of highly suppressive subset of CD4+ FoxP3+ regulatory T cells (Tregs) in humans and mice. This study examined the TNFR2 expression by Tregs of nasopharyngeal carcinoma (NPC) patients and healthy controls. The proliferation, migration, survival of TNFR2+ Tregs, and association with clinicopathological characteristics were assessed. The expression levels of selected cytokines were also determined. The results demonstrated that in both peripheral blood (PB) (10.45 ± 5.71%) and tumour microenvironment (TME) (54.38 ± 16.15%) of NPC patients, Tregs expressed TNFR2 at noticeably greater levels than conventional T cells (Tconvs) (3.91 ± 2.62%, p  0.05), the proportions of PB and TME TNFR2+ Tregs in NPC patients showed more proliferative, higher migration capacity, and better survival ability, as compared to those in healthy controls. Furthermore, TNFR2+ Tregs from NPC patients expressed significantly higher amounts of IL-6 (p = 0.0077), IL-10 (p = 0.0001), IFN-γ (p = 0.0105) and TNF-α (p 
  8. M Yusoff NNF, Ahmad S, Wan Abdul Rahman WF, Mohamud R, C Boer J, Plebanski M, et al.
    Cytokine, 2024 Jun;178:156557.
    PMID: 38452440 DOI: 10.1016/j.cyto.2024.156557
    Chronic rhinosinusitis with nasal polyps (CRSwNP) is a subtype of chronic rhinosinusitis (CRS) characterized by the presence of nasal polyps (NP) in the paranasal mucosa. Despite the complex etiology, NP is believed to result from chronic inflammation. The long-term aftermath of the type 2 response is responsible for symptoms seen in NP patients, i.e. rhinorrhea, hyposmia, and nasal obstruction. Immune cellular tolerogenic mechanisms, particularly CD4 + Foxp3 + regulatory T cells (Tregs), are crucial to curtail inflammatory responses. Current evidence suggests impaired Treg activity is the main reason underlying the compromise of self-tolerance, contributing to the onset of CRSwNP. There is compelling evidence that tumor necrosis factor 2 (TNFR2) is preferentially expressed by Tregs, and TNFR2 is able to identify the most potent suppressive subset of Tregs. Tumor necrosis factor (TNF)-TNFR2 interaction plays a decisive role in the activation and expansion of Tregs. This review summarizes current understanding of Tregs biology, focusing on the discussion of the recent advances in the study of TNF-TNFR2 axis in the upregulation of Treg function as a negative feedback mechanism in the control of chronic inflammation. The role of dysregulation of Tregs in the immunopathogenesis of CRSwNP will be analyzed. The future perspective on the harnessing Tregs-mediated self-tolerant mechanism in the management of CRSwNP will be introduced.
  9. Delcourt C, Wang X, Zhou Z, Wardlaw JM, Mair G, Robinson TG, et al.
    J Neurol Neurosurg Psychiatry, 2020 12;91(12):1290-1296.
    PMID: 33055145 DOI: 10.1136/jnnp-2020-323015
    OBJECTIVE: To test the hypothesis that imaging signs of 'brain frailty' and acute ischaemia predict clinical outcomes and symptomatic intracranial haemorrhage (sICH) after thrombolysis for acute ischaemic stroke (AIS) in the alteplase dose arm of ENhanced Control of Hypertension ANd Thrombolysis strokE stuDy (ENCHANTED).

    METHODS: Blinded assessors coded baseline images for acute ischaemic signs (presence, extent, swelling and attenuation of acute lesions; and hyperattenuated arteries) and pre-existing changes (atrophy, leucoaraiosis and old ischaemic lesions). Logistic regression models assessed associations between imaging features and death at 7 and 90 days; good recovery (modified Rankin Scale scores 0-2 at 90 days) and sICH. Data are reported with adjusted ORs and 95% CIs.

    RESULTS: 2916 patients (67±13 years, National Institutes of Health Stroke Scale 8 (5-14)) were included. Visible ischaemic lesions, severe hypoattenuation, large ischaemic lesion, swelling and hyperattenuated arteries were associated with 7-day death (OR (95% CI): 1.52 (1.06 to 2.18); 1.51 (1.01 to 2.18); 2.67 (1.52 to 4.71); 1.49 (1.03 to 2.14) and 2.17 (1.48 to 3.18)) and inversely with good outcome. Severe atrophy was inversely associated with 7-day death (0.52 (0.29 to 0.96)). Atrophy (1.52 (1.08 to 2.15)) and severe leucoaraiosis (1.74 (1.20 to 2.54)) were associated with 90-day death. Hyperattenuated arteries were associated with sICH (1.71 (1.01 to 2.89)). No imaging features modified the effect of alteplase dose.

    CONCLUSIONS: Non-expert-defined brain imaging signs of brain frailty and acute ischaemia contribute to the prognosis of thrombolysis-treated AIS patients for sICH and mortality. However, these imaging features showed no interaction with alteplase dose.

  10. Hu Y, Ran J, Zheng Z, Jin Z, Chen X, Yin Z, et al.
    Acta Biomater, 2018 04 15;71:168-183.
    PMID: 29524675 DOI: 10.1016/j.actbio.2018.02.019
    Anterior cruciate ligament (ACL) is one of the most difficult tissues to heal once injured. Ligament regeneration and tendon-bone junction healing are two major goals of ACL reconstruction. This study aimed to investigate the synergistic therapeutic effects of Stromal cell-derived factor 1 (SDF-1)-releasing collagen-silk (CSF) scaffold combined with intra-articular injection of ligament-derived stem/progenitor cells (LSPCs) for ACL regeneration and the amelioration in the long-term complication of osteoarthritis (OA). The stem cell recruitment ability of CSF scaffold and the multipotency, particularly the tendon forming ability of LSPCs from rabbits were characterized in vitro, while the synergistic effect of the CSF scaffold and LSPCs for ACL regeneration and OA amelioration were investigated in vivo at 1, 3, and 6 months with a rabbit ACL reconstruction model. The CSF scaffold was used as a substitute for the ACL, and LSPCs were injected into the joint cavity after 7 days of the ACL reconstruction. CSF scaffold displayed a controlled release pattern for the encapsulated protein for up to 7 days with an increased stiffness in the mechanical property. LSPCs, which exhibited highly I Collagen and CXCR4 expression, were attracted by SDF-1 and successfully relocated into the CSF scaffold at 1 month in vivo. At 3 and 6 months post-treatment, the CSF scaffold combined with LSPCs (CSFL group) enhanced the regeneration of ACL tissue, and promoted bone tunnel healing. Furthermore, the OA progression was impeded efficiently. Our findings here provided a new strategy that using stem cell recruiting CSF scaffold with tissue-specific stem cells, could be a promising solution for ACL regeneration.

    STATEMENT OF SIGNIFICANCE: In this study, we developed a silk scaffold with increased stiffness and SDF-1 controlled release capacity for ligament repair. This advanced scaffold transplantation combined with intra-articular injection of LSPCs (which was isolated from rabbit ligament for the first time in this study) promoted the regeneration of both the tendinous and bone tunnel portion of ACL. This therapeutic strategy also ameliorated cartilage degeneration and reduced the severity of arthrofibrosis. Hence, combining LSPCs injection with SDF-1-releasing silk scaffold is demonstrated as a therapeutic strategy for ACL regeneration and OA treatment in the clinic.

  11. Han M, Sun J, Yang Q, Liang Y, Jiang Y, Gao C, et al.
    mSystems, 2023 Feb 23.
    PMID: 36815859 DOI: 10.1128/msystems.01211-22
    The world's largest macroalgal green tide, caused by Ulva prolifera, has resulted in serious consequences for coastal waters of the Yellow Sea, China. Although viruses are considered to be one of the key factors in controlling microalgal bloom demise, understanding of the relationship between viral communities and the macroalgal green tide is still poor. Here, a Qingdao coastal virome (QDCV) time-series data set was constructed based on the metagenomic analysis of 17 DNA viromes along three coastal stations of the Yellow Sea, covering different stages of the green tide from Julian days 165 to 271. A total of 40,076 viral contigs were detected and clustered into 28,058 viral operational taxonomic units (vOTUs). About 84% of the vOTUs could not be classified, and 62% separated from vOTUs in other ecosystems. Green tides significantly influenced the spatiotemporal dynamics of the viral community structure, diversity, and potential functions. For the classified vOTUs, the relative abundance of Pelagibacter phages declined with the arrival of the bloom and rebounded after the bloom, while Synechococcus and Roseobacter phages increased, although with a time lag from the peak of their hosts. More than 80% of the vOTUs reached peaks in abundance at different specific stages, and the viral peaks were correlated with specific hosts at different stages of the green tide. Most of the viral auxiliary metabolic genes (AMGs) were associated with carbon and sulfur metabolism and showed spatiotemporal dynamics relating to the degradation of the large amount of organic matter released by the green tide. IMPORTANCE To the best of our knowledge, this study is the first to investigate the responses of viruses to the world's largest macroalgal green tide. It revealed the spatiotemporal dynamics of the unique viral assemblages and auxiliary metabolic genes (AMGs) following the variation and degradation of Ulva prolifera. These findings demonstrate a tight coupling between viral assemblages, and prokaryotic and eukaryotic abundances were influenced by the green tide.
  12. Qin S, Chen Z, Fang W, Ren Z, Xu R, Ryoo BY, et al.
    J Clin Oncol, 2023 Mar 01;41(7):1434-1443.
    PMID: 36455168 DOI: 10.1200/JCO.22.00620
    PURPOSE: We evaluated the efficacy and safety of pembrolizumab in patients from Asia with previously treated advanced hepatocellular carcinoma (HCC).

    METHODS: In a double-blind, phase III trial, 453 patients with advanced HCC and progression during or after treatment with or intolerance to sorafenib or oxaliplatin-based chemotherapy were randomly assigned in a 2:1 ratio to receive pembrolizumab (200 mg) or placebo once every 3 weeks for ≤ 35 cycles plus best supportive care. The primary end point was overall survival (one-sided significance threshold, P = .0193 [final analysis]). Secondary end points included progression-free survival (PFS) and objective response rate (ORR; one-sided significance threshold, P = .0134 and .0091, respectively [second interim analysis]; RECIST version 1.1, by blinded independent central review).

    RESULTS: Median overall survival was longer in the pembrolizumab group than in the placebo group (14.6 v 13.0 months; hazard ratio for death, 0.79; 95% CI, 0.63 to 0.99; P = .0180). Median PFS was also longer in the pembrolizumab group than in the placebo group (2.6 v 2.3 months; hazard ratio for progression or death, 0.74; 95% CI, 0.60 to 0.92; P = .0032). ORR was greater in the pembrolizumab group (12.7% [95% CI, 9.1 to 17.0]) than in the placebo group (1.3% [95% CI, 0.2 to 4.6]; P < .0001). Treatment-related adverse events occurred in 66.9% of patients (grade 3, 12.0%; grade 4, 1.3%; grade 5, 1.0%) in the pembrolizumab group and 49.7% of patients (grade 3, 5.9%; grade 4, 0%; grade 5, 0%) in the placebo group.

    CONCLUSION: In patients from Asia with previously treated advanced HCC, pembrolizumab significantly prolonged overall survival and PFS, and ORR was greater versus placebo.

  13. Xiao Y, Sloan J, Hepworth C, Fradera-Soler M, Mathers A, Thorley R, et al.
    New Phytol, 2023 Jan;237(2):441-453.
    PMID: 36271620 DOI: 10.1111/nph.18564
    Leaf structure plays an important role in photosynthesis. However, the causal relationship and the quantitative importance of any single structural parameter to the overall photosynthetic performance of a leaf remains open to debate. In this paper, we report on a mechanistic model, eLeaf, which successfully captures rice leaf photosynthetic performance under varying environmental conditions of light and CO2 . We developed a 3D reaction-diffusion model for leaf photosynthesis parameterised using a range of imaging data and biochemical measurements from plants grown under ambient and elevated CO2 and then interrogated the model to quantify the importance of these elements. The model successfully captured leaf-level photosynthetic performance in rice. Photosynthetic metabolism underpinned the majority of the increased carbon assimilation rate observed under elevated CO2 levels, with a range of structural elements making positive and negative contributions. Mesophyll porosity could be varied without any major outcome on photosynthetic performance, providing a theoretical underpinning for experimental data. eLeaf allows quantitative analysis of the influence of morphological and biochemical properties on leaf photosynthesis. The analysis highlights a degree of leaf structural plasticity with respect to photosynthesis of significance in the context of attempts to improve crop photosynthesis.
  14. Cale EM, Gorman J, Radakovich NA, Crooks ET, Osawa K, Tong T, et al.
    Immunity, 2017 05 16;46(5):777-791.e10.
    PMID: 28514685 DOI: 10.1016/j.immuni.2017.04.011
    Most HIV-1-specific neutralizing antibodies isolated to date exhibit unusual characteristics that complicate their elicitation. Neutralizing antibodies that target the V1V2 apex of the HIV-1 envelope (Env) trimer feature unusually long protruding loops, which enable them to penetrate the HIV-1 glycan shield. As antibodies with loops of requisite length are created through uncommon recombination events, an alternative mode of apex binding has been sought. Here, we isolated a lineage of Env apex-directed neutralizing antibodies, N90-VRC38.01-11, by using virus-like particles and conformationally stabilized Env trimers as B cell probes. A crystal structure of N90-VRC38.01 with a scaffolded V1V2 revealed a binding mode involving side-chain-to-side-chain interactions that reduced the distance the antibody loop must traverse the glycan shield, thereby facilitating V1V2 binding via a non-protruding loop. The N90-VRC38 lineage thus identifies a solution for V1V2-apex binding that provides a more conventional B cell pathway for vaccine design.
  15. Gelabert P, Sandoval-Velasco M, Serres A, de Manuel M, Renom P, Margaryan A, et al.
    Curr Biol, 2020 01 06;30(1):108-114.e5.
    PMID: 31839456 DOI: 10.1016/j.cub.2019.10.066
    As the only endemic neotropical parrot to have recently lived in the northern hemisphere, the Carolina parakeet (Conuropsis carolinensis) was an iconic North American bird. The last surviving specimen died in the Cincinnati Zoo in 1918 [1]. The cause of its extinction remains contentious: besides excessive mortality associated to habitat destruction and active hunting, their survival could have been negatively affected by its range having become increasingly patchy [2] or by the exposure to poultry pathogens [3, 4]. In addition, the Carolina parakeet showed a predilection for cockleburs, an herbaceous plant that contains a powerful toxin, carboxyatractyloside, or CAT [5], which did not seem to affect them but made the birds notoriously toxic to most predators [3]. To explore the demographic history of this bird, we generated the complete genomic sequence of a preserved specimen held in a private collection in Espinelves (Girona, Spain), as well as of a close extant relative, Aratinga solstitialis. We identified two non-synonymous genetic changes in two highly conserved proteins known to interact with CAT that could underlie a specific dietary adaptation to this toxin. Our genomic analyses did not reveal evidence of a dramatic past demographic decline in the Carolina parakeet; also, its genome did not exhibit the long runs of homozygosity that are signals of recent inbreeding and are typically found in endangered species. As such, our results suggest its extinction was an abrupt process and thus likely solely attributable to human causes.
  16. Hu QL, Zhuo JC, Fang GQ, Lu JB, Ye YX, Li DT, et al.
    Sci Adv, 2024 Apr 26;10(17):eadk3852.
    PMID: 38657063 DOI: 10.1126/sciadv.adk3852
    Many insect pests, including the brown planthopper (BPH), undergo windborne migration that is challenging to observe and track. It remains controversial about their migration patterns and largely unknown regarding the underlying genetic basis. By analyzing 360 whole genomes from around the globe, we clarify the genetic sources of worldwide BPHs and illuminate a landscape of BPH migration showing that East Asian populations perform closed-circuit journeys between Indochina and the Far East, while populations of Malay Archipelago and South Asia undergo one-way migration to Indochina. We further find round-trip migration accelerates population differentiation, with highly diverged regions enriching in a gene desert chromosome that is simultaneously the speciation hotspot between BPH and related species. This study not only shows the power of applying genomic approaches to demystify the migration in windborne migrants but also enhances our understanding of how seasonal movements affect speciation and evolution in insects.
  17. Kong TW, Ryu HS, Kim SC, Enomoto T, Li J, Kim KH, et al.
    J Gynecol Oncol, 2019 Mar;30(2):e39.
    PMID: 30740961 DOI: 10.3802/jgo.2019.30.e39
    The Asian Society of Gynecologic Oncology International Workshop 2018 on gynecologic oncology was held in the Ajou University Hospital, Suwon, Korea on the 24th to 25th August 2018. The workshop was an opportunity for Asian doctors to discuss the latest findings of gynecologic cancer, including cervical, ovarian, and endometrial cancers, as well as the future of fertility-sparing treatments, minimally invasive/radical/debulking surgery, radiotherapy, chemotherapy, targeted therapy, and immunotherapy. Clinical guidelines and position statement of Asian countries were presented by experts. Asian clinical trials for gynecologic cancers were reviewed and experts emphasized the point that original Asian study is beneficial for Asian patients. In Junior session, young gynecologic oncologists presented their latest research on gynecologic cancers.
  18. Chaisson MJP, Sanders AD, Zhao X, Malhotra A, Porubsky D, Rausch T, et al.
    Nat Commun, 2019 04 16;10(1):1784.
    PMID: 30992455 DOI: 10.1038/s41467-018-08148-z
    The incomplete identification of structural variants (SVs) from whole-genome sequencing data limits studies of human genetic diversity and disease association. Here, we apply a suite of long-read, short-read, strand-specific sequencing technologies, optical mapping, and variant discovery algorithms to comprehensively analyze three trios to define the full spectrum of human genetic variation in a haplotype-resolved manner. We identify 818,054 indel variants (<50 bp) and 27,622 SVs (≥50 bp) per genome. We also discover 156 inversions per genome and 58 of the inversions intersect with the critical regions of recurrent microdeletion and microduplication syndromes. Taken together, our SV callsets represent a three to sevenfold increase in SV detection compared to most standard high-throughput sequencing studies, including those from the 1000 Genomes Project. The methods and the dataset presented serve as a gold standard for the scientific community allowing us to make recommendations for maximizing structural variation sensitivity for future genome sequencing studies.
  19. Swami V, Tran US, Stieger S, Aavik T, Ranjbar HA, Adebayo SO, et al.
    Body Image, 2023 Sep;46:449-466.
    PMID: 37582318 DOI: 10.1016/j.bodyim.2023.07.010
    The Body Appreciation Scale-2 (BAS-2) is a widely used measure of a core facet of the positive body image construct. However, extant research concerning measurement invariance of the BAS-2 across a large number of nations remains limited. Here, we utilised the Body Image in Nature (BINS) dataset - with data collected between 2020 and 2022 - to assess measurement invariance of the BAS-2 across 65 nations, 40 languages, gender identities, and age groups. Multi-group confirmatory factor analysis indicated that full scalar invariance was upheld across all nations, languages, gender identities, and age groups, suggesting that the unidimensional BAS-2 model has widespread applicability. There were large differences across nations and languages in latent body appreciation, while differences across gender identities and age groups were negligible-to-small. Additionally, greater body appreciation was significantly associated with higher life satisfaction, being single (versus being married or in a committed relationship), and greater rurality (versus urbanicity). Across a subset of nations where nation-level data were available, greater body appreciation was also significantly associated with greater cultural distance from the United States and greater relative income inequality. These findings suggest that the BAS-2 likely captures a near-universal conceptualisation of the body appreciation construct, which should facilitate further cross-cultural research.
  20. Wang A, Shen J, Rodriguez AA, Saunders EJ, Chen F, Janivara R, et al.
    Nat Genet, 2023 Dec;55(12):2065-2074.
    PMID: 37945903 DOI: 10.1038/s41588-023-01534-4
    The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links