Displaying publications 61 - 80 of 121 in total

Abstract:
Sort:
  1. Li Y, Ren J, Li N, Liu J, Tan SC, Low TY, et al.
    Exp Gerontol, 2020 11;141:111110.
    PMID: 33045358 DOI: 10.1016/j.exger.2020.111110
    BACKGROUND: Dehydroepiandrosterone (DHEA) has been aggressively sold as a dietary supplement to boost testosterone levels although the impact of DHEA supplementation on testosterone levels has not been fully established. Therefore, we performed a systematic review and meta-analysis of RCTs to investigate the effect of oral DHEA supplementation on testosterone levels.

    METHODS: A systematic literature search was performed in Scopus, Embase, Web of Science, and PubMed databases up to February 2020 for RCTs that investigated the effect of DHEA supplementation on testosterone levels. The estimated effect of the data was calculated using the weighted mean difference (WMD). Subgroup analysis was performed to identify the source of heterogeneity among studies.

    RESULTS: Overall results from 42 publications (comprising 55 arms) demonstrated that testosterone level was significantly increased after DHEA administration (WMD: 28.02 ng/dl, 95% CI: 21.44-34.60, p = 0.00). Subgroup analyses revealed that DHEA increased testosterone level in all subgroups, but the magnitude of increment was higher in females compared to men (WMD: 30.98 ng/dl vs. 21.36 ng/dl); DHEA dosage of ˃50 mg/d compared to ≤50 mg/d (WMD: 57.96 ng/dl vs. 19.43 ng/dl); intervention duration of ≤12 weeks compared to ˃12 weeks (WMD: 44.64 ng/dl vs. 19 ng/dl); healthy participants compared to postmenopausal women, pregnant women, non-healthy participants and androgen-deficient patients (WMD: 52.17 ng/dl vs. 25.04 ng/dl, 16.44 ng/dl and 16.47 ng/dl); and participants below 60 years old compared to above 60 years old (WMD: 31.42 ng/dl vs. 23.93 ng/dl).

    CONCLUSION: DHEA supplementation is effective for increasing testosterone levels, although the magnitude varies among different subgroups. More study needed on pregnant women and miscarriage.

  2. Chai JF, Kao SL, Wang C, Lim VJ, Khor IW, Dou J, et al.
    J Clin Endocrinol Metab, 2020 Dec 01;105(12).
    PMID: 32936915 DOI: 10.1210/clinem/dgaa658
    CONTEXT: Glycated hemoglobin A1c (HbA1c) level is used to screen and diagnose diabetes. Genetic determinants of HbA1c can vary across populations and many of the genetic variants influencing HbA1c level were specific to populations.

    OBJECTIVE: To discover genetic variants associated with HbA1c level in nondiabetic Malay individuals.

    DESIGN AND PARTICIPANTS: We conducted a genome-wide association study (GWAS) analysis for HbA1c using 2 Malay studies, the Singapore Malay Eye Study (SiMES, N = 1721 on GWAS array) and the Living Biobank study (N = 983 on GWAS array and whole-exome sequenced). We built a Malay-specific reference panel to impute ethnic-specific variants and validate the associations with HbA1c at ethnic-specific variants.

    RESULTS: Meta-analysis of the 1000 Genomes imputed array data identified 4 loci at genome-wide significance (P 

  3. You R, Zhang Y, Wu DB, Liu J, Qian X, Luo N, et al.
    Front Pharmacol, 2020;11:456.
    PMID: 32425768 DOI: 10.3389/fphar.2020.00456
    Objective: This study aims to estimate the cost-effectiveness of yearly intravenous zoledronic acid treatment versus weekly oral alendronate for postmenopausal osteoporotic women in China.

    Methods: We used a Markov microsimulation model to compare the cost-effectiveness of zoledronic acid with alendronate in Chinese postmenopausal osteoporotic women with no fracture history at various ages of therapy initiation from health care payer perspective.

    Results: The incremental cost-effectiveness ratios (ICERs) for the zoledronic acid versus alendronate were $23,581/QALY at age 65 years, $17,367/QALY at age 70 years, $14,714/QALY at age 75 years, and $12,169/QALY at age 80 years, respectively. In deterministic sensitivity analyses, the study demonstrated that the two most impactful parameters were the annual cost of zoledronic acid and the relative risk of hip fracture with zoledronic acid. In probabilistic sensitivity analyses, the probabilities of zoledronic acid being cost-effective compared with alendronate were 70-100% at a willingness-to-pay of $29,340 per QALY.

    Conclusions: Among postmenopausal osteoporotic women in China, zoledronic acid therapy is cost-effective at all ages examined from health care payer perspective, compared with weekly oral alendronate. In addition, alendronate treatment is shown to be dominant for patients at ages 65 and 70 with full persistence. This study will help clinicians and policymakers make better decisions about the relative economic value of osteoporosis treatments in China.

  4. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
  5. Liu J, Zheng C, Liu ZY, Niu YF
    Mitochondrial DNA B Resour, 2021 Feb 09;6(2):485-487.
    PMID: 33628898 DOI: 10.1080/23802359.2021.1872449
    Nephelium lappaceum is a popular tropical fruit belonging to the Sapindaceae family. The plant originated in Malaysia and Indonesia and is commonly called rambutan. Because of its refreshing flavor and exotic appearance, rambutan is widely accepted in the World. Due to its significant medicinal properties, the fruit has also been employed in traditional medicine for centuries. The chloroplast genome of rambutan was sequenced, assembled, and annotated in the present study. The chloroplast genome length was 161,356 bp and contained 132 genes, including 87 protein-coding genes, 37 transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes. It possessed the typical quadripartite circle structure with a large single-copy region (86,009 bp), a small single-copy region (18,153 bp), and two inverted repeat regions (28,597 bp). A total of 35 SSR markers were found in the chloroplast genome of Nephelium lappaceum, of which 33 were monomer, 1 was dimer and 1 was tetramer. Phylogenetic analysis based on the complete chloroplast genome sequences of 21 plant species showed that rambutan was closely related to Pometia tomentosa. These results provide a foundation for further phylogenetic and evolutionary studies of the Sapindaceae family.
  6. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al.
    Circulation, 2021 Feb 23;143(8):e254-e743.
    PMID: 33501848 DOI: 10.1161/CIR.0000000000000950
    BACKGROUND: The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs).

    METHODS: The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2021 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population, an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, the global burden of cardiovascular disease, and further evidence-based approaches to changing behaviors related to cardiovascular disease.

    RESULTS: Each of the 27 chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics.

    CONCLUSIONS: The Statistical Update represents a critical resource for the lay public, policy makers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.

  7. Yi C, Jiang F, Yang C, Chen Z, Ding Z, Liu J
    Sensors (Basel), 2021 Mar 05;21(5).
    PMID: 33807746 DOI: 10.3390/s21051813
    Inertial measurement unit (IMU)-based joint angle estimation is an increasingly mature technique that has a broad range of applications in clinics, biomechanics and robotics. However, the deviations of different IMUs' reference frames, referring to IMUs' individual orientations estimating errors, is still a challenge for improving the angle estimation accuracy due to conceptual confusion, relatively simple metrics and the lack of systematical investigation. In this paper, we clarify the determination of reference frame unification, experimentally study the time-varying characteristics of reference frames' deviations and accordingly propose a novel method with a comprehensive metric to unify reference frames. To be specific, we firstly define the reference frame unification (RFU) and distinguish it with drift correction that has always been confused with the term RFU. Secondly, we design a mechanical gimbal-based experiment to study the deviations, where sensor-to-body alignment and rotation-caused differences of orientations are excluded. Thirdly, based on the findings of the experiment, we propose a novel method to utilize the consistency of the joint axis under the hinge-joint constraint, gravity acceleration and local magnetic field to comprehensively unify reference frames, which meets the nonlinear time-varying characteristics of the deviations. The results on ten human subjects reveal the feasibility of our proposed method and the improvement from previous methods. This work contributes to a relatively new perspective of considering and improving the accuracy of IMU-based joint angle estimation.
  8. Liu J, Kamarudin KM, Liu Y, Zou J
    PMID: 33800764 DOI: 10.3390/ijerph18052653
    BACKGROUND: An infectious disease can affect human beings at an alarming speed in modern society, where Coronavirus Disease 2019 (COVID-19) has led to a worldwide pandemic, posing grave threats to public security and the social economies. However, as one of the closest attachments of urban dwellers, urban furniture hardly contributes to pandemic prevention and control.

    METHODS: Given this critical challenge, this article aims to propose a feasible solution to coping with pandemic situations through urban furniture design, using an integrated method of Quality Function Deployment (QFD) and Analytic Network Process (ANP). Eight communities in China are selected as the research sites, since people working and living in these places have successful experience preventing and containing pandemics.

    RESULTS: Three user requirements (URs), namely, usability and easy access, sanitation, and health and emotional pleasure, are determined. Meanwhile, seven design requirements (DRs) are identified, including contact reduction, effective disinfection, good appearance, social and cultural symbols, ergonomics, smart system and technology and sustainability. The overall priorities of URs and DRs and their inner dependencies are subsequently determined through the ANP-QFD method, comprising the House of Quality (HQQ). According to the theoretical results, we propose five design strategies for pandemic prevention and control.

    CONCLUSION: It is demonstrated that the incorporated method of ANP-QFD has applicability and effectiveness in the conceptual product design process. This article can also provide a new perspective for pandemic prevention and control in densely populated communities in terms of product design and development.

  9. Liu Y, Gan Y, Song Y, Liu J
    Sensors (Basel), 2021 Mar 13;21(6).
    PMID: 33805702 DOI: 10.3390/s21062037
    Contemporarily, almost all the global IT giants have aimed at the smart home industry and made an active strategic business layout. As the early-stage and entry-level product of the voice-enabled smart home industry, the smart speakers have been going through rapid development and rising fierce market competition globally in recent years. China, one of the most populous and largest markets in the world, has tremendous business potential in the smart home industry. The market sales of smart speakers in China have gone through rapid growth in the past three years. However, the market penetration rate of related smart home devices and equipment still stays extremely low and far from mass adoption. Moreover, the market sales of smart speakers have also entered a significant slowdown and adjustment period since 2020. Chinese consumers have moved from early impulsive consumption to a rational consumption phase about this early-stage smart home product. Trust in the marketing field is considered an indispensable component of all business transactions, which plays a crucial role in adopting new technologies. This study explores the influencing factors of Chinese users' perceived trust in the voice-enabled smart home systems, uses structural equation modeling (SEM) to analyze the interaction mechanism between different variables, and establishes a perceived trust model through 475 valid samples. The model includes six variables: system quality, familiarity, subjective norm, technology optimism, perceived enjoyment, and perceived trust. The result shows that system quality is the essential influence factor that impacts all other variables and could significantly affect the perceived trust. Perceived enjoyment is the most direct influence variable affected by system quality, subjective norm, and technology optimism, and it positively affects the perceived trust in the end. The subjective norm is one of the most distinguishing variables for Chinese users, since China has a collectivist consumption culture. People always expect their behavior to meet social expectations and standards to avoid criticism and acquire social integration. Therefore, policy guidance, authoritative opinions, and people with important reference roles will significantly affect consumers' perceived trust and purchase intention. Familiarity and technology optimism are important influential factors that will have an indirect impact on the perceived trust. The related results of this study can help designers, practitioners, and researchers of the smart home industry produce products and services with higher perceived trust to improve consumers' adoption and acceptance so that the market penetration rate of related products and enterprises could be increased, and the maturity and development of the voice-enabled smart home industry could be promoted.
  10. Yang FC, Huang W, Yang W, Liu J, Ai G, Luo N, et al.
    Gynecol Minim Invasive Ther, 2021 04 30;10(2):75-83.
    PMID: 34040965 DOI: 10.4103/GMIT.GMIT_81_20
    Cervical cancer surgery has a history of more than 100-years whereby it has transitioned from the open approach to minimally invasive surgery (MIS). From the era of clinical exploration and practice, minimally invasive gynecologic surgeons have never ceased to explore new frontiers in the field of gynecologic surgery. MIS has fewer postoperative complications, including reduction of treatment-related morbidity and length of hospital stay than laparotomy; this forms the mainstay of treatment for early-stage cervical cancer. However, in November 2018, the New England Journal of Medicine had published two clinical studies on cervical cancer surgery (Laparoscopic Approach to Cervical Cancer [LACC]). Following these publications, laparoscopic surgery for early-stage cervical cancer has come under intense scrutiny and negative perceptions. Many studies began to explore the concept of standardized surgery for early-stage cervical cancer. In this article, we performed a review of the history of cervical cancer surgery, outlined the standardization of cervical cancer surgery, and analyzed the current state of affairs revolving around cervical cancer surgery in the post-LACC era.
  11. Ji YT, Xiu Z, Chen CH, Wang Y, Yang JX, Sui JJ, et al.
    Mol Ecol Resour, 2021 May;21(4):1243-1255.
    PMID: 33421343 DOI: 10.1111/1755-0998.13318
    Chinese mahogany (Toona sinensis) is a woody plant that is widely cultivated in China and Malaysia. Toona sinensis is important economically, including as a nutritious food source, as material for traditional Chinese medicine and as a high-quality hardwood. However, the absence of a reference genome has hindered in-depth molecular and evolutionary studies of this plant. In this study, we report a high-quality T. sinensis genome assembly, with scaffolds anchored to 28 chromosomes and a total assembled length of 596 Mb (contig N50 = 1.5 Mb and scaffold N50 = 21.5 Mb). A total of 34,345 genes were predicted in the genome after homology-based and de novo annotation analyses. Evolutionary analysis showed that the genomes of T. sinensis and Populus trichocarpa diverged ~99.1-103.1 million years ago, and the T. sinensis genome underwent a recent genome-wide duplication event at ~7.8 million years and one more ancient whole genome duplication event at ~71.5 million years. These results provide a high-quality chromosome-level reference genome for T. sinensis and confirm its evolutionary position at the genomic level. Such information will offer genomic resources to study the molecular mechanism of terpenoid biosynthesis and the formation of flavour compounds, which will further facilitate its molecular breeding. As the first chromosome-level genome assembled in the family Meliaceae, it will provide unique insights into the evolution of members of the Meliaceae.
  12. Knox SH, Bansal S, McNicol G, Schafer K, Sturtevant C, Ueyama M, et al.
    Glob Chang Biol, 2021 08;27(15):3582-3604.
    PMID: 33914985 DOI: 10.1111/gcb.15661
    While wetlands are the largest natural source of methane (CH4 ) to the atmosphere, they represent a large source of uncertainty in the global CH4 budget due to the complex biogeochemical controls on CH4 dynamics. Here we present, to our knowledge, the first multi-site synthesis of how predictors of CH4 fluxes (FCH4) in freshwater wetlands vary across wetland types at diel, multiday (synoptic), and seasonal time scales. We used several statistical approaches (correlation analysis, generalized additive modeling, mutual information, and random forests) in a wavelet-based multi-resolution framework to assess the importance of environmental predictors, nonlinearities and lags on FCH4 across 23 eddy covariance sites. Seasonally, soil and air temperature were dominant predictors of FCH4 at sites with smaller seasonal variation in water table depth (WTD). In contrast, WTD was the dominant predictor for wetlands with smaller variations in temperature (e.g., seasonal tropical/subtropical wetlands). Changes in seasonal FCH4 lagged fluctuations in WTD by ~17 ± 11 days, and lagged air and soil temperature by median values of 8 ± 16 and 5 ± 15 days, respectively. Temperature and WTD were also dominant predictors at the multiday scale. Atmospheric pressure (PA) was another important multiday scale predictor for peat-dominated sites, with drops in PA coinciding with synchronous releases of CH4 . At the diel scale, synchronous relationships with latent heat flux and vapor pressure deficit suggest that physical processes controlling evaporation and boundary layer mixing exert similar controls on CH4 volatilization, and suggest the influence of pressurized ventilation in aerenchymatous vegetation. In addition, 1- to 4-h lagged relationships with ecosystem photosynthesis indicate recent carbon substrates, such as root exudates, may also control FCH4. By addressing issues of scale, asynchrony, and nonlinearity, this work improves understanding of the predictors and timing of wetland FCH4 that can inform future studies and models, and help constrain wetland CH4 emissions.
  13. Liu J, Chen X, Liu Y, Lin J, Shen J, Zhang H, et al.
    Infect Dis Poverty, 2021 Aug 21;10(1):112.
    PMID: 34419160 DOI: 10.1186/s40249-021-00895-4
    BACKGROUND: The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) is pandemic. However, the origins and global transmission pattern of SARS-CoV-2 remain largely unknown. We aimed to characterize the origination and transmission of SARS-CoV-2 based on evolutionary dynamics.

    METHODS: Using the full-length sequences of SARS-CoV-2 with intact geographic, demographic, and temporal information worldwide from the GISAID database during 26 December 2019 and 30 November 2020, we constructed the transmission tree to depict the evolutionary process by the R package "outbreaker". The affinity of the mutated receptor-binding region of the spike protein to angiotensin-converting enzyme 2 (ACE2) was predicted using mCSM-PPI2 software. Viral infectivity and antigenicity were tested in ACE2-transfected HEK293T cells by pseudovirus transfection and neutralizing antibody test.

    RESULTS: From 26 December 2019 to 8 March 2020, early stage of the COVID-19 pandemic, SARS-CoV-2 strains identified worldwide were mainly composed of three clusters: the Europe-based cluster including two USA-based sub-clusters; the Asia-based cluster including isolates in China, Japan, the USA, Singapore, Australia, Malaysia, and Italy; and the USA-based cluster. The SARS-CoV-2 strains identified in the USA formed four independent clades while those identified in China formed one clade. After 8 March 2020, the clusters of SARS-CoV-2 strains tended to be independent and became "pure" in each of the major countries. Twenty-two of 60 mutations in the receptor-binding domain of the spike protein were predicted to increase the binding affinity of SARS-CoV-2 to ACE2. Of all predicted mutants, the number of E484K was the largest one with 86 585 sequences, followed by S477N with 55 442 sequences worldwide. In more than ten countries, the frequencies of the isolates with E484K and S477N increased significantly. V367F and N354D mutations increased the infectivity of SARS-CoV-2 pseudoviruses (P 

  14. Al-Hada NM, Md Kasmani R, Kasim H, Al-Ghaili AM, Saleh MA, Banoqitah EM, et al.
    Nanomaterials (Basel), 2021 Aug 22;11(8).
    PMID: 34443973 DOI: 10.3390/nano11082143
    In the present work, a thermal treatment technique is applied for the synthesis of CexSn1-xO2 nanoparticles. Using this method has developed understanding of how lower and higher precursor values affect the morphology, structure, and optical properties of CexSn1-xO2 nanoparticles. CexSn1-xO2 nanoparticle synthesis involves a reaction between cerium and tin sources, namely, cerium nitrate hexahydrate and tin (II) chloride dihydrate, respectively, and the capping agent, polyvinylpyrrolidone (PVP). The findings indicate that lower x values yield smaller particle size with a higher energy band gap, while higher x values yield a larger particle size with a smaller energy band gap. Thus, products with lower x values may be suitable for antibacterial activity applications as smaller particles can diffuse through the cell wall faster, while products with higher x values may be suitable for solar cell energy applications as more electrons can be generated at larger particle sizes. The synthesized samples were profiled via a number of methods, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). As revealed by the XRD pattern analysis, the CexSn1-xO2 nanoparticles formed after calcination reflect the cubic fluorite structure and cassiterite-type tetragonal structure of CexSn1-xO2 nanoparticles. Meanwhile, using FT-IR analysis, Ce-O and Sn-O were confirmed as the primary bonds of ready CexSn1-xO2 nanoparticle samples, whilst TEM analysis highlighted that the average particle size was in the range 6-21 nm as the precursor concentration (Ce(NO3)3·6H2O) increased from 0.00 to 1.00. Moreover, the diffuse UV-visible reflectance spectra used to determine the optical band gap based on the Kubelka-Munk equation showed that an increase in x value has caused a decrease in the energy band gap and vice versa.
  15. Seibold S, Rammer W, Hothorn T, Seidl R, Ulyshen MD, Lorz J, et al.
    Nature, 2021 Sep;597(7874):77-81.
    PMID: 34471275 DOI: 10.1038/s41586-021-03740-8
    The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2-5 with decomposer groups-such as microorganisms and insects-contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect-including the direct consumption by insects and indirect effects through interactions with microorganisms-insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and -0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.
  16. Li H, Tang R, Mustapha WAW, Liu J, Hasan KMF, Li X, et al.
    Gels, 2021 Dec 27;8(1).
    PMID: 35049558 DOI: 10.3390/gels8010021
    Gelatin coating is an effective way to prolong the shelf life of meat products. Aiming at solving the problem of flavor deterioration during the storage of pork at room temperature, pork coating technology was developed to preserve the pork at 25 °C, and the comprehensive sensory analysis of vision, touch, smell, and taste was used to study the effect of coating on preservation of pork flavor. Herein, uncoated (control) and coated pork samples (including gelatin coating and gelatin coating incorporated with ginger essential oil) were analyzed to investigate the integrity of pork periodically during storage at 25 °C for weight loss, color, texture (springiness, chewiness, cohesiveness, gumminess, and hardness), microstructure, odor (electronic nose), taste (electronic tongue), volatile flavor substance, and taste ingredients. The results suggested that ginger essential oil (GEO) gelatin coating and gelatin coating can effectively inhibit the loss of water dispersion and slow down the oxidation reaction, coating treatments could significantly (p < 0.05) retarded the weight loss of pork slices, with values of 20.19%, 15.95%, 13.12% for uncoated, gelatin coated, and GEO-gelatin coated samples during 24 h of storage, respectively. Compared with control group, the color, texture, smell, and taste evaluations demonstrated that coating treatments had improved sensory and texture attributes during the storage period. Furthermore, the comprehensive results from the physical property assays (especially the texture), morphological assay and volatile odor assays showed that the GEO-fish gelatin composite coating had better preservation effect on pork flavor than the fish gelatin coating. The study suggests that the gelatin composite coating could be developed as a prospective active packaging to preserve pork meat at room temperature.
  17. Liu J, Zhang Y, Wu B, Wang S, Bin-Chia Wu D, You R
    Front Pharmacol, 2021;12:717504.
    PMID: 34721016 DOI: 10.3389/fphar.2021.717504
    Objectives: Baseline presence of nonstructural protein 5A (NS5A) resistance-associated variants can attenuate the efficacy of new direct-acting antivirals. A potential method to attain the higher efficacy would be to screen for NS5A polymorphisms prior to the initiation of therapy and to adjust the treatment length based on the test results. However, baseline testing adds additional costs and it is unclear whether this would represent a high value strategy for chronic hepatitis C in China. Methods: A hybrid model compared 1) standard 12-weeks treatment (no testing), 2) shortened 8-weeks treatment (no testing), and 3) baseline testing with 12-/8-weeks treatment for those with/without NS5A polymorphisms from a lifetime Chinese health care payer perspective. All model inputs were retrieved from clinical trials and publically available literature. And sensitivity analyses were also conducted to assess the impact of uncertainty. Results: Baseline testing was associated with overall increase in total health care cost of USD 13.50 and in QALYs of 0.002 compared with standard 12-weeks treatment (no testing), yielded in an ICER of USD 6750/QALY gained. Scenario analyses suggested that shortened 8-weeks treatment (no testing) was found to be lower costs and great QALYs compared with other two strategies when the sustained virologic response (SVR) rate increased to 95%. Sensitivity analyses indicated that the results were robust. Conclusions: Our results suggest prior assessment of NS5A sensitivity followed by optimizing treatment duration was an economic strategy. In addition, shortened 8-weeks treatment (no testing) was shown to be dominant with the SVR rate increased to 95%.
  18. Wang Q, Wang J, Li N, Liu J, Zhou J, Zhuang P, et al.
    Molecules, 2022 Jan 10;27(2).
    PMID: 35056765 DOI: 10.3390/molecules27020444
    (1) Background: Orthosiphon stamineus Benth. is a traditional medicine used in the treatment of diabetes and chronic renal failure in southern China, Malaysia, and Thailand. Diabetes is a chronic metabolic disease and the number of diabetic patients in the world is increasing. This review aimed to systematically review the effects of O. stamineus in the treatment of diabetes and its complications and the pharmacodynamic material basis. (2) Methods: This systematic review was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), using the databases ScienceDirect, PubMed, and Web of Science. (3) Results: Thirty-one articles related to O. stamineus and diabetes were included. The mechanisms of O. stamineus in the treatment of diabetes and its complications mainly included inhibiting α-amylase and α-glucosidase activities, antioxidant and anti-inflammatory activities, regulating lipid metabolism, promoting insulin secretion, ameliorating insulin resistance, increasing glucose uptake, promoting glycolysis, inhibiting gluconeogenesis, promoting glucagon-likepeptide-1 (GLP-1) secretion and antiglycation activity. Phenolic acids, flavonoids and triterpenoids might be the main components for hypoglycemia effects in O. stamineus. (4) Conclusion: O. stamineus could be an antidiabetic agent to treat diabetes and its complications. However, it needs further study on a pharmacodynamic substance basis and the mechanisms of effective constituents.
  19. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, et al.
    Circulation, 2022 Jan 26.
    PMID: 35078371 DOI: 10.1161/CIR.0000000000001052
    BACKGROUND: The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs).

    METHODS: The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2022 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population and an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, and the global burden of cardiovascular disease and healthy life expectancy.

    RESULTS: Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics.

    CONCLUSIONS: The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links