METHODS: Data pertaining to 4,501 colorectal carcinoma patients were extracted from the national colorectal registry and analysed. Survival analysis was performed using the Kaplan-Meier method. The log-rank test was used to compare the survival rate between patients with intestinal obstruction and those without intestinal obstruction. The p-values<0.05 were considered to indicate statistical significance. Simple Cox proportional hazards regression analysis was used to estimate the crude hazard ratio of mortality from colorectal cancer.
RESULTS: Intestinal obstruction was reported in more than 13% of patients. The 3-year survival rate after treatment was 48.3% (95% confidence interval [CI], 43.9 to 52.8) for patients with intestinal obstruction (n=593) and 54.9% (95% CI, 53.1 to 56.6) for patients without intestinal obstruction (n=3,908). The 5-year survival rate for patients with intestinal obstruction was 37.3% (95% CI, 31.9 to 42.8), which was lower than that of patients without intestinal obstruction (45.6%; 95% CI, 43.5 to 47.7). After adjusting the hazard ratio for other prognostic variables, intestinal obstruction had a statistically significant negative correlation with the survival rate of colorectal cancer patients, with an adjusted hazard ratio of 1.22 (p=0.008).
CONCLUSIONS: The presence of intestinal obstruction is associated with a lower survival rate among colorectal cancer patients.
RESULT: SPME GC-MS analysis showed the highest terpenoid accumulation on the 6th day post-inoculation (dpi) compared to the other treatment time points (0 dpi, 3 dpi, and 9 dpi). Among the increased terpenoid compounds, α-cedrene, valencene and β-bisabolene were prominent. P. minor inoculated for 6 days was selected for miRNA library construction using next generation sequencing. Differential gene expression analysis showed that 58 miRNAs belonging to 30 families had significantly altered regulation.
Among these 58 differentially expressed genes (DEGs), 27 [corrected] miRNAs were upregulated, whereas 31 [corrected] miRNAs were downregulated. Two putative novel pre-miRNAs were identified and validated through reverse transcriptase PCR. Prediction of target transcripts potentially involved in the mevalonate pathway (MVA) was carried out by psRobot software, resulting in four miRNAs: pmi-miR530, pmi-miR6173, pmi-miR6300 and a novel miRNA, pmi-Nov_13. In addition, two miRNAs, miR396a and miR398f/g, were predicted to have their target transcripts in the non-mevalonate pathway (MEP). In addition, a novel miRNA, pmi-Nov_12, was identified to have a target gene involved in green leaf volatile (GLV) biosynthesis. RT-qPCR analysis showed that pmi-miR6173, pmi-miR6300 and pmi-nov_13 were downregulated, while miR396a and miR398f/g were upregulated. Pmi-miR530 showed upregulation at 9 dpi, and dynamic expression was observed for pmi-nov_12. Pmi-6300 and pmi-miR396a cleavage sites were detected through degradome sequence analysis. Furthermore, the relationship between miRNA metabolites and mRNA metabolites was validated using correlation analysis.
CONCLUSION: Our findings suggest that six studied miRNAs post-transcriptionally regulate terpenoid biosynthesis in P. minor. This regulatory behaviour of miRNAs has potential as a genetic tool to regulate terpenoid biosynthesis in P. minor.
Objectives: In this study, we aimed to report the complete nucleotide sequence of Malaysian isolate of Rice tungro spherical virus Seberang Perai (RTSV-SP) for the first time. RTSV-SP was characterized and its evolutionary relationship with previously reported Indian and Philippines isolates were elucidated.
Materials and Methods: RTSV-SP isolate was isolated from a recent outbreak in a paddy field in Seberang Perai zone of Malaysia. Its complete genome was amplified by RT-PCR, cloned and sequenced.
Results: Sequence analysis indicated that the genome of RTSV-SP consisted of 12,173 nucleotides (nt). Comparative analysis of 6 complete genome sequences using Clustal Omega showed that Seberang Perai isolate shared the highest nucleotide identity (96.04%) with Philippine-A isolate, except that the sORF-2 of RTSV-SP is shorter than RTSV Philippine-A by 27 amino acid residues. RTSV-SP found to cluster in Southeast Asia (SEA) group based on the whole genome sequence phylogenetic analysis using MEGA X software.
Conclusions: Phylogenetic classification of RTSV isolates based on the complete nucleotide sequences showed more distinctive clustering pattern with the addition of RTSV-SP whole genome to the available isolates. Present study described the isolation and molecular characterization of RTSV-SP.