Displaying publications 61 - 80 of 95 in total

Abstract:
Sort:
  1. Hawariah A, Stanslas J
    Anticancer Res, 1998 Nov-Dec;18(6A):4383-6.
    PMID: 9891496
    Previous studies have shown that a styrylpyrone derivative (SPD) from a local tropical plant had antiprogestin and antiestrogenic effects in early pregnant mice models (Azimahtol et al. 1991). Antiprogestins and antiestrogens can be exploited as a therapeutic approach to breast cancer treatment and thus the antitumor activity of SPD was tested in three different human breast cancer cell lines that is: MCF- 7, T47D and MDA-MB-231, employing, the antiproliferative assay of Lin and Hwang (1991) slightly modified. SPD (10(-10) - 10(-6) M) exhibited strong antiproliferative activity in estrogen and progestin-dependent MCF-7 cells (EC50 = 2.24 x 10(-7) M) and in hormone insensitive MDA-MB-231 (EC50 = 5.62 x 10(-7) M), but caused only partial inhibition of the estrogen- insensitive T47D cells (EC50 = 1.58 x 10(-6) M). However, tamoxifen showed strong inhibition of MCF-7 cells (EC50 = 1.41 x 10(-6) M) and to a lesser extent the T47D cells (EC50 = 2.5 x 10(-6) M) but did not affect the MDA-MB-231 cells. SPD at 1 microM exerted a beffer antiestrogenic activity than 1 microM tamoxifen in suppressing the growth of MCF-7 cells stimulated by 1 nM estradiol. Combined treatment of both SPD and tamoxifen at 1 microM showed additional inhibition on the growth of MCF-7 cells in culture. The antiproliferative properties of SPD are effective on both receptor positive and receptor negative mammary cancer cells, and thus appear to be neither dependent on cellular receptor status nor cellular hormone responses. This enhances in vivo approaches as tumors are heterogenous masses with varying receptor status.
  2. Hawariah A, Stanslas J
    In Vivo, 1998 Jul-Aug;12(4):403-10.
    PMID: 9706492
    Early studies reported that a styrylpyrone derivative (SPD) purified from the Goniothalamus sp. acts as a non-competitive antiestrogen in early pregnant mice (1). In the immature rat uterine wet weight test, we found that SPD markedly reduced uterine weight at doses 1 and 100 mg/kg, thus reflecting negative antiestrogenicity, probably attributed to low binding affinities towards ER. Tamoxifen (Tam) on the other hand exhibited partial antiestrogenicity at all doses (0.01-10 mg/kg BW) and dose-dependent estrogenicity. However, the estrogen antagonism: agonism ratio for SPD is much higher than Tam, which is indicative of the breast cancer antitumor activity as seen in compounds such as MER-25. Pretreatment assessment on 1 mg/kg BW SPD and Tam showed that SPD is not a very good, estrogen antagonist compared to Tam, as it was unable to revert the estrogenicity effect of estradiol benzoate (EB) on immature rat uterine weight. Antitumor activity assessment for SPD exhibited significant tumor growth retardation in 7,12-dimethyl benzanthracene (DMBA) induced rat mammary tumors at all doses employed (2, 10 and 50 mg/kg) compared to the controls (p < 0.01). This compound was found to be more potent than Tam (2 and 10 mg/kg) and displayed greater potency at a dose of 10 mg/kg. It caused complete remission of 33.3% of tumors but failed to prevent onset of new tumors. However, SPD administration at 2 mg/kg caused 16.7% complete remission and partial remission. It also prevented the onset of new tumors throughout the experiment.
  3. Tan MS, Teh YH, Ho KL, Stanslas J
    Protein J, 2020 02;39(1):54-61.
    PMID: 31620959 DOI: 10.1007/s10930-019-09872-1
    Being an important regulator of cell growth and survival, a point mutation at glycine-12 residue of Kras4B to valine (V), renders Kras4BG12V oncogenic. Kras4B recombinant protein is used as a bait to fish its potential ligands in the attempt of drugging this oncoprotein and to validate its pharmacologically relevant ligand in protein-ligand interaction studies. Nevertheless, synthesis of Kras4B recombinant protein is challenging as it was reported being susceptible to aggregation into inclusion bodies in the bacterial host, resulting in a poor yield of recombinant protein. Here, we describe a novel method to produce native Kras4BG12V protein by using pET SUMO protein expression system as a solution to the formation of inclusion bodies. Kras4BG12V oncogene was cloned into pET SUMO vector, followed by a 12 h chemically induced protein expression in Escherichia coli at 20 °C. Native Kras4BG12V protein was produced in a series of protein purification steps involving immobilised nickel ion-affinity column chromatography, SUMO fusion protein and polyhistidine tag removal, and size exclusion column chromatography. The identity of the purified Kras4BG12V protein was validated by immunoblot analysis. The purified protein exhibited self-dimerising, indicating that the purified protein structurally resembles Kras4B. Its physical interaction with 4,6-dichloro-2-methyl-3-aminoethyl-indole (DCAI), a known binder of Kras4B, confirms the identity of the purified protein as Kras4BG12V. The native Kras4BG12V protein was successfully purified in a substantial amount by using the pET SUMO protein expression system.
  4. Wong MS, Sidik SM, Mahmud R, Stanslas J
    Clin Exp Pharmacol Physiol, 2013 May;40(5):307-19.
    PMID: 23534409 DOI: 10.1111/1440-1681.12083
    Tumour invasion and metastasis have been recognized as major causal factors in the morbidity and mortality among cancer patients. Many advances in the knowledge of cancer metastasis have yielded an impressive array of attractive drug targets, including enzymes, receptors and multiple signalling pathways. The present review summarizes the molecular pathogenesis of metastasis and the identification of novel molecular targets used in the discovery of antimetastatic agents. Several promising targets have been highlighted, including receptor tyrosine kinases, effector molecules involved in angiogenesis, matrix metalloproteinases (MMPs), urokinase plasminogen activator, adhesion molecules and their receptors, signalling pathways (e.g. phosphatidylinositol 3-kinase, phospholipase Cγ1, mitogen-activated protein kinases, c-Src kinase, c-Met kinases and heat shock protein. The discovery and development of potential novel therapeutics for each of the targets are also discussed in this review. Among these, the most promising agents that have shown remarkable clinical outcome are anti-angiogenic agents (e.g. bevacizumab). Newer agents, such as c-Met kinase inhibitors, are still undergoing preclinical studies and are yet to have their clinical efficacy proven. Some therapeutics, such as first-generation MMP inhibitors (MMPIs; e.g. marimastat) and more selective versions of them (e.g. prinomastat, tanomastat), have undergone clinical trials. Unfortunately, these drugs produced serious adverse effects that led to the premature termination of their development. In the future, third-generation MMPIs and inhibitors of signalling pathways and adhesion molecules could form valuable novel classes of drugs in the anticancer armamentarium to combat metastasis.
  5. Labrooy C, Abdullah TL, Stanslas J
    Data Brief, 2018 Dec;21:1678-1685.
    PMID: 30505900 DOI: 10.1016/j.dib.2018.10.097
    This study compared morphological and molecular data for identification of Kaempferia species. Each species was deposited in Institute of Bioscience (IBS), Universiti Putra Malaysia (UPM) as voucher specimens and ITS sequences of each species deposited in NCBI (https://www.ncbi.nlm.nih.gov/) as GenBank accessions. DNA was extracted using a modified CTAB method and PCR amplification was completed using Internal Transcribed Spacer (ITS4 and ITS5) markers. PCR amplification of products were viewed under gel electrophoresis. Sequencing was performed and sequence characteristics of ITS rDNA in Kaempferia is shown. Qualitative and qualitative scoring of morphological characters and measuring techniques for Kaempferia species are included. In addition, a brief review of molecular markers used in phylogenetic studies of Zingiberaceae is included in this dataset.
  6. Hasan MS, Basri HB, Hin LP, Stanslas J
    Surg Neurol Int, 2011;2:177.
    PMID: 22276232 DOI: 10.4103/2152-7806.90698
    BACKGROUND: Neurocysticercosis is the most common parasitic infestation of the central nervous system and an important cause of acquired epilepsy. Although endemic in developing countries, with an increased immigration from the endemic regions, it is also seen progressively in other parts of the world. Hence, there is an increased need for awareness of neurocysticercosis in the non-endemic areas.

    CASE DESCRIPTION: The case described here is of a 13-year-old girl who presented with refractory seizures. She had been on antiepileptic medication and had also received anti-parasitic treatment for neurocysticercosis. Surgical intervention was recommended because the seizures were resistant to treatment and also because the diagnosis could not be clearly established. Following surgery, the seizures have been under control and the patient has been doing well.

    CONCLUSION: Neurocysticercosis can be a potential cause of refractory seizure even in non-endemic countries. Some cases may be difficult to diagnose. Clinical presentation of seizure and brain imaging should be given priority over blood investigations for diagnosing neurocysticercosis and advanced neurosurgical intervention can be considered in suitable cases for better outcome.

  7. Quah SY, Tan MS, Ho KL, Manan NA, Gorfe AA, Deb PK, et al.
    Future Med Chem, 2020 09;12(18):1611-1631.
    PMID: 32892640 DOI: 10.4155/fmc-2020-0104
    Background: Andrographolide and its benzylidene derivatives, SRJ09 and SRJ23, potentially bind oncogenic K-Ras to exert anticancer activity. Their molecular interactions with K-Ras oncoproteins that lead to effective biological activity are of major interest. Methods & results: In silico docking and molecular dynamics simulation were performed using Glide and Desmond, respectively; while saturation transfer difference NMR was performed using GDP-bound K-RasG12V. SRJ23 was found to bind strongly and selectively to K-RasG12V, by anchoring to a binding pocket (namely p2) principally via hydrogen bond and hydrophobic interactions. The saturation transfer difference NMR analysis revealed the proximity of protons of functional moieties in SRJ23 to K-RasG12V, suggesting positive binding. Conclusion: SRJ23 binds strongly and interacts stably with K-RasG12V to exhibit its inhibitory activity.
  8. Quah SY, Wong CC, Wong HC, Ho KL, Abdul Manan N, Deb PK, et al.
    Toxicol Appl Pharmacol, 2021 08 15;425:115605.
    PMID: 34087331 DOI: 10.1016/j.taap.2021.115605
    Chemoresistance poses a major hurdle to cancer treatments. Andrographolide-derived SRJ09 and SRJ23 were reported to exhibit potent, selective inhibitory activities against colon and prostate cancer cells, respectively. In this study, previously developed resistant colon (HCT-116rst09) and prostate (PC-3rst23) cancer cell lines were used to elucidate the molecular mechanisms contributing to chemoresistance. Cytotoxic effects of SRJ09 and SRJ23 on both parental and resistant cells were investigated. Cell cycle distributions in HCT-116rst09 cells following SRJ09 treatment were analysed using flow cytometry. Whole-genome microarray analysis was performed on both parental and resistant cells to obtain differential gene expression profiles. Microarray data were subjected to protein-protein interaction network, functional enrichment, and pathway analyses. Reverse transcription-polymerase chain reaction (RT-PCR) was used to validate the changes in expression levels of selected genes. Besides morphological changes, HCT-116rst09 cells showed 7.0-fold resistance to SRJ09 while PC-3rst23 cells displayed a 5.5-fold resistance to SRJ23, as compared with their respective parental cells. G0/G1-phase cell cycle arrest was observed in HCT-116rst09 cells upon SRJ09 treatment. Collectively, 77 and 21 genes were found differentially modulated in HCT-116rst09 and PC-3rst23 cells, respectively. Subsequent bioinformatics analysis revealed several genes associated with FGFR4 and PI3K pathways, and cancer stemness, were chemoresistance mediators in HCT-116rst09 cells. RT-PCR confirmed the HMOX1 upregulation and ATG12 downregulation protected the PC-3rst23 cells from SRJ23 cytotoxicity. In conclusion, acquired chemoresistance to SRJ09 and SRJ23 in colon and prostate cancer cells, respectively, could be attributed to the alterations in the expression of genes such as those related to PI3K and autophagy pathways.
  9. Labrooy C, Abdullah TL, Stanslas J
    Trop Life Sci Res, 2020 Apr;31(1):123-139.
    PMID: 32963715 DOI: 10.21315/tlsr2020.31.1.8
    Kaempferia parviflora is an ethnomedicinally important plant. Conventional propagation of K. parviflora is hindered by slow growth rate, long dormancy periods and dual use of rhizomes for seeds as well as marketable produce. In our study, we developed a promising dual-phase micropropagation protocol to increase number of plantlets, survivability, biomass and quality plantlets for mass production. Multiple shoot regeneration was found most successful on Murashige and Skoog (MS) media supplemented with 35.52 μM N6-benzyladenine (BA) in terms of highest number of shoots (22.4 ± 1.84), leaves (29.27 ± 1.30), and roots (17.8 ± 1.72) per explant. High survivability was observed with an acclimatisation percentage of 100% in sterile perlite medium. This method was shown to be preferable compared to conventional propagation in terms of propagation time and number of plantlets. Regenerated in vitro plantlets were then successfully induced to form microrhizomes in MS media with an optimal concentration of 6% (w/v) sucrose. Increase in microrhizome biomass (35.7 ± 2.59 g per flask), number of microrhizomes (5.2 ± 0.78), shoots (8.5 ± 1.58) and roots (8.5 ± 1.58) were observed for this treatment. This investigation successfully highlights the manipulation of single factors in short time frame to produce a simple and efficient alternative propagation method for K. parviflora.
  10. Sulaiman I, Lim JC, Soo HL, Stanslas J
    Pulm Pharmacol Ther, 2016 Oct;40:52-68.
    PMID: 27453494 DOI: 10.1016/j.pupt.2016.07.005
    Extensive research into the therapeutics of asthma has yielded numerous effective interventions over the past few decades. However, adverse effects and ineffectiveness of most of these medications especially in the management of steroid resistant severe asthma necessitate the development of better medications. Numerous drug targets with inherent airway smooth muscle tone modulatory role have been identified for asthma therapy. This article reviews the latest understanding of underlying molecular aetiology of asthma towards design and development of better antiasthma drugs. New drug candidates with their putative targets that have shown promising results in the preclinical and/or clinical trials are summarised. Examples of these interventions include restoration of Th1/Th2 balance by the use of newly developed immunomodulators such as toll-like receptor-9 activators (CYT003-QbG10 and QAX-935). Clinical trials revealed the safety and effectiveness of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) antagonists such as OC0000459, BI-671800 and ARRY-502 in the restoration of Th1/Th2 balance. Regulation of cytokine activity by the use of newly developed biologics such as benralizumab, reslizumab, mepolizumab, lebrikizumab, tralokinumab, dupilumab and brodalumab are at the stage of clinical development. Transcription factors are potential targets for asthma therapy, for example SB010, a GATA-3 DNAzyme is at its early stage of clinical trial. Other candidates such as inhibitors of Rho kinases (Fasudil and Y-27632), phosphodiesterase inhibitors (GSK256066, CHF 6001, roflumilast, RPL 554) and proteinase of activated receptor-2 (ENMD-1068) are also discussed. Preclinical results of blockade of calcium sensing receptor by the use of calcilytics such as calcitriol abrogates cardinal signs of asthma. Nevertheless, successful translation of promising preclinical data into clinically viable interventions remains a major challenge to the development of novel anti-asthmatics.
  11. Jabir RS, Ho GF, Annuar MABA, Stanslas J
    Biomarkers, 2018 Mar;23(2):142-146.
    PMID: 28554261 DOI: 10.1080/1354750X.2017.1334152
    CONTEXT: Rash and oral mucositis are major non-haematological adverse events (AEs) of docetaxel, in addition to fatigue, nausea, vomiting and diarrhoea, which restrict the use of the drug in cancer therapy. Alpha-1-acid glycoprotein (AAG) is an acute phase reactant glycoprotein and is a primary carrier of docetaxel in the blood. Docetaxel has extensive binding (>98%) to plasma proteins such as AAG, lipoproteins and albumin.

    OBJECTIVE: To study the association between plasma AAG level and non-haematological AEs of docetaxel in Malaysian breast cancer patients of three major ethnic groups (Malays, Chinese and Indians).

    MATERIALS AND METHODS: One hundred and twenty Malaysian breast cancer patients receiving docetaxel as single agent chemotherapy were investigated for AAG plasma level using enzyme-linked immunosorbent assay technique. Toxicity assessment was determined using Common Terminology Criteria of Adverse Events v4.0. The association between AAG and toxicity were then established.

    RESULTS: There was interethnic variation of plasma AAG level; it was 182 ± 85 mg/dl in Chinese, 237 ± 94 mg/dl in Malays and 240 ± 83 mg/dl in Indians. It was found that low plasma levels of AAG were significantly associated with oral mucositis and rash.

    CONCLUSIONS: This study proposes plasma AAG as a potential predictive biomarker of docetaxel non-haematological AEs namely oral mucositis and rash.

  12. Sulaiman I, Tan K, Mohtarrudin N, Lim JCW, Stanslas J
    Pulm Pharmacol Ther, 2018 12;53:39-51.
    PMID: 30244166 DOI: 10.1016/j.pupt.2018.09.008
    Toluene diisocyanate (TDI) is a major cause of chemical-induced occupational asthma, which contributes about 15% of global asthma burden. Resistance and compounded side effects associated with the use of corticosteroid in asthma necessitate the search for alternative drugs. Andrographolide (AGP), a naturally occurring diterpene lactone is known to exhibit various bioactivities. Its ability to ameliorate cardinal features of allergic asthma was previously suggested in an eosinophilic asthma endotype. However, its potential antiasthma activity and mechanism of action in a neutrophilic occupational asthma model, as well as its effect on epithelial dysfunction remain unknown. BALB/c mice were dermally sensitised with 0.3% TDI or acetone olive oil (AOO) vehicle on day 1 and 8, followed by 0.1% TDI intranasal challenge on days 15, 18 and 21. Endpoints were evaluated via bronchoalveolar lavage fluid (BALF) cell analysis, 2',7'-dichlorofluorescein diacetate (DCFDA) assays, immunoblotting, immunohistochemistry and methacholine challenge test. Decreases in total and differential leukocyte counts of BALF were recorded in AGP-treated animals. The compound dose-dependently reduced intracellular de-esterification of DCFDA, thus suggesting AGP's potential to inhibit intracellular reactive oxygen species (ROS). Mechanistically, the treatment prevented TDI-induced aberrant E-cadherin distribution and restored airway epithelial β-catenin at cell to cell contact site. Furthermore, AGP ameliorated TDI induced pulmonary collagen deposition. In addition, the treatment significantly upregulated pulmonary HO-1, Nrf2 and phospho-p38 levels. Airway hyperresponsiveness was markedly suppressed among AGP-treated animals. Collectively, these findings suggest AGP's protective function against TDI-induced airway epithelial barrier dysfunction and oxidative lung damage possibly through the upregulation of adherence junction proteins and the activation of p38/Nrf2 signalling. This study elucidates the therapeutic potential of AGP in the control and management of chemical-induced allergic asthma. To the best of our knowledge, the potential anti-asthma activity of AGP in TDI-induced occupational asthma has not been reported previously.
  13. Badamasi IM, Lye MS, Ibrahim N, Stanslas J
    J Neural Transm (Vienna), 2019 06;126(6):711-722.
    PMID: 31111219 DOI: 10.1007/s00702-019-02014-y
    Major depressive disorder (MDD) is primarily hinged on the presence of either low mood and/or anhedonia to previously pleasurable events for a minimum of 2 weeks. Other clinical features that characterize MDD include disturbances in sleep, appetite, concentration and thoughts. The combination of any/both of the primary MDD symptoms as well as any four of the other clinical features has been referred to as MDD. The challenge for replicating gene association findings with phenotypes of MDD as well as its treatment outcome is putatively due to stratification of MDD patients. Likelihood for replication of gene association findings is hypothesized with specificity in symptoms profile (homogenous clusters of symptom/individual symptoms) evaluated. The current review elucidates the genetic factors that have been associated with insomnia symptom of MDD phenotype, insomnia symptom as a constellation of neuro-vegetative cluster of MDD symptom, insomnia symptom of MDD as an individual entity and insomnia feature of treatment outcome. Homozygous CC genotype of 3111T/C, GSK3B-AT/TT genotype of rs33458 and haplotype of TPH1 218A/C were associated with insomnia symptom of MDD. Insomnia symptom of MDD was not resolved in patients with the A/A genotype of HTR2A-rs6311 when treated with SSRI. Homozygous short (SS) genotype-HTTLPR, GG genotype of HTR2A-rs6311 and CC genotype of HTR2A-rs6313 were associated with AD treatment-induced insomnia, while val/met genotype of BDNF-rs6265 and the TT genotype of GSK-3beta-rs5443 reduced it. Dearth of association studies may remain the bane for the identification of robust genetic endophenotypes in line with findings for genotypes of HTR2A-rs6311.
  14. Soo HL, Quah SY, Sulaiman I, Sagineedu SR, Lim JCW, Stanslas J
    Drug Discov Today, 2019 09;24(9):1890-1898.
    PMID: 31154065 DOI: 10.1016/j.drudis.2019.05.017
    Andrographolide (AGP), a naturally occurring bioactive compound, has been investigated as a lead compound in cancer drug development. Its multidimensional therapeutic effects have raised interest among medicinal chemists, which has led to extensive structural modification of the compound, resulting in analogues with improved pharmacological and pharmaceutical properties. Nevertheless, the analogues with the improved properties need to be rigorously studied to identify drug-like lead compounds. We scrutinised articles published from 2012 to 2018, to objectively provide opinions on the mechanisms of action of AGP and its analogues, as well as their potential as viable anticancer drugs. Preclinical and clinical data, along with the extensive medicinal chemistry efforts, indicate the compounds are potential anticancer agents with specific value in treating recalcitrant cancers such as pancreatic and lung cancers.
  15. Manikam SD, Manikam ST, Stanslas J
    J Pharm Pharmacol, 2009 Jan;61(1):69-78.
    PMID: 19126299 DOI: 10.1211/jpp/61.01.0010
    The growth inhibiting potential of andrographolide was evaluated in three acute promyelocytic leukaemia cell line models (HL-60, NB4 and all-trans retinoic acid (ATRA)-resistant NB4-R2).
  16. Bagalkotkar G, Sagineedu SR, Saad MS, Stanslas J
    J Pharm Pharmacol, 2006 Dec;58(12):1559-70.
    PMID: 17331318
    This review discusses the medicinal plant Phyllanthus niruri Linn. (Euphorbiaceae), its wide variety of phytochemicals and their pharmacological properties. The active phytochemicals, flavonoids, alkaloids, terpenoids, lignans, polyphenols, tannins, coumarins and saponins, have been identified from various parts of P. niruri. Extracts of this herb have been proven to have therapeutic effects in many clinical studies. Some of the most intriguing therapeutic properties include anti-hepatotoxic, anti-lithic, anti-hypertensive, anti-HIV and anti-hepatitis B. Therefore, studies relating to chemical characteristics and structural properties of the bioactive phytochemicals found in P. niruri are very useful for further research on this plant as many of the phytochemicals have shown preclinical therapeutic efficacies for a wide range of human diseases, including HIV/AIDS and hepatitis B.
  17. Ngozi Nwaefulu O, Rao Sagineedu S, Kaisarul Islam M, Stanslas J
    Eur Rev Med Pharmacol Sci, 2022 Jan;26(2):367-381.
    PMID: 35113412 DOI: 10.26355/eurrev_202201_27861
    OBJECTIVE: Pancreatic cancer (PaCa) is a disease that is extremely difficult to treat and is associated with a high fatality rate. The majority of patients present to hospitals with metastatic or end-stage cancer, making the ultimate cure impossible. End-stage PaCa has no specific treatment, though surgery, irradiation, and chemotherapy can help patients live longer. Consequently, it is vital to accumulate all information on potential targeted therapies for this cancer into a single report.

    MATERIALS AND METHODS: This review has been compiled using relevant keywords and a thorough web search utilising PubMed, ScienceDirect, GoogleScholar, Scopus, MEDLINE, and SpringerLink.

    RESULTS: Conventional medicines that target various biological processes have a significant negative impact on normal cells. As a result, targeted therapies are required, which include the use of small-molecule inhibitors and monoclonal antibodies to target cancer cell surface receptors, growth factors, and other proteins involved in disease progression. In this review, we summarize the known targeted PaCa therapies, which include inhibitors of the KRAS, mTOR, and PI3K/AKT signaling pathways, as well as PARP, hedgehog, EGFR/ErbB, and TGF-β signaling pathways, along with inhibitors of the neurotrophic tropomyosin receptor kinase (NTRK).

    CONCLUSIONS: An adequate understanding of PaCa pathogenesis and the adoption of tailored medicines can increase patients' overall survival. We believe targeted therapy can help patients with PaCa to have a better prognosis. As such, more research is needed to find appropriate biomarkers to aid in early tumor diagnosis and to discover novel prospective therapeutics based on the drugs listed in this article.

  18. Nwaefulu ON, Al-Shar'i NA, Owolabi JO, Sagineedu SR, Woei LC, Wai LK, et al.
    J Mol Model, 2022 Oct 04;28(11):340.
    PMID: 36194315 DOI: 10.1007/s00894-022-05326-1
    Cancer is imposing a global health burden because of the steady increase in new cases. Moreover, current anticancer therapeutics are associated with many drawbacks, mainly the emergence of resistance and the severe adverse effects. Therefore, there is a continuous need for developing new anticancer agents with novel mechanisms of action and lower side effects. Natural products have been a rich source of anticancer medication. Cycleanine, a natural product, was reported to exert an antiproliferative effect on ovarian cancer cells by causing apoptosis through activation of caspases 3/7 and cleavage of poly (ADP-ribose) polymerase to form poly (ADP-ribose) polymerase-1 (PARP1). It is well-established that PARP1 is associated with carcinogenesis, and different PARP1 inhibitors are approved as anticancer drugs. In this study, the cytotoxic activity of cycleanine was computationally investigated to determine whether it is a PARP1 inhibitor or a caspase activator. Molecular docking and molecular dynamics (MD) simulations were utilized for this purpose. The results showed that cycleanine has a good binding affinity to PARP1; moreover, MD simulation showed that it forms a stable complex with the enzyme. Consequently, the results showed that cycleanine is a potential inhibitor of the PARP1 enzyme.
  19. Jabir RS, Ho GF, Annuar MABA, Stanslas J
    Clin Breast Cancer, 2018 10;18(5):e1173-e1179.
    PMID: 29885788 DOI: 10.1016/j.clbc.2018.04.018
    PURPOSE: Nonhematologic adverse events (AEs) of docetaxel constitute an extra burden in the treatment of cancer patients and necessitate either a dose reduction or an outright switch of docetaxel for other regimens. These AEs are frequently associated with genetic polymorphisms of genes encoding for proteins involved docetaxel disposition. Therefore, we investigated that association in Malaysian breast cancer patients.

    MATERIALS AND METHODS: A total of 110 Malaysian breast cancer patients were enrolled in the present study, and their blood samples were investigated for different single nucleotide polymorphisms using polymerase chain reaction restriction fragment length polymorphism. AEs were evaluated using the Common Terminology Criteria for Adverse Events, version 4.0.

    RESULTS: Fatigue, nausea, oral mucositis, and vomiting were the most common nonhematologic AEs. Rash was associated with heterozygous and mutant genotypes of ABCB1 3435C>T (P < .05). Moreover, patients carrying the GG genotype of ABCB1 2677G>A/T reported more fatigue than those carrying the heterozygous genotype GA (P < .05). The presence of ABCB1 3435-T, ABCC2 3972-C, ABCC2 1249-G, and ABCB1 2677-G alleles was significantly associated with nausea and oral mucositis. The coexistence of ABCB1 3435-C, ABCC2 3972-C, ABCC2 1249-G, and ABCB1 2677-A was significantly associated with vomiting (P < .05).

    CONCLUSION: The prevalence of nonhematologic AEs in breast cancer patients treated with docetaxel has been relatively high. The variant allele of ABCB1 3435C>T polymorphism could be a potential predictive biomarker of docetaxel-induced rash, and homozygous wild-type ABCB1 2677G>A/T might predict for a greater risk of fatigue. In addition, the concurrent presence of specific alleles could be predictive of vomiting, nausea, and oral mucositis.

  20. Islam MK, Stanslas J
    Pharmacol Ther, 2021 11;227:107870.
    PMID: 33895183 DOI: 10.1016/j.pharmthera.2021.107870
    Cancer immunotherapy is an option to enhance physiological defence mechanism to fight cancer, where natural substances (e.g., antigen/antibody) or small synthetic molecule can be utilized to improve and restore the immune system to stop or slacken the development of malignant cells, stop metastasis and/or help the immune response with synthetic monoclonal antibodies (mAbs) and tumour-agnostic therapy to eliminate cancer cells. Interaction between the programmed cell death ligand 1 (PD-L1) and its receptor (programmed cell death protein 1, PD-1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA4) linked signalling pathways have been identified as perilous towards the body's immune mechanism in regulating the progression of cancer. It is known that certain cancers use these pathways to evade the body's defence mechanism. The immune system is capable of responding to cancer by stalling these trails with specific synthetic antibodies or immune checkpoint inhibitors, which can ultimately either stop or slow cancer cell development. Recent findings and data suggested that using such inhibitors invigorated a new approach to cancer treatment. These inhibitors usually activate the immune system to identify and eliminate cancer cells rather than attacking tumour cells directly. PD-1/PD-L1 inhibitors have already been substantiated for their efficacy in over twenty variations of cancer through different clinical trials. Studies on molecular interaction with existing PD-1/PD-L1 inhibitors that are mainly dominated by antibodies are constantly generating new ideas to develop novel inhibitors. This review has summarised information on reported and/or patented small molecules and peptides for their ability to interact with the PD-1/PD-L1 as a potential anticancer strategy.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links