Displaying publications 61 - 80 of 101 in total

Abstract:
Sort:
  1. Bose RJC, Tharmalingam N, Choi Y, Madheswaran T, Paulmurugan R, McCarthy JR, et al.
    Int J Nanomedicine, 2020;15:8437-8449.
    PMID: 33162754 DOI: 10.2147/IJN.S271850
    BACKGROUND: Lipid polymer hybrid nanoparticles (LPHNPs) have been widely investigated in drug and gene delivery as well as in medical imaging. A knowledge of lipid-based surface engineering and its effects on how the physicochemical properties of LPHNPs affect the cell-nanoparticle interactions, and consequently how it influences the cytological response, is in high demand.

    METHODS: Herein, we have engineered antibiotic-loaded (doxycycline or vancomycin) LPHNPs with cationic and zwitterionic lipids and examined the effects on their physicochemical characteristics (size and charge), antibiotic entrapment efficiency, and the in vitro intracellular bacterial killing efficiency against Mycobacterium smegmatis or Staphylococcus aureus infected macrophages.

    RESULTS: The incorporation of cationic or zwitterionic lipids in the LPHNP formulation resulted in a size reduction in LPHNPs formulations and shifted the surface charge of bare NPs towards positive or neutral values. Also observed were influences on the drug incorporation efficiency and modulation of the drug release from the biodegradable polymeric core. The therapeutic efficacy of LPHNPs loaded with vancomycin was improved as its minimum inhibitory concentration (MIC) (2 µg/mL) versus free vancomycin (4 µg/mL). Importantly, our results show a direct relationship between the cationic surface nature of LPHNPs and its intracellular bacterial killing efficiency as the cationic doxycycline or vancomycin loaded LPHNPs reduced 4 or 3 log CFU respectively versus the untreated controls.

    CONCLUSION: In our study, modulation of surface charge in the nanomaterial formulation increased macrophage uptake and intracellular bacterial killing efficiency of LPHNPs loaded with antibiotics, suggesting alternate way for optimizing their use in biomedical applications.

  2. Valizadeh S, Lam SS, Ko CH, Lee SH, Farooq A, Yu YJ, et al.
    Bioresour Technol, 2021 Jan;320(Pt B):124313.
    PMID: 33197736 DOI: 10.1016/j.biortech.2020.124313
    Steam and air gasification with 5 wt% Ni/Al2O3 eggshell (Ni-EG) and homo (Ni-H) catalysts were performed for the first time to produce biohydrogen from food waste. The steam gasification produced comparably higher gas yield than air gasification. In non-catalytic experiments, steam gasification generated a higher volume percent of H2, whereas more CO, CO2, CH4, and C2-C4 were produced in air gasification. Ni-EG demonstrated higher potential to obtain H2-rich gases with a low C2-C4 content compared to that obtained by Ni-H, particularly in steam gasification at 800 °C, which produced gaseous products with 59.48 vol% H2. The long-term activity of both catalysts in steam gasification was evaluated, and Ni-EG exhibited higher stability than Ni-H. The ideal distribution of Ni species on the outer region of γ-Al2O3 pellets in Ni-EG resulted in higher activity, stability, and selectivity than Ni-H in both steam and air gasification.
  3. Zahib IR, Md Tahir P, Talib M, Mohamad R, Alias AH, Lee SH
    Carbohydr Polym, 2021 Jan 15;252:117224.
    PMID: 33183648 DOI: 10.1016/j.carbpol.2020.117224
    Carboxymethyl starch (CMS) was produced from sago starch via carboxymethylation. The CMS with different degree of substitution (DS) ranges from 0.4 to 0.8 were mixed with polyethylene glycol (PEG) of different molecular weight and distilled water and the hydrogel was cured by electron beam irradiation with doses ranging from 25 to 35 kGy. The results revealed that CMS-PEG hydrogels with DS 0.4 give the optimum gel content when radiated at 30 kGy and with PEG 600. Thermogravimetric analysis (TGA) revealed that there are two phases exist in CMS with DS 0.4 in contrast to the three steps decomposition occurs in DS 0.6 and 0.8. It shows that the CMS with DS 0.4 is more thermally stable. Surface morphology revealed crosslinking among the blends when subjected into the radiation dose. The study shows both radiation and PEG addition improved most of the properties of CMS irrespective of the DS value.
  4. Lee CH, Khalina A, Lee SH
    Polymers (Basel), 2021 Jan 29;13(3).
    PMID: 33573036 DOI: 10.3390/polym13030438
    Plant fibers have become a highly sought-after material in the recent days as a result of raising environmental awareness and the realization of harmful effects imposed by synthetic fibers. Natural plant fibers have been widely used as fillers in fabricating plant-fibers-reinforced polymer composites. However, owing to the completely opposite nature of the plant fibers and polymer matrix, treatment is often required to enhance the compatibility between these two materials. Interfacial adhesion mechanisms are among the most influential yet seldom discussed factors that affect the physical, mechanical, and thermal properties of the plant-fibers-reinforced polymer composites. Therefore, this review paper expounds the importance of interfacial adhesion condition on the properties of plant-fiber-reinforced polymer composites. The advantages and disadvantages of natural plant fibers are discussed. Four important interface mechanism, namely interdiffusion, electrostatic adhesion, chemical adhesion, and mechanical interlocking are highlighted. In addition, quantifying and analysis techniques of interfacial adhesion condition is demonstrated. Lastly, the importance of interfacial adhesion condition on the performances of the plant fiber polymer composites performances is discussed. It can be seen that the physical and thermal properties as well as flexural strength of the composites are highly dependent on the interfacial adhesion condition.
  5. Aisyah HA, Paridah MT, Sapuan SM, Ilyas RA, Khalina A, Nurazzi NM, et al.
    Polymers (Basel), 2021 Feb 02;13(3).
    PMID: 33540731 DOI: 10.3390/polym13030471
    Over the last decade, the progressive application of natural fibres in polymer composites has had a major effect in alleviating environmental impacts. Recently, there is a growing interest in the development of green materials in a woven form by utilising natural fibres from lignocellulosic materials for many applications such as structural, non-structural composites, household utilities, automobile parts, aerospace components, flooring, and ballistic materials. Woven materials are one of the most promising materials for substituting or hybridising with synthetic polymeric materials in the production of natural fibre polymer composites (NFPCs). These woven materials are flexible, able to be tailored to the specific needs and have better mechanical properties due to their weaving structures. Seeing that the potential advantages of woven materials in the fabrication of NFPC, this paper presents a detailed review of studies related to woven materials. A variety of factors that influence the properties of the resultant woven NFRC such as yarn characteristics, fabric properties as well as manufacturing parameters were discussed. Past and current research efforts on the development of woven NFPCs from various polymer matrices including polypropylene, polylactic acid, epoxy and polyester and the properties of the resultant composites were also compiled. Last but not least, the applications, challenges, and prospects in the field also were highlighted.
  6. Ong ALC, Lee SH, Aung SW, Khaing SL, Ramasamy TS
    Cells Dev, 2021 03;165:203659.
    PMID: 34024336 DOI: 10.1016/j.cdev.2021.203659
    Successful outcomes of cell-based therapeutic is highly-dependent on quality and quantity of the cells. Epigenetic modifiers are known to modulate cell fates via reprogramming, hence it is plausible to use them in enhancing the plasticity of mesenchymal stem cells. In this study, we aimed to study the effects of 5-Azacytidine (5-AzaCR), an epigenetic modifier, pretreatment on mesenchymal stem cells-derived from Wharton's Jelly (WJMSCs) fates. WJMSCs were pretreated with 5-AzaCR for 24 h and subsequently cultured in culture media mixtures. The proliferative and stemness characteristics of the pretreated WJMSCs were assessed through morphological and gene expression analyses. Results showed that cells pretreated with 5 μM to 20 μM of 5-AzaCR showed to acquire higher proliferative state transiently when cultured in embryonic-mesenchymal stem cell (ESC-MSC) media, but not in MSC medium alone, and this coincides with significant transitional upregulation of stemness transcription factors. 5-AzaCR pretreatment has potential to confer initial induction of higher state of stemness and proliferation in WJMSCs, influenced by the culture media.
  7. Lee CH, Padzil FNBM, Lee SH, Ainun ZMA, Abdullah LC
    Polymers (Basel), 2021 Apr 27;13(9).
    PMID: 33925266 DOI: 10.3390/polym13091407
    In this review, the potential of natural fiber and kenaf fiber (KF) reinforced PLA composite filament for fused deposition modeling (FDM) 3D-printing technology is highlighted. Additive manufacturing is a material-processing method in which the addition of materials layer by layer creates a three-dimensional object. Unfortunately, it still cannot compete with conventional manufacturing processes, and instead serves as an economically effective tool for small-batch or high-variety product production. Being preformed of composite filaments makes it easiest to print using an FDM 3D printer without or with minimum alteration to the hardware parts. On the other hand, natural fiber-reinforced polymer composite filaments have gained great attention in the market. However, uneven printing, clogging, and the inhomogeneous distribution of the fiber-matrix remain the main challenges. At the same time, kenaf fibers are one of the most popular reinforcements in polymer composites. Although they have a good record on strength reinforcement, with low cost and light weight, kenaf fiber reinforcement PLA filament is still seldom seen in previous studies. Therefore, this review serves to promote kenaf fiber in PLA composite filaments for FDM 3D printing. To promote the use of natural fiber-reinforced polymer composite in AM, eight challenges must be solved and carried out. Moreover, some concerns arise to achieve long-term sustainability and market acceptability of KF/PLA composite filaments.
  8. Toh V, Tee SP, Lee SH
    Trop Med Int Health, 2021 06;26(6):664-671.
    PMID: 33590932 DOI: 10.1111/tmi.13563
    OBJECTIVES: Melioidosis, caused by Burkholderia pseudomallei, is prevalent in rural areas of Malaysia. The aim of this study is to delineate the epidemiology and predictors of mortality from melioidosis in Kapit district, Sarawak.

    METHODS: For this retrospective study of patients with culture-confirmed melioidosis admitted to Kapit Hospital, Sarawak, Malaysia, between July 2016 and July 2019, epidemiological, clinical and microbiological data were obtained. Univariate and multivariate logistic regression analyses were used to determine predictors of mortality.

    RESULTS: Seventy three patients met inclusion criteria. Diabetes mellitus (28.8%) and hypertension (27.4%) were primary co-morbidities. Clinical spectrum of melioidosis ranged from bacteraemia (64.4%), pneumonia (61.6%) and internal organ abscesses (49.3%) to localised soft tissue (21.9%) and joint abscesses (6.9%). Mortality rate was 12.3%. Bacteraemia and pneumonia were significantly associated with septic shock, whereas patients with soft tissue abscesses tended to present with a milder form of melioidosis without septic shock. Septic shock, mechanical ventilation, intensive care unit admission, serum urea, creatinine, bicarbonate, albumin and aspartate transaminase were all significantly associated with increased mortality on univariate analysis (all P 

  9. Tan LP, Hamdan RH, Hassan BNH, Reduan MFH, Okene IA, Loong SK, et al.
    Pathogens, 2021 Jun 30;10(7).
    PMID: 34208961 DOI: 10.3390/pathogens10070821
    Rhipicephalus species are distributed globally with a notifiable presence in Southeast Asia (SEA) within animal and human populations. The Rhipicephalus species are highly adaptive and have established successful coexistence within human dwellings and are known to be active all year round, predominantly in tropical and subtropical climates existing in SEA. In this review, the morphological characteristics, epidemiology, and epizootiology of Rhipicephalus tick species found in SEA are reviewed. There are six commonly reported Rhipicephalus ticks in the SEA region. Their interactions with their host species that range from cattle, sheep, and goats, through cats and dogs, to rodents and man are discussed in this article. Rhipicephalus-borne pathogens, including Anaplasma species, Ehrlichia species, Babesia species, and Theileria species, have been highlighted as are relevant to the region in review. Pathogens transmitted from Rhipicepahalus ticks to host animals are usually presented clinically with signs of anemia, jaundice, and other signs of hemolytic changes. Rhipicephalus ticks infestation also account for ectoparasitic nuisance in man and animals. These issues are discussed with specific interest to the SEA countries highlighting peculiarities of the region in the epidemiology of Rhipicephalus species and attendant pathogens therein. This paper also discusses the current general control strategies for ticks in SEA proffering measures required for increased documentation. The potential risks associated with rampant and improper acaricide use are highlighted. Furthermore, such practices lead to acaricide resistance among Rhipicephalus species are highlighted.
  10. Arikrishnan S, Loh JS, Teo XW, Bin Norizan F, Low ML, Lee SH, et al.
    PMID: 34238173 DOI: 10.2174/1871520621666210708100019
    BACKGROUND: The lack of specificity, severe side effects, and development of drug resistance have largely limited the use of platinum-based compounds in cancer treatment. Therefore, copper complexes have emerged as potential alternatives to platinum-based compounds.

    OBJECTIVE: Ternary copper (II) complex incorporated with 1-10-phenanthroline and L-tyrosine was investigated for its anti-cancer effects in HT-29 colorectal cancer cells.

    METHODS: Cytotoxic effects of ternary copper (II) complex in HT-29 cells were evaluated using MTT assay, Real-Time Cell Analysis (RTCA), and lactate dehydrogenase (LDH) assay. Cell cycle analysis was performed using flow cytometry. Apoptosis induction was studied by Annexin V-FITC/propidium iodide (PI) staining and mitochondrial membrane potential analysis (JC-10 staining) using flow cytometry. Intracellular reactive oxygen species (ROS) were detected by DCFH-DA assay. The expression of proteins involved in the apoptotic signalling pathway (p53, caspases, and PARP-1) was evaluated by western blot analysis.

    RESULTS: Ternary copper (II) complex reduced the cell viability of HT-29 cells in a time- and dose-dependent manner, with IC50 of 2.4 ± 0.4 and 0.8 ± 0.04 µM at 24 and 48 hours, respectively. Cell cycle analysis demonstrated induction of S-phase cell cycle arrest. Morphological evaluation and Annexin V-FITC/PI flow cytometry analysis confirmed induction of apoptosis that was further supported by cleavage and activation of caspase-8, caspase-9, caspase-3, and PARP-1. Mutant p53 was also downregulated in a dose-dependent manner. No LDH release, mitochondrial membrane potential disruption, and ROS production were observed.

    CONCLUSION: Ternary copper (II) complex holds great potential to be developed for colorectal cancer treatment.

  11. Saffian HA, Yamaguchi M, Ariffin H, Abdan K, Kassim NK, Lee SH, et al.
    Polymers (Basel), 2021 Jul 19;13(14).
    PMID: 34301116 DOI: 10.3390/polym13142359
    In this study, Kraft lignin was esterified with phthalic anhydride and was served as reinforcing filler for poly(butylene succinate) (PBS). Composites with different ratios of PBS, lignin (L), modified lignin (ML) and kenaf core fibers (KCF) were fabricated using a compounding method. The fabricated PBS composites and its counterparts were tested for thermal, physical and mechanical properties. Weight percent gain of 4.5% after lignin modification and the FTIR spectra has confirmed the occurrence of an esterification reaction. Better thermo-mechanical properties were observed in the PBS composites reinforced with modified lignin and KCF, as higher storage modulus and loss modulus were recorded using dynamic mechanical analysis. The density of the composites fabricated ranged from 1.26 to 1.43 g/cm3. Water absorption of the composites with the addition of modified lignin is higher than that of composites with unmodified lignin. Pure PBS exhibited the highest tensile strength of 18.62 MPa. Incorporation of lignin and KCF into PBS resulted in different extents of reduction in tensile strength (15.78 to 18.60 MPa). However, PBS composite reinforced with modified lignin exhibited better tensile and flexural strength compared to its unmodified lignin counterpart. PBS composite reinforced with 30 wt% ML and 20 wt% KCF had the highest Izod impact, as fibers could diverge the cracking propagation of the matrix. The thermal conductivity value of the composites ranged from 0.0903 to 0.0983 W/mK, showing great potential as a heat insulator.
  12. Munawar K, Choudhry FR, Lee SH, Siau CS, Kadri NBM, Binti Sulong RM
    Heliyon, 2021 Aug;7(8):e07842.
    PMID: 34466706 DOI: 10.1016/j.heliyon.2021.e07842
    OBJECTIVES: Acceptance and commitment therapy (ACT) has accumulated increasing evidence-base for a broad range of mental health issues. Considering that ACT encourages broad and flexible patterns of behaviour and neutralizes the pervasive psychological processes proposed to be caused by most individuals' distress, such a modality may be effective for ADHD. This review aimed to give a synthesis of the studies, so far, focusing on the usefulness of ACT approaches among individuals having ADHD.

    DESIGN/METHODS: This scoping review searched studies exploring the effectiveness of ACT approaches for individuals with ADHD across eight electronic databases (Medline, Embase, PsycInfo, ScienceDirect, PubMed, Emcare, Scopus, and Google Scholar). This review was based on a total of two quasi-experimental and four experimental studies.

    RESULTS: A thematic analysis was suggested based on the PRISMA guidelines. Overall, the review presented preliminary evidence demonstrating the use of ACT among individuals with ADHD. It was found that the ACT was used to treat a variety of behavioural and psychosocial outcomes, which included reducing ADHD symptoms (e.g., impulsivity, inattention, inflexibility, etc.) and other sequelae related to the ADHD diagnosis such as poor quality of life, academic procrastination, depression and anxiety symptoms, and psychological maladjustment.

    CONCLUSIONS: This review revealed that ACT was a flexible approach that could be adapted to deliver both targeted treatment of ADHD symptomatology and more general psychosocial issues. It could also be delivered in group or individual formats. Nevertheless, although the findings of the present scoping review indicate promising results, more research is needed.

  13. Lee SH, Golinska M, Griffiths JR
    Cells, 2021 Sep 09;10(9).
    PMID: 34572020 DOI: 10.3390/cells10092371
    In solid tumours, cancer cells exist within hypoxic microenvironments, and their metabolic adaptation to this hypoxia is driven by HIF-1 transcription factor, which is overexpressed in a broad range of human cancers. HIF inhibitors are under pre-clinical investigation and clinical trials, but there is evidence that hypoxic cancer cells can adapt metabolically to HIF-1 inhibition, which would provide a potential route for drug resistance. Here, we review accumulating evidence of such adaptions in carbohydrate and creatine metabolism and other HIF-1-independent mechanisms that might allow cancers to survive hypoxia despite anti-HIF-1 therapy. These include pathways in glucose, glutamine, and lipid metabolism; epigenetic mechanisms; post-translational protein modifications; spatial reorganization of enzymes; signalling pathways such as Myc, PI3K-Akt, 2-hyxdroxyglutarate and AMP-activated protein kinase (AMPK); and activation of the HIF-2 pathway. All of these should be investigated in future work on hypoxia bypass mechanisms in anti-HIF-1 cancer therapy. In principle, agents targeted toward HIF-1β rather than HIF-1α might be advantageous, as both HIF-1 and HIF-2 require HIF-1β for activation. However, HIF-1β is also the aryl hydrocarbon nuclear transporter (ARNT), which has functions in many tissues, so off-target effects should be expected. In general, cancer therapy by HIF inhibition will need careful attention to potential resistance mechanisms.
  14. Valizadeh S, Ko CH, Lee J, Lee SH, Yu YJ, Show PL, et al.
    J Environ Manage, 2021 Sep 15;294:112959.
    PMID: 34116308 DOI: 10.1016/j.jenvman.2021.112959
    This study highlights the potential of pyrolysis of food waste (FW) with Ni-based catalysts under CO2 atmosphere as an environmentally benign disposal technique. FW was pyrolyzed with homo-type Ni/Al2O3 (Ni-HO) or eggshell-type Ni/Al2O3 (Ni-EG) catalysts under flowing CO2 (50 mL/min) at temperatures from 500 to 700 °C for 1 h. A higher gas yield (42.05 wt%) and a lower condensable yield (36.28 wt%) were achieved for catalytic pyrolysis with Ni-EG than with Ni-HO (34.94 wt% and 40.06 wt%, respectively). In particular, the maximum volumetric content of H2 (21.48%) and CO (28.43%) and the lowest content of C2-C4 (19.22%) were obtained using the Ni-EG. The formation of cyclic species (e.g., benzene derivatives) in bio-oil was also effectively suppressed (24.87%) when the Ni-EG catalyst and CO2 medium were concurrently utilized for the FW pyrolysis. Accordingly, the simultaneous use of the Ni-EG catalyst and CO2 contributed to altering the carbon distribution of the pyrolytic products from condensable species to value-added gaseous products by facilitating ring-opening reactions and free radical mechanisms. This study should suggest that CO2-assisted catalytic pyrolysis over the Ni-EG catalyst would be an eco-friendly and sustainable strategy for disposal of FW which also provides a clean and high-quality source of energy.
  15. Hakimi NMF, Lee SH, Lum WC, Mohamad SF, Osman Al Edrus SS, Park BD, et al.
    Polymers (Basel), 2021 Sep 24;13(19).
    PMID: 34641056 DOI: 10.3390/polym13193241
    Natural rubber is of significant economic importance owing to its excellent resilience, elasticity, abrasion and impact resistance. Despite that, natural rubber has been identified with some drawbacks such as low modulus and strength and therefore opens up the opportunity for adding a reinforcing agent. Apart from the conventional fillers such as silica, carbon black and lignocellulosic fibers, nanocellulose is also one of the ideal candidates. Nanocellulose is a promising filler with many excellent properties such as renewability, biocompatibility, non-toxicity, reactive surface, low density, high specific surface area, high tensile and elastic modulus. However, it has some limitations in hydrophobicity, solubility and compatibility and therefore it is very difficult to achieve good dispersion and interfacial properties with the natural rubber matrix. Surface modification is often carried out to enhance the interfacial compatibilities between nanocellulose and natural rubber and to alleviate difficulties in dispersing them in polar solvents or polymers. This paper aims to highlight the different surface modification methods employed by several researchers in modifying nanocellulose and its reinforcement effects in the natural rubber matrix. The mechanism of the different surface medication methods has been discussed. The review also lists out the conventional filler that had been used as reinforcing agent for natural rubber. The challenges and future prospective has also been concluded in the last part of this review.
  16. Zakaria R, Bawon P, Lee SH, Salim S, Lum WC, Al-Edrus SSO, et al.
    Polymers (Basel), 2021 Oct 12;13(20).
    PMID: 34685253 DOI: 10.3390/polym13203494
    The study investigated the effects of the addition of starch on the properties of oil palm biomass particleboard bonded with citric acid. Three kinds of oil palm biomasses were used in this study for the fabrication of particleboard, namely, oil palm frond (OPF), oil palm trunk (OPT), and empty fruit bunch (EFB) particles. Citric acid and tapioca starch at the mixing ratios of 100:0, 87.5:12.5, and 75:25 were prepared at a 60% solid content. A 30% resin content based on the oven-dried weight of the oil palm biomass particles was used. The sprayed particles were pre-dried at 80 °C for 12 h before being hot-pressed at 180 °C and 4 MPa pressure for 10 min. The physical and mechanical properties of the particleboard were evaluated. The mixtures of citric acid and tapioca starch were characterized by thermogravimetric analysis (TGA). Thermal stability of citric acid was reduced after the addition of tapioca starch. The addition of 12.5% tapioca starch improved the bending strength of the particleboard but increased the thickness swelling slightly. All UF-bonded particleboard exhibited significantly inferior performance than that of citric-acid-bonded particleboard. Citric-acid-bonded particleboard maintained its original shape after being subjected to a cyclic-aging treatment, while the UF-bonded particleboard disintegrated half way through the treatment. The performance of EFB particleboard was significantly inferior to its OPT and OPF counterparts.
  17. Lee SH, Looi CY, Chong PP, Foo JB, Looi QH, Ng CX, et al.
    Curr Stem Cell Res Ther, 2021;16(5):551-562.
    PMID: 32988356 DOI: 10.2174/1574888X15666200928110923
    Mesenchymal Stem Cells (MSCs) are adult stem cells that are gaining worldwide attention for their multi-potential use in tissue engineering-based regenerative medicine. They can be obtained from numerous sources and one of the excellent sources is the dental tissue, such as Stem cells that are extracted from the Human Exfoliated Deciduous teeth (SHED). SHED are considered ideal due to their inherent characteristics, including the capability to proliferate quickly with minimal oncogenesis risk, multipotency capacity and their ability to suppress the immune system. On top of these positive cell traits, SHED are easily accessible with the patient's safety assured, posing less ethical issues and could also provide a sufficient number of cells for prospective clinical uses. This is primarily attributed to their ability to differentiate into multiple cell linages, including osteoblasts, odontoblasts, neuronal cells, adipocytes, as well as endothelial cells. Albeit SHED having a bright future, there still remains an obstacle to develop reliable experimental techniques to retain the long-term regeneration potential of the stem cells for prospective research and clinical applications. Therefore, this review aims to describe the various isolation, expansion and cryopreservation techniques used by researchers in this stem cell field. Optimization of these techniques is crucial to obtain distinct SHED culture with preserved stem cell properties, which enable more reproducible results that will be the key for further stem cell therapy development.
  18. Xu W, Lee SH, Qiu F, Zhou L, Wang X, Ye T, et al.
    PLoS One, 2021;16(5):e0250634.
    PMID: 34048444 DOI: 10.1371/journal.pone.0250634
    BACKGROUND: Drug resistance frequently led to the failure of chemotherapy for malignant cancers, hence causing cancer relapse. Thus, understanding mechanism of drug resistance in cancer is vital to improve the treatment efficacy. Here, we aim to evaluate the association between SMAD4 expression and the drug resistance in cancers by performing a meta-analysis.

    METHOD: Relevant studies detecting SMAD4 expression in cancer patients treated with chemo-drugs up till December 2020 were systematically searched in four common scientific databases using selected keywords. The pooled hazard ratio (HR) was the ratio of hazard rate between SMAD4neg population vs SMAD4pos population. The HRs and risk ratios (RRs) with 95% confidence intervals (CIs) were used to explore the association between SMAD4 expression losses with drug resistance in cancers.

    RESULT: After an initial screening according to the inclusion and exclusion criteria, eleven studies were included in the meta-analysis. There were a total of 2092 patients from all the included studies in this analysis. Results obtained indicated that loss of SMAD4 expression was significantly correlated with drug resistance with pooled HRs (95% CI) of 1.23 (1.01-1.45), metastasis with pooled RRs (95% CI) of 1.10 (0.97-1.25) and recurrence with pooled RRs (95% CI) of 1.32 (1.06-1.64). In the subgroup analysis, cancer type, drug type, sample size and antibody brand did not affect the significance of association between loss of SMAD4 expression and drug resistance. In addition, there was no evidence of publication bias as suggested by Begg's test.

    CONCLUSION: Findings from our meta-analysis demonstrated that loss of SMAD4 expression was correlated with drug resistance, metastasis and recurrence. Therefore, SMAD4 expression could be potentially used as a molecular marker for cancer resistance.

  19. Foo JB, Looi QH, Chong PP, Hassan NH, Yeo GEC, Ng CY, et al.
    Stem Cells Int, 2021;2021:2616807.
    PMID: 34422061 DOI: 10.1155/2021/2616807
    Cell therapy involves the transplantation of human cells to replace or repair the damaged tissues and modulate the mechanisms underlying disease initiation and progression in the body. Nowadays, many different types of cell-based therapy are developed and used to treat a variety of diseases. In the past decade, cell-free therapy has emerged as a novel approach in regenerative medicine after the discovery that the transplanted cells exerted their therapeutic effect mainly through the secretion of paracrine factors. More and more evidence showed that stem cell-derived secretome, i.e., growth factors, cytokines, and extracellular vesicles, can repair the injured tissues as effectively as the cells. This finding has spurred a new idea to employ secretome in regenerative medicine. Despite that, will cell-free therapy slowly replace cell therapy in the future? Or are these two modes of treatment still needed to address different diseases and conditions? This review provides an indepth discussion about the values of stem cells and secretome in regenerative medicine. In addition, the safety, efficacy, advantages, and disadvantages of using these two modes of treatment in regenerative medicine are also critically reviewed.
  20. Moogi S, Jang SH, Rhee GH, Ko CH, Choi YJ, Lee SH, et al.
    Chemosphere, 2022 Jan;287(Pt 2):132224.
    PMID: 34826918 DOI: 10.1016/j.chemosphere.2021.132224
    Food waste, a renewable resource, was converted to H2-rich gas via a catalytic steam gasification process. The effects of basic oxides (MgO, CaO, and SrO) with 10 wt% Ni/Al2O3 on the gasification properties of food waste were investigated using a U-shaped gasifier. All catalysts prepared by the precipitation method were analyzed by X-ray diffraction, H2-temperature-programmed reduction, NH3-temperature-programmed desorption, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The Ni/Al2O3 catalyst was reduced incompletely, and low nickel concentrations were detected on the surface of the alumina. The basic oxides minimized the number of acid sites and suppressed the formation of nickel-aluminate (NiAlxOy) phase in catalyst. In addition, the basic oxides shifted nickel-aluminate reduction reaction to lower temperatures. It resulted in enhancing nickel concentration on the catalyst surface and increasing gas yield and hydrogen selectivity. The low gas yield of the Ni/Al2O3 catalyst was attributed to the low nickel concentration on the surface. The maximum gas yield (66.0 wt%) and hydrogen selectivity (63.8 vol%) of the 10 wt% SrO- 10 wt% Ni/Al2O3 catalyst correlated with the highly dispersed nickel on the surface and low acidity. Furthermore, coke deposition during steam gasification varied with the surface acidity of the catalysts and less coke was formed on 10 wt% SrO- 10 wt% Ni/Al2O3 due to efficient tar cracking. This study showed that the steam gasification efficiency of the Ni/Al2O3 catalyst could be improved significantly by the addition of SrO.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links