Displaying publications 61 - 80 of 176 in total

Abstract:
Sort:
  1. Mod Razif MRF, Chan SY, Widodo RT, Chew YL, Hassan M, Hisham SA, et al.
    Cancers (Basel), 2023 Jul 24;15(14).
    PMID: 37509402 DOI: 10.3390/cancers15143741
    BACKGROUND: Luteolin is a flavonoid compound that has been widely studied for its various anti-cancer properties and sensitization to multidrug-resistant cells. However, the limited solubility and bioavailability of Lut hindered its potential clinical use. Theoretically, the combination of this compound with vitamin E TPGS and poloxamer 407 can produce a synergistic effect to enhance tumor apoptosis and P-glycoprotein inhibition. This study aimed to develop and optimize vitamin E TPGS/Poloxamer 407 micelles loaded with luteolin through investigating certain factors that can affect the encapsulation efficiency and particle size of the micelle.

    METHODS: A micelle was prepared using the film hydration method, and the micellar solution was lyophilized. The cake formed was analyzed. The factors investigated include the concentrations of the surfactants, ratio of vitamin E TPGS/Poloxamer 407, temperature of the hydrating solution, duration of hydration, and freezing temperature before lyophilization. The effects of these factors on the encapsulation efficiency and particle size of the micelle were also studied. The encapsulation efficiency was measured using a UV-Vis spectrophotometer, while particle size was measured using dynamic light scattering.

    RESULTS: The optimized micelle was found to have 90% encapsulation efficiency with a particle size of less than 40 nm, which was achieved using a 10% concentration of surfactants at a vitamin E TPGS/Poloxamer 407 ratio of 3:1. The optimized temperature for hydrating the micellar film was 40 °C, the optimized mixing time was 1 h, and the optimized freezing temperature was -80 °C. The solubility of the luteolin-loaded micelles increased 459-fold compared to pure Lut in water. The critical micelle concentration of the vitamin E TPGS/Poloxamer 407 micelle was 0.001 mg/mL, and the release study showed that luteolin-loaded micelles exhibited sustained release behavior. The release of luteolin from a micelle was found to be higher in pH 6.8 compared to pH 7.4, which signified that luteolin could be accumulated more in a tumor microenvironment compared to blood.

    CONCLUSION: This study demonstrated that several factors need to be considered when developing such nanoparticles in order to obtain a well-optimized micelle.

  2. Mitchell RE, Hassan M, Burton BR, Britton G, Hill EV, Verhagen J, et al.
    Sci Rep, 2017 Sep 12;7(1):11315.
    PMID: 28900244 DOI: 10.1038/s41598-017-11803-y
    IL-10 is an immunomodulatory cytokine with a critical role in limiting inflammation in immune-mediated pathologies. The mechanisms leading to IL-10 expression by CD4(+) T cells are being elucidated, with several cytokines implicated. We explored the effect of IL-4 on the natural phenomenon of IL-10 production by a chronically stimulated antigen-specific population of differentiated Th1 cells. In vitro, IL-4 blockade inhibited while addition of exogenous IL-4 to Th1 cultures enhanced IL-10 production. In the in vivo setting of peptide immunotherapy leading to a chronically stimulated Th1 phenotype, lack of IL-4Rα inhibited the induction of IL-10. Exploring the interplay of Th1 and Th2 cells through co-culture, Th2-derived IL-4 promoted IL-10 expression by Th1 cultures, reducing their pathogenicity in vivo. Co-culture led to upregulated c-Maf expression with no decrease in the proportion of T-bet(+) cells in these cultures. Addition of IL-4 also reduced the encephalitogenic capacity of Th1 cultures. These data demonstrate that IL-4 contributes to IL-10 production and that Th2 cells modulate Th1 cultures towards a self-regulatory phenotype, contributing to the cross-regulation of Th1 and Th2 cells. These findings are important in the context of Th1 driven diseases since they reveal how the Th1 phenotype and function can be modulated by IL-4.
  3. Mat-Salleh MF, Sadagatullah AN, Ibrahim MY, Abdul-Aziz I, Wan-Abdullah WA, Maning N, et al.
    Malays Orthop J, 2021 Jul;15(2):70-76.
    PMID: 34429825 DOI: 10.5704/MOJ.2107.011
    Introduction: A dilemma arises when a bone graft or fracture fragment is accidentally dropped on the operation theatre floor and becomes contaminated. This study aimed to determine the efficacy of simple and readily available antiseptic solutions in disinfecting contaminated bones.

    Material and Methods: This experimental study involved 225 bone specimens prepared from discarded bone fragments during a series of 45 knee and hip arthroplasty surgeries. The bone fragments were cut into five identical cubes and were randomly assigned to either control (positive or negative), or experimental groups (0.5% chlorhexidine, 10% povidone-iodine or 70% alcohol). The control negative was to determine pre-contamination culture. All bone specimens, except the control negative group were uniformly contaminated by dropping on the operation theatre floor. Subsequently, the dropped bone specimens except for the control positive group, were disinfected by immersing in a respective antiseptic solution for 10 minutes, before transported to the microbiology laboratory for incubation.

    Results: The incidence of a positive culture from a dropped bone fragment was 86.5%. From the 37 specimens sent for each group, the incidence of positive culture was 5.4% (2 specimens) after being disinfected using chlorhexidine, 67.6% (25 specimens) using povidone-iodine and 81.1% (30 specimens) using alcohol. Simple logistic regression analysis demonstrated that chlorhexidine was significantly effective in disinfecting contaminated bones (p-value <0.001, odd ratio 0.009). Povidone-iodine and alcohol were not statistically significant (p-value 0.059 and 0.53, respectively). Organisms identified were Bacillus species and coagulase negative Staphylococcus. No gram-negative bacteria were isolated.

    Conclusion: A total of 0.5% chlorhexidine is effective and superior in disinfecting contaminated bones.

  4. Masliza W, Daud W, Yazid Bajuri M, Shuhaila A, Hatta S, Rohaizat Hassan M, et al.
    Clin Ter, 2014;165(2):83-9.
    PMID: 24770809 DOI: 10.7471/CT.2014.1681
    Female sexual dysfunction (FSD) has a major impact on interpersonal relationships and quality of life. For many women it has been emotionally distressing, physically disconcerting, and socially disruptive. To determine the prevalence and factors that contribute to female sexual dysfunction (FSD) and to evaluate the different sexual domains that influence sexual function amongst post menopausal women.
  5. Mahmoodian R, Hamdi M, Hassan MA, Akbari A
    PLoS One, 2015;10(6):e0130836.
    PMID: 26111217 DOI: 10.1371/journal.pone.0130836
    Titanium carbide-graphite (TiC/C) composite was successfully synthesized from Ti and C starting elemental powders using self-propagating high-temperature synthesis technique in an ultra-high plasma inert medium in a single stage. The TiC was exposed to a high-temperature inert medium to allow recrystallization. The product was then characterized using field emission scanning electron microscopy (FESEM) coupled with energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), Rietveld refinement, nanoindentation, and micro-hardness to determine the product's properties. The recorded micro-hardness of the product was 3660 HV, which is a 14% enhancement and makes is comparable to TiC materials.
  6. Loh CW, Fakhru'l-Razi A, Hassan MA, Karim MI
    PMID: 10595448
    This study involves the production of short-chain organic acids from kitchen wastes as intermediates for the production of biodegradable plastics. Flasks, without mixing were used for the anaerobic conversion of the organic fraction of kitchen wastes into short-chain organic acids. The influence of pH, temperature and addition of sludge cake on the rate of organic acids production and yield were evaluated. Fermentations were carried out in an incubator at different temperatures controlled at 30 degrees C. 40 degrees C, 50 degrees C, 60 degrees C and uncontrolled at room temperature. The pH was also varied at pH 5, 6, 7, and uncontrolled pH. 1.0 M phosphate buffer was used for pH control, and 1.0 M HCl and 1.0 M NaOH were added when necessary. Sludge cake addition enhanced the rate of maximum acids production from 4 days to 1 day. The organic acids produced were maximum at pH 7 and 50 degrees C i.e., 39.84 g/l on the fourth day of fermentation with a yield of 0.87 g/g soluble COD consumed, and 0.84 g/g TVS. The main organic acid produced was lactic acid (65-85%), with small amounts of acetic (10-30%), propionic (5-10%), and butyric (5-20%) acids. The results of this study showed that kitchen wastes could be fermented to high concentration of organic acids, which could be used as substrates for the production of biodegradable plastics.
  7. Lim CP, Loo AV, Khaw KW, Sthaneshwar P, Khang TF, Hassan M, et al.
    Br J Ophthalmol, 2012 May;96(5):704-7.
    PMID: 22353698 DOI: 10.1136/bjophthalmol-2011-301044
    To compare homocysteine (Hcy) concentration in the blood plasma, vitreous and aqueous of eyes with proliferative diabetic retinopathy (PDR) against control, and to investigate associations between Hcy concentration in blood plasma with that of aqueous and vitreous in these two groups.
  8. Liew JWK, Selvarajoo S, Phang WK, Mah Hassan M, Redzuan MS, Selva Kumar S, et al.
    Acta Trop, 2021 Apr;216:105829.
    PMID: 33465350 DOI: 10.1016/j.actatropica.2021.105829
    The aim of this study is to investigate the feasibility and outcomes of using Gravid Oviposition Sticky (GOS) trap and dengue NS1 antigen tests for indoor and outdoor dengue/Aedes surveillance in the field. A one-year community-based study was carried out at Sungai Buloh Hospital Quarters, Selangor, Malaysia. GOS traps were first placed outdoors in three apartment blocks (Anggerik, Bunga Raya and Mawar). Beginning 29th week of the study, indoor traps were set in two apartment units on every floor in Anggerik. All female Aedes mosquitoes caught were tested for the presence of dengue NS1 antigen. Dengue seroprevalence and knowledge, attitude and practices on dengue prevention of the community and their reception to the surveillance approach were also assessed. Dengue-positive mosquitoes were detected at least 1 week before a dengue onset. More mosquitoes were caught indoors than outdoors in block Anggerik, but the total number of mosquitoes caught in all 3 blocks were similar. There was a significant difference in distribution of Ae. aegypti and Ae. albopictus between the 3 blocks. 66.1% and 3.4% of the community were positive for dengue IgG and IgM, respectively. Most respondents think that this surveillance method is Good (89%) and support its use nationwide. Dengue case ratio in the study apartment blocks decreased from year 2018 to 2019. This study demonstrated the practicality of performing proactive dengue/Aedes surveillance inside apartment units using the GOS traps. This surveillance method can be performed with immediate result output in the field.
  9. Leng J, Qin HL, Zhu K, Jantan I, Hussain MA, Sher M, et al.
    Chem Biol Drug Des, 2016 Jul 19.
    PMID: 27434226 DOI: 10.1111/cbdd.12822
    Neurodegeneration, a complex disease state, comprises several pathways that contribute to cell death. Conventional approach of targeting only one of these pathways has not been proven to be entirely successful and has demanded a hypothetical change as to how researchers design and develop new drugs. In this study, effects of a series of α, β-unsaturated carbonyl-based tetralone derivatives against Alzheimer's disease (AD) were investigated. Moreover, their activity toward amyloid β-induced cytotoxicity was also studied. Six compounds including 3f, 3o, 3u, 3ae, 3af, and 3ag were discovered to be most protective against Aβ-induced neuronal cell death in PC12 cells. The findings of in vitro experiment revealed that most of these compounds exhibited potent inhibitory activity against MAO-B, AChE, and self-induced Aβ1-42 aggregation. The compound 3f exhibited best AChE (IC50  = 0.045 ± 0.02 μm) inhibitory potential in addition to potent inhibition of MAO-B (IC50  = 0.88 ± 0.12 μm). Furthermore, compound 3f disassembled the Aβ fibrils produced by self-induced Aβ aggregation by 78.2 ± 4.8%. Collectively, these findings suggest that some compounds from this series have potential to be promising multifunctional agents for AD treatment.
  10. Lee CH, Sapuan SM, Lee JH, Hassan MR
    Springerplus, 2016;5(1):1680.
    PMID: 27733982
    A study of the melt volume flow rate (MVR) and the melt flow rate (MFR) of kenaf fibre (KF) reinforced Floreon (FLO) and magnesium hydroxide (MH) biocomposites under different temperatures (160-180 °C) and weight loadings (2.16, 5, 10 kg) is presented in this paper. FLO has the lowest values of MFR and MVR. The increment of the melt flow properties (MVR and MFR) has been found for KF or MH insertion due to the hydrolytic degradation of the polylactic acid in FLO. Deterioration of the entanglement density at high temperature, shear thinning and wall slip velocity were the possible causes for the higher melt flow properties. Increasing the KF loadings caused the higher melt flow properties while the higher MH contents created stronger bonding for higher macromolecular chain flow resistance, hence lower melt flow properties were recorded. However, the complicated melt flow behaviour of the KF reinforced FLO/MH biocomposites was found in this study. The high probability of KF-KF and KF-MH collisions was expected and there were more collisions for higher fibre and filler loading causing lower melt flow properties.
  11. Laith AA, Ambak MA, Hassan M, Sheriff SM, Nadirah M, Draman AS, et al.
    Vet World, 2017 Jan;10(1):101-111.
    PMID: 28246454 DOI: 10.14202/vetworld.2017.101-111
    AIM: The main objective of this study was to emphasize on histopathological examinations and molecular identification of Streptococcus agalactiae isolated from natural infections in hybrid tilapia (Oreochromis niloticus) in Temerloh Pahang, Malaysia, as well as to determine the susceptibility of the pathogen strains to various currently available antimicrobial agents.

    MATERIALS AND METHODS: The diseased fishes were observed for variable clinical signs including fin hemorrhages, alterations in behavior associated with erratic swimming, exophthalmia, and mortality. Tissue samples from the eyes, brain, kidney, liver, and spleen were taken for bacterial isolation. Identification of S. agalactiae was screened by biochemical methods and confirmed by VITEK 2 and 16S rRNA gene sequencing. The antibiogram profiling of the isolate was tested against 18 standard antibiotics included nitrofurantoin, flumequine, florfenicol, amoxylin, doxycycline, oleandomycin, tetracycline, ampicillin, lincomycin, colistin sulfate, oxolinic acid, novobiocin, spiramycin, erythromycin, fosfomycin, neomycin, gentamycin, and polymyxin B. The histopathological analysis of eyes, brain, liver, kidney, and spleen was observed for abnormalities related to S. agalactiae infection.

    RESULTS: The suspected colonies of S. agalactiae identified by biochemical methods was observed as Gram-positive chained cocci, β-hemolytic, and non-motile. The isolate was confirmed as S. agalactiae by VITEK 2 (99% similarity), reconfirmed by 16S rRNA gene sequencing (99% similarity) and deposited in GenBank with accession no. KT869025. The isolate was observed to be resistance to neomycin and gentamicin. The most consistent gross findings were marked hemorrhages, erosions of caudal fin, and exophthalmos. Microscopic examination confirmed the presence of marked congestion and infiltration of inflammatory cell in the eye, brain, kidney, liver, and spleen. Eye samples showed damage of the lens capsule, hyperemic and hemorrhagic choroid tissue, and retina hyperplasia accompanied with edema. Brain samples showed perivascular and pericellular edema and hemorrhages of the meninges. Kidney samples showed hemorrhage and thrombosis in the glomeruli and tubules along with atrophy in hematopoietic tissue. Liver samples showed congestion of the sinusoids and blood vessel, thrombosis of portal blood vessel, and vacuolar (fatty) degeneration of hepatocytes. Spleen samples showed large thrombus in the splenic blood vessel, multifocal hemosiderin deposition, congestion of blood vessels, and multifocal infiltration of macrophages.

    CONCLUSION: Therefore, it can be concluded that pathological changes in tissues and organs of fish occur proportionally to the pathogen invasion, and because of their high resistance, neomycin and gentamicin utilization in the prophylaxis or treatment of S. agalactiae infection should be avoided.

  12. Khormi HM, Kumar L
    Geospat Health, 2016 11 21;11(3):416.
    PMID: 27903054 DOI: 10.4081/gh.2016.416
    We used the Model for Interdisciplinary Research on Climate-H climate model with the A2 Special Report on Emissions Scenarios for the years 2050 and 2100 and CLIMEX software for projections to illustrate the potential impact of climate change on the spatial distributions of malaria in China, India, Indochina, Indonesia, and The Philippines based on climate variables such as temperature, moisture, heat, cold and dryness. The model was calibrated using data from several knowledge domains, including geographical distribution records. The areas in which malaria has currently been detected are consistent with those showing high values of the ecoclimatic index in the CLIMEX model. The match between prediction and reality was found to be high. More than 90% of the observed malaria distribution points were associated with the currently known suitable climate conditions. Climate suitability for malaria is projected to decrease in India, southern Myanmar, southern Thailand, eastern Borneo, and the region bordering Cambodia, Malaysia and the Indonesian islands, while it is expected to increase in southern and south-eastern China and Taiwan. The climatic models for Anopheles mosquitoes presented here should be useful for malaria control, monitoring, and management, particularly considering these future climate scenarios.
  13. Khan ZUR, Assad N, Naeem-Ul-Hassan M, Sher M, Alatawi FS, Alatawi MS, et al.
    BMC Chem, 2023 Sep 28;17(1):128.
    PMID: 37770921 DOI: 10.1186/s13065-023-01047-5
    In this study, a polar extract of Aconitum lycoctonum L. was used for the synthesis of silver nanoparticles (AgNPs), followed by their characterization using different techniques and evaluation of their potential as antioxidants, amylase inhibitors, anti-inflammatory and antibacterial agents. The formation of AgNPs was detected by a color change, from transparent to dark brown, within 15 min and a surface resonance peak at 460 nm in the UV-visible spectrum. The FTIR spectra confirmed the involvement of various biomolecules in the synthesis of AgNPs. The average diameter of these spherical AgNPs was 67 nm, as shown by the scanning electron micrograph. The inhibition zones showed that the synthesized nanoparticles inhibited the growth of Gram-positive and negative bacteria. FRAP and DPPH assays were used to demonstrate the antioxidant potential of AgNPs. The highest value of FRAP (50.47% AAE/mL) was detected at a concentration of 90 ppm and a DPPH scavenging activity of 69.63% GAE was detected at a concentration of 20 µg/mL of the synthesized AgNPs. 500 µg/mL of the synthesized AgNPs were quite efficient in causing 91.78% denaturation of ovalbumin. The AgNPs mediated by A. lycoctonum also showed an inhibitory effect on α-amylase. Therefore, AgNPs synthesized from A. lycoctonum may serve as potential candidates for antibacterial, antioxidant, anti-inflammatory, and antidiabetic agents.
  14. Ker DS, Pang SL, Othman NF, Kumaran S, Tan EF, Krishnan T, et al.
    PeerJ, 2017;5:e2961.
    PMID: 28265494 DOI: 10.7717/peerj.2961
    BACKGROUND: Sesquiterpenes are 15-carbon terpenes synthesized by sesquiterpene synthases using farnesyl diphosphate (FPP) as a substrate. Recently, a sesquiterpene synthase gene that encodes a 65 kDa protein was isolated from the aromatic plant Persicaria minor. Here, we report the expression, purification and characterization of recombinant P. minor sesquiterpene synthase protein (PmSTS). Insights into the catalytic active site were further provided by structural analysis guided by multiple sequence alignment.

    METHODS: The enzyme was purified in two steps using affinity and size exclusion chromatography. Enzyme assays were performed using the malachite green assay and enzymatic product was identified using gas chromatography-mass spectrometry (GC-MS) analysis. Sequence analysis of PmSTS was performed using multiple sequence alignment (MSA) against plant sesquiterpene synthase sequences. The homology model of PmSTS was generated using I-TASSER server.

    RESULTS: Our findings suggest that the recombinant PmSTS is mainly expressed as inclusion bodies and soluble aggregate in the E. coli protein expression system. However, the addition of 15% (v/v) glycerol to the protein purification buffer and the removal of N-terminal 24 amino acids of PmSTS helped to produce homogenous recombinant protein. Enzyme assay showed that recombinant PmSTS is active and specific to the C15 substrate FPP. The optimal temperature and pH for the recombinant PmSTS are 30 °C and pH 8.0, respectively. The GC-MS analysis further showed that PmSTS produces β-sesquiphellandrene as a major product and β-farnesene as a minor product. MSA analysis revealed that PmSTS adopts a modified conserved metal binding motif (NSE/DTE motif). Structural analysis suggests that PmSTS may binds to its substrate similarly to other plant sesquiterpene synthases.

    DISCUSSION: The study has revealed that homogenous PmSTS protein can be obtained with the addition of glycerol in the protein buffer. The N-terminal truncation dramatically improved the homogeneity of PmSTS during protein purification, suggesting that the disordered N-terminal region may have caused the formation of soluble aggregate. We further show that the removal of the N-terminus disordered region of PmSTS does not affect the product specificity. The optimal temperature, optimal pH, Km and kcat values of PmSTS suggests that PmSTS shares similar enzyme characteristics with other plant sesquiterpene synthases. The discovery of an altered conserved metal binding motif in PmSTS through MSA analysis shows that the NSE/DTE motif commonly found in terpene synthases is able to accommodate certain level of plasticity to accept variant amino acids. Finally, the homology structure of PmSTS that allows good fitting of substrate analog into the catalytic active site suggests that PmSTS may adopt a sesquiterpene biosynthesis mechanism similar to other plant sesquiterpene synthases.

  15. Ker DS, Chan KG, Othman R, Hassan M, Ng CL
    Phytochemistry, 2020 May;173:112286.
    PMID: 32059132 DOI: 10.1016/j.phytochem.2020.112286
    The chemical formation of terpenes in nature is carried out by terpene synthases as the main biocatalysts to guide the carbocation intermediate to form structurally diverse compounds including acyclic, mono- and multiple cyclic products. Despite intensive study of the enzyme active site, the mechanism of specific terpene biosynthesis remains unclear. Here we demonstrate that a single mutation of the amino acid L454G or L454A in the active site of Persicaria minor β-sesquiphellandrene synthase leads to a more promiscuous enzyme that is capable of producing additional hydroxylated sesquiterpenes such as sesquicineole, sesquisabinene hydrate and α-bisabolol. Furthermore, the same L454 residue mutation (L454G or L454A) in the active site also improves the protein homogeneity compared to the wild type protein. Taken together, our results demonstrate that residue Leucine 454 in the active site of β-sesquiphellandrene synthase is important for sesquiterpene product diversity as well as the protein homogeneity in solution.
  16. Kee CY, Hassan M, Ramachandran KB
    PMID: 10595438
    The objective of this research was to study the kinetics of synthesis of a commercially important ester - Isopropyl Palmitate (IPP) using immobilized lipase (Lipozyme IM). It was studied in a packed bed differential reactor. In order to establish the kinetics of the reaction, parameters such as linear velocity of the fluid through the reactor, particle size, substrate concentration, substrate molar ratio, temperature and water activity were studied. Operational and storage stability of the enzyme were also assessed. The reaction followed Michaelis-Menton kinetics as observed from the relationship of initial rate of the reaction as a function of substrate concentration. It was found that the optimum substrate concentration was 0.15M palmitic acid and isopropyl alcohol in 1:1 stoichiometric ratio. Inhibition by excess of isopropyl alcohol has been identified. The optimum temperature for the esterification reaction was found to be around 50 degrees C. The activation energy of this process was determined to be 43.67 kJ/mol. The optimum water content was 0.50%. The reaction rates were measured in the absence of any significant external diffusional limitations. Since internal diffusional limitations could not be eliminated, the kinetics observed is only apparent.
  17. Karim, N.U., Sadzali, N.L., Hassan, M.
    MyJurnal
    The effects of squid ink at concentration of 0.10 and 0.25% on the total bacteria count and
    chemical spoilage indicator; total volatile basis nitrogen (TVBN) and trimethylamine (TMA)
    of squid (Loligo duvauceli) were analysed. The analysis were performed at interval of 5 days
    during 15 days of chilled storage (4°C). This studies also investigate the antioxidant capacity
    of the squid ink. The melanin-free squid ink were subjected to ferric reducing power (FRAP)
    and 2,2-diphenyl-1-picrylhydrazyl (DPPH) analysis. The FRAP values found in squid ink were
    0.04±0.01 µmole TE g-1 meanwhile DPPH values were recorded at 0.81±0.00 µmole TE g-1.
    The squid ink at both 0.10 and 0.25% concentration showed a significantly (p
  18. Kamarudin, K.H., Isa, M.I.N., Hassan, M.
    ASM Science Journal, 2018;11(101):29-36.
    MyJurnal
    Supercapacitors attract great interest among researchers as energy storage devices due to
    their high power capability and long cycle life. In this research, the electrochemical performance
    of electrical double layer capacitor (EDLC) based solid bio-polymer electrolyte
    (SBE) was studied. SBE consists of carboxymethyl cellulose (CMC) and ammonium nitrate
    (NH4NO3) was prepared by solution casting technique. The electrical impedance spectroscopy
    was used to verify the conductivity of SBE. The average conductivity was achieved
    at ∼ 10−3 S/cm. This research aims to prepare SBE and apply in the fabrication of EDLC.
    Scanning electron microscopy analysis showed the smooth and homogeneous surface of SBE
    film without any phase separation, while irregular shape and sizes of particles was found
    on the surface of electrode. Elemental identification results yielded that all corresponding
    elements presence in the SBE and electrode. The EDLC performance was characterized
    using galvanostatic charge-discharge at different constant currents. Charge-discharge studies
    showed that long discharge time (90 minutes) within 11 cycle was observed at 2µA. The
    highest specific capacitance of 1.8 F/g was discovered at 4µA. This study showed that EDLC
    based SBE has a promising potential to be applied in low current applications.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links